
The diffusion equation in bounded domains:
separation of variables

Let us consider the diffusion equation in an interval [0, L]:
ut −Duxx = 0 in [0, L]× (0,∞) ,
u(x, 0) = g(x) in [0, L] ,
u(0, t) = 0 for t > 0 ,
u(L, t) = 0 for t > 0 ,

(1)

Notice that, besides the initial condition u(x, 0) = g(x), we have some boundary condi-
tions, telling us what is going on at the boundary points x = 0 and x = L. The particular
conditions we are considering here are the homogeneous Dirichlet conditions

u(0, t) = u(L, t) = 0, ,

for t > 0. The general strategy we are going to develop now is valid for any kind
of homogeneous boundary conditions (like the Neumann BCs, the Robin BCs,...).
Moreover, we will see that the same procedure allows to find the solution even in the
case of non-homogeneous boundary conditions, as well as for the non-homogeneous heat
equation. The basic idea is the following: since we don’t know what the solution can
be, we look for a particular kind of solution, namely one of the form:

u(x, t) = T (t)X(x) ,

for some (one variable) functions T and X. Notice that, for the above functions, the
two variables t and x are separated. This means that we are looking for a solution for
which a fixed profile, given by X, is evolving in time, according to T . This solution is
a particular kind of self-similar solution. In order for such a function u to solve the
equation

ut −Duxx = 0 ,

we need the functions T and X to satisfy

T ′(t)X(x)−DT (t)X ′′(x) = 0 .

By dividing by DT (t)X(x) (here we are assuming that it is possible to divide by
T (t)X(x). This is just a formal operation. It is possible, and we will do it later on
during the course, to perform this step in a more rigorous way), we get

T ′(t)

DT (t)
=
X ′′(x)

X(x)
.

since the left-hand side is a function just of the variable t, while the right-hand side is
a function just of the variable x, in order to have the above equality in force for every
x ∈ [0, L] and every t > 0, we must impose both sides to be constant. So, we are lead
to the equations {

T ′(t) = λDT (t) ,
X ′′(x) = λX(x) ,

for some arbitrary λ ∈ R. The equation for T leads us to (up to a multiplicative
constant)

T (t) = eλDt . (2)

Let us now consider the equation for X. The reason why to consider the BCs for u in
the equation for X is the following: the BCs we have are

0 = u(0, t) = T (t)X(0) , 0 = u(L, t) = T (t)X(L) ,

for every t > 0. In order to satisfy them, we can have T ≡ 0 (but this would implies
that u ≡ 0, and this is a solution if and only if g ≡ 0), or we need to impose

X(0) = 0 , X(L) = 0 .



So, we have to solve the problem X ′′(x) = λX(x) in [0, L] ,
X(0) = 0 ,
X(L) = 0 .

(3)

We have to consider three cases (recall that λ is an arbitrary number!):

• λ > 0: in this case, the general solution of the above equation is

X(x) = a sinh(
√
λx) + b cosh(

√
λx) .

We now have to impose the boundary conditions. So,

0 = X(0) = b ,

and hence X(x) = a sinh(
√
λx). Moreover, we have to impose impose

0 = X(L) = a sinh(
√
λL) .

Since sinh y 6= 0 if y 6= 0 (and this is the case, since
√
λL 6= 0 - recall that we

are in the case λ > 0), we get that the above equation can be satisfied only if
a = 0. So, we obtain the trivial solution X ≡ 0, leading to the function

u(x, t) = T (t)X(x) ≡ 0 .

So, u can be a solution of problem (1) if and only if g ≡ 0 (it is the only way for
the null function to match the initial condition). In the case g 6≡ 0, this cannot
be a solution, and thus we have to exclude it.

• λ = 0, in this case, the general solution of the above equation is

X(x) = ax+ b .

By imposing the boundary conditions, we get a = b = 0. Thus, X ≡ 0. By
arguing as before, for a nontrivial initial data, this function cannot lead to a
solution of our problem.

• λ < 0: in this case, the general solution of the equation is given by

X(x) = a cos(
√
−λx) + b sin(

√
−λx) .

By imposing the boundary conditions at x = 0, we get

0 = X(0) = a ,

and hence X(x) = b sinx. Then, by imposing the boundary conditions at x = L,
we get

0 = X(L) = b sin(
√
−λL) .

Since for b = 0 we obtain the trivial solution, we want to impose sin(
√
−λL) = 0.

By recalling that
sinx = 0 ⇔ x = nπ ,

for some n ∈ N, we get
√
−λL = nπ ⇒ λn = −

(nπ
L

)2
.

So, for every n = 1, 2, 3, . . . (because, for n = 0, we obtain λ = 0, and we already
discussed that case), we get that the function

x 7→ bn sin
(nπ
L
x
)
,

where bn ∈ R is arbitrary, is a solution of problem (3) with λn = −
(
nπ
L

)2
.



By inserting this value of λn in (2), we get that, for every n = 1, 2, 3, . . . , the function

un(x, t) = bne
−(nπL )

2
Dt sin

( nπ
L
x
)

satisfies the diffusion equation and matches the boundary conditions. In order to solve
the problem we also have to satisfy the initial condition. Notice that

un(x, 0) = bn sin
( nπ
L
x
)
.

That is, the function un solves the problem (1) if and only if the initial data g is of the
form

g(x) = a sin
( nπ
L
x
)
,

for some a ∈ R. This is too restrictive. We would like to use the above functions un’s
to build a solution for a generic initial data g. To this purpose, let us consider

v(x, t) :=

N∑
n=1

bne
−(nπL )

2
Dt sin

( nπ
L
x
)
, (4)

for some N ∈ N. Since the diffusion equation is linear, any finite sum of the above
functions still satisfies the diffusion equation. So, v still satisfies the equation. Moreover,
since the boundary conditions are homogeneous, v will match them. Again, we see
that

v(x, 0) :=
N∑
n=1

bn sin
( nπ
L
x
)
,

and hence, we need to assume the initial data g to be of the form

g(x) =
N∑
n=1

gn sin
( nπ
L
x
)
,

for some gn ∈ R. Again, this is too restrictive.

We now do something a little crazy: we set N = +∞ in (4) (making the sum a
series), forgetting about asking ourselves whether it makes sense or not. We just do it!,
obtaining the function

u(x, t) =

∞∑
n=1

bne
−(nπL )

2
Dt sin

( nπ
L
x
)
.

So, we can say that formally (that means, if we believe it!), the above function is still
a solution of the diffusion equation and it matches the boundary condition (since every
finite sum of the un’s does).

Then, in order for u to satisfy the initial problem, it just need to match the initial
condition:

u(x, 0) =
∞∑
n=1

bn sin
( nπ
L
x
)

= g(x) ,

for x ∈ [0, L]. In order to have the above equality satisfies, we will make a further
assumption: we will assume that g is of the form

∞∑
n=1

gn sin
( nπ
L
x
)
, (5)

for some gn ∈ R. Is this too restrictive? We will see, thanks to the theory of Fourier
series, that it is not!



So, assume that

g(x) =
∞∑
n=1

gn sin
( nπ
L
x
)
.

In order for u to match the initial condition, we need to have
∞∑
n=1

gn sin
( nπ
L
x
)

=

∞∑
n=1

bn sin
( nπ
L
x
)
,

for every x ∈ [0, L]. But two series of functions are equal if and only if all the terms in
the series are the same. That is, we need to impose

gn sin
( nπ
L
x
)

= bn sin
( nπ
L
x
)
,

for every x ∈ [0, L] and every n = 1, 2, 3, . . . . But these conditions boil down to impose

bn = gn ,

for every n = 1, 2, 3, . . . . Thus, we get that the function u defined as

u(x, t) :=

∞∑
n=1

gne
−(nπL )

2
Dt sin

( nπ
L
x
)
.

is a solution of the problem (1).

Summing up, we have that:

• if we assume the initial data g to be of the for (5) and
• if we believe that everything we did was correct

then the (since we already know uniqueness) solution of problem (1) is given by

u(x, t) :=

∞∑
n=1

gne
−(nπL )

2
Dt sin

( nπ
L
x
)
.

Notice. The things that we believed in the above reasonment, as well as seeing that
the hypothesis on the form of the initial data g are, will be justified when we will develop
the theory of Fourier series.

Asymptotic behavior of u as t → ∞. Notice that, for t → ∞, every term of the
above series (that is, if we fix x ∈ [0, L]) tends to 0, since the exponential goes to 0, i.e.,
for every fixed x ∈ [0, L], we have that

gne
−(nπL )

2
Dt sin

( nπ
L
x
)
→ 0 , as t→∞ .

So, (with a bit of magic!) we have that

u(x, t) :=
∞∑
n=1

gne
−(nπL )

2
Dt sin

( nπ
L
x
)
→ 0 ,

that is, we can say that (again, formally), for t → ∞, the solution of the diffusion
equation with Dirichlet boundary condition tends to the null function (independently
of the initial data g). This is what we expect from a physical point of view: system (1)
models the diffusion of particles (with initial density given by g) that are diffusing in
the interval [0, L] and such that, every time a particle reaches one of the ends, it exits
the interval. So, it is clear that, after a long time, we expect no particle presents in the
interval. And this is exactly what we get from the equation!


