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Introduction

The Bernstein Problem is an important problem in the setting of minimal
surface theory. Consider a C? function v : Q C R® — R; the area of its

graph is given by
Au; Q) = / V14 |Du|?dL"
Q

Since the area functional A is strictly convex, a function u is a minimum for
the area functional A in  if and only if u satisfied the Eulero equation for
A in Q, the so called minimal surface equation

div[—2 )0 o (1)
1+ |Dul?

In 1915 S.Bernstein (see [Berl7]) proved that the affine functions are the
only functions that satisfied (1) in 2 = R2. The classical Bernstein Problem
for n > 2 asks whether the only solutions of (1) in the whole R™ are the affine
functions. This is what we called the Bernstein Problem. Different proofs of
Bernstein’s theorem were found later by several authors (see, for instance,
Chapter 1), but none of those techniques can be extended to dimension
n > 2.

The suitable technique for higher dimensions turned out to be the ones
of geometric measure theory (GMT). In particular the pioneering notion of
perimeter measure, introduced by E. De Giorgi in 1954, had several applica-
tions in the topic of minimal surfaces and, more generally, in GMT setting.

Let us recall that, if £ C R is a measurable set and A C R™ is open,
the perimeter measure of £ in A is denoted by |0F|(A) and defined by

OE|(4) = sup{ [ div(o) |6 € CLARM), ] < 1} (2)
(see Chapter 5).

The perimeter measure plays an important role in the Bernstein problem.
Indeed, if u € C%(Q), then

0U](Q2 x R) :/ T+ [Duf dz
Q

1X
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where U denotes the subgraph in R”*! induced by w, i.e.
U:={z=(2",2p41) €EQAXR: zpq1 < u(a’)} .

Moreover a function u € C?(Q) satisfies (1) if and only if U locally minimizes
the perimeter measure in the cylinder €2 x R, that is, for each open set A &
QxR and measurable set F' C R"™! such that FAU := (F\U)U(U\F) € 4,
it holds that

0U[(A) < |0F|(A).

QxR

As a consequence, an equivalent formulation of the Bernstein problem in
R™ can be stated asking wether the only (locally) minimizing subgraphs U
in R**! = R™ x R, induced by functions v € C2(R"), must be half-spaces.
This equivalent formulation has the advantage that the theory of sets of
finite perimeter (also called Caccippoli’s sets, devoleped by De Giorgi in the
1950s, see Chapter 5) can be applied to the Bernstein problem.

The new idea, suitable for solving the Bernstein problem in higher di-
mensions, was introduced by W. Fleming in 1962 (see [Fle62]), who gave a
new proof of Bernstein’s theorem. Roughly speaking, Fleming idea was the
following. Let u € C?(R™) be a function which induces a locally perimeter
minimizing set U in R™*!. We can consider the sequence of sets

Uj::{zER"H:ijU} j €N

and show that, up to a subsequence, it converges to a locally perimeter min-
imizing set C. Fleming then proved that C' is a cone and that its boundary
OC' is a hyperplane if and only if © was an affine function. In other words,
the existence of non trivial entire minimal graphs in R™ implies the existence
of singular minimal cones in R”. Eventually Fleming proved there are no
minimal cones in R3, whence a new proof of Bernstein’s theorem.
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De Giorgi (see [DG65]) improved the result in 1965 proving that if there
is no minimal cone in R®~! then the analogue of Bernstein’s theorem is true
in R"~!, which in particular implies that it is true in R3.

F. Almgren (see [AJ65]) showed in 1966 there are no minimal cones in
R*, thus extending Bernstein’s theorem to R.

J. Simons (see [Sim68]) extended the result in 1969 proving that there
are no minimal cones in R™ up to n < 7. Thus he extended Bernstein’s
theorem up to R"™ with n < 7. He also conjectured that the cone

Cs:= {(z,y) e R* xR : [z]* < |y|*}

was minimal in R8.

E. Bombieri, De Giorgi & E. Giusti (see [BDGG69]) showed in 1969
that Simons cone Cg is indeed of locally minimal perimeter in R®, and
showed that in R™*! for n > 8 there are graphs that are minimal but
not hyperplanes. Combined with the result of Simons, this shows that the
analogue of Bernstein’s theorem is true in dimensions up to 7, and false in
higher dimensions.

Therefore the Bernstein Problem for the Euclidean case is completely
solved, and his solution can be summarize in the following

Theorem 1. 1. If n < 7 every C? solution u of (1) in R"™ is an affine
function. If n > 8 there are analytic functions u, solving (1), that are
not affine.

2. Suppose that U is a subgraph of a C? function u : R™ — R that locally
minimize the perimeter in R™ x R. Then either n > 8 or OU is an
hyperplane.

In the last part of this thesis we propose an introduction to the Bernstein
problem in the setting of the simplest sub-Riemannian metric structure,
namely the Heisenberg group . We are going to briefly introduce the sub-
Riemannian Heisenberg group H” = R?"*! and then the Bernstein problem
in this setting. Moreover we will show the features that the problem shares
with the Euclidean one as well as the main differences involved and the
questions still open.

We will call sub-Riemannian Heisenberg group, denoted H", the set
R2"+1 equipped with the following algebraic, differentiable, metric and mea-
sure structures.

The algebraic structure is introduced in R?**! by the following group
law

P.Q:=@+2y+y t+t —2xy)+2,y)).
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where P = (x,y,t), Q = (2,9, t). (R®*T!.) turns out to be a Lie group,
not Abelian. Moreover we equip R?>**! with a 1- parameter group of auto-
morphims 4§y : R?"*t — R2FL (X > 0), called intrinsic dilations, defined
by

O\(P) == (A\z, Ay, \%t)

The differentiable structure is introduced by the following vector fields
X1,...,X,,Y1,...,Y,, T on R?"*! defined by

0 0 0 0
Xi=—+2yi~—, YVii=——-20;—,i=1,...
i aCCZ'—’_ yzaty i Ay; mzata ? ) ,
0
T:=—
ot
which are a basis for the Lie algebra b, associated to (R?"*1 .). Sometimes
we will write X; .= Y;_, ifi=n+1....,2n.

Let us observe that the only non-vanishing commutator is given by
(X, Yi]= —4T Vi=1,...,n.

We will also equip b, by a scalar product (-, -) which respect to the vector
fields X1,...,X,, Y1,...,Y,, T are orthonormal.

Then we introduce a subbundle HH"of the tangent bundle T(R?"+1),
called horizontal bundle, whose each fiber is defined by

HpH" := span{X(P),..., Xon(P)} .

The vector fields of the horinzontal bundle HH™ are called horizontal while
the vectot field T is called vertical. The horizontal vector fileds will play the
role, in the sub-Riemannian setting, of admissible vector fields along which
the differentiation is allowed. In particular the role of intrinsic gradient is
played in this setting by the section of HH"

2n
Vaf =Y Xif Xi= (Xaf,..., Xonf) if f € CH R
i=1
and it is called horizontal gradient. As well, the notion of intrinsic divergence
for a regular section ¢ = 2" ¢; X; : R¥"1 — HH" is defined by

2n
divie(¢) == > _ Xios
i=1

and it is called horizontal or H- divergence.
The metric structure is introduced by a so-called homogeneous metric
d on R?"*1 which is a metric well-behaved either with respect to the left-
translations of the group and the intrinsic dilations, that is, the metric d
satisfies
d(P-Q,P-R)=d(Q,R) VP,Q,ReR"!, (3)
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d(0\(P), 6x(Q)) = Md(P, Q) VP,Q R vX>0. (4)

A relevant homogeneus metric in the sub-Riemannian setting is the so-called
Carnot-Carathéodory metric associated to the subbundle HH"™ and denoted
by d.. Its definition is reminiscent of the Riemannian metric definition
when the tangent bundle 7'(R?"*1) is replaced with the horizontal subbundle
HH"™. More precisely it is defined as follows. We say that a Lipschitz
continous curve v : [0,7] — R?"*! is a subunit path (briefly s.p.) if for
almost every ¢ € [0, 7]

V(t) € H’y(t)an |’Y(t)|7(t) <1

Then we define the Carnot-Carathéodory distance d. between the points
P,QeH" as

d.(P,Q) = inf {T >0 |37 :[0,T] — R s.p., with 7(0) = P, 4(T) = Q}

Since the family (Xj,..., X9,) Lie generate the whole tangent space, from
a theorem due to Chow (see Chapeter 12) we know that d. is actually a
distance on H", i.e. d.(P, Q) is finite for each pair of points P, @ € H". Since
the distance d. is not explicit, it is convenient to consider an equivalent but
explicit homogenous distance, the infinity distance d,, defined as follows

doo(P7 Q) = H‘Pil ’ QHOO

where || Pl := max{|(x,y)|, ]t|%} Then it can be proved that d. and do
are equivalent, that is there exists a constant a > 1 such that

Cda(P,Q) < d(P.Q) < ade(P,Q) YPQERM (3

and that the bounded sets in the metric space (R?"*1 d) coincide with the
ones of (R?"*1|.]) where d = d.. or dw, and |-| denotes the Euclidean distance
in R?"*1 (see Chapter 12). Instead of they are not Riemannian, meaning
that they are not equivalent to the Euclidean distance. Indeed it holds that,
for each bounded set @ C R?"*+!, there exists a constant ¢ = ¢(Q2) > 1 such
that

SIP-QI< du(PQ) < e[P=Q] YPQERM.  (5)

Because d, and do, are equivalent, d. also satisfies (6) for a suitable constant
c. On the other hand, by (5) and (6), it follows that (R***! d) with d =
de or ds and (R?"F1 | . ) are topologically equivalent, that is they are
homeomorphic by means of the identity map.

Eventually the measure structure is introduced by means of an intrin-
sic notion of volume measure. The volume measure is simply represented by
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the (2n+1)-Lebesgue dimensional measure £2"!. Indeed it can be proved
that £2"*! is the Haar measure of the group (R?"*! .), that is a Radon
measure such that

£2n+1(P . A) — £2n+1(A) VPe ]R2n+17 AcC R2n+1 ) (7)

Moreover £2"*+1 is also homogeneuous of order 2n + 2 with respect to the
intrinsic dilations, that is

L2\ (K)) = N2 £2PH(K)  for each compact K € R*™ 1 X > 0.
(8)
As a consequence of (8), it can be proved that the metric dimension of
(R27+1 d) with d = de. or ds is 2n + 2, instead of its topological dimension
which is 2n 4+ 1 (see Chapter 12). This feature is another evidence of the
different behaviour with respect to a Riemannian manifold, where the two
dimensions coincide.

Now we are going to introduce the Bernstein problem in the Heisenberg
group H"™. We need to introduce the notions of hyperplane, graph and area
of a graph in this setting.

The notion of intrinsic hyperplane in H" arises in a natural way on
taking into account Pansu’s differentiability theorem in Carnot groups (see
[Pan89]): a function f : H" — R which is Lipschitz with respect to the
metric do, can be approximated a.e. by an intrinsic differential, i.e. by a
homogeneous linear function L : H'" — R. Such a function L must be of the
form

L(z,y,t) = (a,z) + (b,y)

for some a,b € R™. Then it is natural to define a wvertical plane V in H" as
a level set of L

V= {(a:,y,t) e H" | (a,z) + (b,y) :c}

for some ¢ € R. Moreover we call f: H" — R an intrinsic affine function if
f is of the form

f(xy,t) = (a,z) + (b,y) + ¢

There are two natural notions of 2n-dimensional graph in the setting of H".
The former is the one of graph with respect to the vertical vector field T,

called t-graph. The latter is the one of graph with respect to the horizontal

vector field X; for fixed i = 1,...,2n, called intrinsic or X;- graph.

Let II := {(z,t) e R""' = R xR: z = (z,y) e R* xR", t = 0} =
R?" and let ey, ... ,ean+1 denote the canonical basis of R27H1 Then a set
S c R?*+l ig a t- graph in H" if there exist a set & C II and a function
u : U — R such that

S ={(2,0) - u(z)eant1 = (z,u(z)): z€U} .
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We call t-subgraph in H" the set
El={(z,t) cUxR: zeU, t < u(z)} 9)

where u : U C II — R.

We observe that the notion of t-graph coincides with the one of Euclidean
t-graph in R?"+1,

Let W := {(z,y,t) e R*""' = R" xR" x R: 21 = 0} = R*". Then a
set S C R?"+1 is a X;- graph in H" if there exist a set w C W and a function
¢ : w — R such that

S={A - ¢p(A)e;: Acw}.
We call X;-subgraph in H" the set
Ey:={A-setcw-Rey: Acw,s< ¢p(A)} (10)

where ¢ : w — Rand w- Rej := {A- se; : s € R}. Similar definitions for
the intrinsic X;-graphs for i =2,...,2n.

Let us now introduce the notion of intrinsic area for ¢t- and X;-graph
in H™. We are going to define it as intrinsic perimeter of their respective
subgraphs.

Firstly, let us introduce the intrinsic perimeter measure, called H-perimeter,
in the setting of H". If E C R?"*! is a measurable set and  Cc R?"*! is
open, the H-perimeter measure of E in € is denoted by |0E|x(2) and defined
by

mEm«n;:wp{édmmw¢ect«nHH%AwP»pg1VPeQ}

(see Chapter 12).
Let Y ¢ II = R?" and w € W = R?” be bounded open sets, then it holds
that (see [BASCVO07])

|OEL |g(U x R) = / Vu + X*dL%" = Ai(u) Yu e C*U)
u

where X* : R?" — R?" is the map defined by X*(2) := 2(~y,z) if 2 =
(z,y) €U, and

OBl Rer) = [ 1+ W02aL> = Au(9) Vo€ @) (1)
where W is defined as follows

Wé ::{ (Xa6,. .., Xnd, Yi$— 2T(¢2), Yo, ..., Yu@)) ,m > 2
Yig - 20(4?) 1
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The functionals A; : C*(U) — R and Aw : C?(@) — R are respectively
called t-area and X;i-area functionls.

Making a simple first variation of the area formula (11) we obtain the so
called minimal surface equation for Xi-graphs

[ W—% =0
V14 [Wee?

It turns out that intrinsic affine functions satisfied equation (12), and
that parametrize, in the sense of Xi-graphs, exactly vertical planes; more-
over their Xi-subgraphs locally minimize the H-perimeter.

The Bernstein Problem in H! for C? t-graphs has been studied in [GP],
[CDGY94], [DGN], [GN96], [DGNPa|, [DGNO7], [DGNPb], [Pau04], [CHMYO05].
A suitable minimal surface equation for v has been obtained and its solution
have been called H-minimal. In particular it turns out that there exists H-
minimal functions v : R? — R whose t-graph is not an affine plane. On the
other han, C? regular entire H-minimal solutions u for which its t-subgraph
is a minimizer have been characterized in [CHMYO05] and in [RROS].

In this thesis we will only deal with the Bernstein Problem for X;-graphs.

So with this notions of hyperplanes and subgraphs we can give this two
formulations in H" of the Bernstein Problem:

(12)

(B1) - Bernstein Problem in H" - version I: Are there entire C?
solutions of the minimal surface equation for Xi-graphs (12) wich do not
parametrize vertical planes?

(B2) - Bernstein Problem in H" - version II: Let ¢ : R>® — R be
such that its Xj-subgraph Ey4 locally minimize the H-perimeter in H". It is
true that OF is a vertical plane?

A main difference from the Euclidean case is that this two formulations
are not equivalent! In fact in [DGNO8] it has been obtained the existence of a
C? function ¢ : R? — R that is solution of the minimal surface equation (12),
but such that whose subgraph Ey is not a minimizer for the H-perimeter in
H' and it is not a vertical plane. Such a function provided a positive answer
to Problem (B1). The function ¢ is defined as

anT

d(n,7) = 14202

for o > 0.
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The main result for the Bernstein Problem for X;-graphs in the Heisen-
berg group, obtained in [BASCV07], is the following

Theorem 2. 1. Let ¢ : R? — R be a C? function, and let E,S C H'
be respectively the X1-graph and the X1-subgraph of ¢. Let us suppose
that E is a minimizer for the H-perimeter in H'. Then S is a vertical
plane, i.e. ¢(nT) = wn + c for all (n,7) € R? for some constants
w,c € R.

2. If n > 5 there exists functions ¢ : R?" — R that satisfied (12) but that
are not intrinsic affine. Moreover their X-subgraph locally minimizes
the H-perimeter in H™.

The assumption that ¢ is a C? function is crucial for the above result,
because in [RSCVO08] it has been found a counterexample to the above result
if we drop that assumption. The Bernstein Problem for Xi-graphs in the
Heisenberg group H" remains still open in the cases n = 2,3, 4.

The structure of the thesis is the following. In Chapter 1 we present a
simple proof of the Bernstein Theorem due to Nische in dimension n = 2
(see [Nit67]).

In Chapter 2 we introduce some basic tools of measure theory that we
will use through the thesis: in particular we prove the classical Vitali’s
covering Theorem and Besicovitch’s covering Theorem (Section 2.6), that
we will use to prove the Differentiation Theorem for Radon measures in R"
(Section 2.7). Finally we prove the Riesz Representation Theorem (Section
2.7) and we study the weak convergence for Radon measure in R™ (Section
2.9).

Chapter 3 is dedicate to introduce the Hausdorff measures in a metric
space, and to prove their basic properties: in particular we will prove the
isodiametric inequality (Theorem 3.2.5), the fact that H™ = L™ in R"™ (The-
orem 3.2.6) and we will study the density properties of Hausdorff measures
(Section 3.1.2).

In Chapter 4 we introduce some particular metric space in which we
can generalize the covering theorems presented in Chapter 2: we define the
notion of homogeneous spaces (Section 4.1), that allows to extend Vitali’s
covering Theorem, and the notion of directionally metric space (Section 4.2),
that allows to extend Besicovitch’s covering Theorem.

Chapter 5 is dedicated to the introduction of the space of functions of
bounded variation and Caccioppoli sets. In particular we will prove the semi-
continuity of the total variation (Theorem 5.1.4), Anzellotti-Giaquinta’s ap-
proximating theorem (Theorem 5.2.1), the existence of minimal surfaces
(Theorem 5.3.3) and the isoperimetric inequalities (Theorem 5.4.2).
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In Chapter 6 we introduce the reduced boundary of a Caccioppoli set,
and we prove the foundamental Theorem of De Giorgi (Theorem 6.3.2) that
state that the reduced boundary of a Caccioppoli set is rectifiable, i.e. is,
up to a set of zero perimeter, a countable union of compact subsets of C!
hypersurfaces.

In Chapter 7 we define the trace of a BV function on the boundary of a
Lipschitz bounded open set (Theorem 7.2.2); in particular this notion allows
us to extend the classical Gauss-Green formula to BV functions.

In Chapter 8 we prove some important inequalities concerning minimal
sets, that allow us to give a lower and an upper estimate of the perimeter
of a minimal set in a boundary point, and a lower and an upper estimate
of the Lebesgue measure of a minimal set in a ball centered in a boundary
point (Section 8.2).

Chapter 9 is dedicated to the regularity of the minimal surfaces: in
particular we prove the non existence of minimal cones in R™ for n < 7
(Sub-Section 9.3.3) and that Simons cone Cg is a minimal set in R® (Section
9.4).

In Chapter 10 we deal with the Dirichlet problem for the area functional
in an open set 2 C R™. In Section 10.1 we solved the Dirichlet problem
in a classical method: under some assumption on the curvature of 92 we
prove the existence of a minimum for the area functional among all Lipschitz
continous functions with a prescribed datum on 9€2. We will also prove that
the hypothesis on the curvature of the boundary is necessary. In Section
10.2 we study a relaxed formulation of the Dirichlet problem in the setting
of BV spaces. Then, in Section 10.2.2, we prove the connection between
parametric and non-parametric minimal surfaces.

In Chapter 11 we present the solution of the Bernstein Problem in the
Euclidean case for dimension n > 3.

Chapter 12 is dedicated to the introduction of the sub-Riemannian Heisen-
berg group H", and to the introduction of the principal notions and results
useful to state the Bernstein Problem in H".

Finaly in Chapter 13 we state two formulations of the Bernstein Problem
for intrinsic X;-graphs, and we present the solutions obtained so far.
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Notation

Notation
C compactly contained
A symmetric difference of sets
P(X) family of subsets of X
Card(A) Cardinality of the set A
diam(A) diameter of the set A
) composition of functions
® direct sum of vector spaces
supp(f) support of f
Jia restrinction of the function f to A
U, (x) open ball centered in x with radius r
B, (x) closed ball centered in x with radius r
Ut (x) open ball centered in x with radius r with respect to the distance d.
Bt(x) closed ball centered in = with radius r with respect to the distance d.
ul A restriction of the measure y to a set A
[T 1 is absolutely continous with respect to v
uwLlv w1 and v are mutually singular
|| total variation of the measure p
supp(p) support of the measure p
HF k-dimensional Hausdorff measure
Sk k-dimensional spherical Hausdorff measure
HE k-dimensional Hausdorff measure induced by d.
Sk k-dimensional spherical Hausdorff measure induced by d
R"” n-dimensional Euclidean space
(z,y) standard Euclidean scalar product of z,y € R™
|z| Euclidean norm of x € R™
Sz % partial derivate of f with respect to x
D;f i-th partial derivate of f
Df Vf gradient of f
div divergence
f*g convolution of f and g
XE characteristic function of a measureable set £ C R"
L Lebesgue measure in R"
W, Lebesgue measure of the unit ball in R"
f average integral

Eij Kronecker’s symbol



Notation

|Df] total variation of f

|OFE)| total variation of x g, perimter measure of E
VE outer normal to F

O*'FE reduced boundary of E

G a Carnot group

g Lie algebra of G

Ty group product between z,y € G

M tangent boundle to a manifold M

[(X,Y] commutator of X and Y

dc Carnot-Carathéodory distance

Iy left translation by an element x € G

O homogeneous dilatation of r in G

* convolution on groups

H™ n-th Heisenberg group

b Lie algebra of H"

Vi Heisenberg gradient

divy H-divergence

HH"™ horizzontal subboundle to H"

I {loo infinity norm

doo infinity distance

Cck(Q) continously k-differentiable real functions in €2
Ck(Q) functions in C*() with compact support
BV (Q) functions of bounded variation in

CL(Q) continously Vy-differentiable functions in €2
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Chapter 1

The Bernstein Problem in R?

In this chapter we present the result due to Bernstein, i.e. an entire solution
of the minimal surface equation in the plane is an affine function, that makes
rise the problem of the validity of this result in higher dimension, that is
what we called the Bernstein Problem. The result is the following one:

Theorem 1.0.1 (Bernstein, ~1915). Let u : R? — R is a solution of
the minimal surface equation in the plane. Then the graph of u is an affine
plane.

To prove this result we do not follow the original proof, but we present
a proof due to Nitsche (see [Nit67]), thet uses a diffeomorphism introduced
by Lewy. First of all we observe that the minimal surface equation in the

plane
0 U 0 U

— z 4+ = Y —
0 T+ u? +uy? 0y /14 up? + uy2

is equaivalent to

0

(1+ uf)um — 2UpUyUgy + (1 + uxz)uyy =0

In 1955 Heinz noted that, if u : R> — R, then the matrix

A 1 <1—|—u12 Uz Uy >

V14 ug? + uy? Uty 1+ uy?

has det A = 1 and also satisfied: A is an hessian matrix if and only if u is a
solution of the minimal surface equation.
In fact:

0 A 2utgy (14 uz? + uy?) — (1 + ug?) (Ugligy + Uytiyy)
AL =

8y ) (1 +u$2 +uy2)%

1
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ﬁAl L — (Uggty + Ugtigy) (1 + uz? + uy?) — gty (Upty + Uytigy)
ox (1+up2 + uyz)%

Now a%ALl = %Al’g if and only if

2ug gy (1 + g + uy2) -1+ ux2)(uxuxy + Uy Uy )
=(Ugplly + Ugligy) (1 + g’ + uy2) — Up Uy (UpUgy + UyUzy)
that is
—uy((1+ uy2)um — 2UpUylUgy + (1 + umz)uyy) =0

which is equiavalent to the minimal surface equation in the plane, thanks
to the observation made above. Same calculation for the other equality to
check.

So we have obtained that u is a solution of the minimal surface equation
if and only if there exists a C? map ¢ : R? — R such that H¢ = A, where
A is defined as above. Such a ¢ has det H¢ = 1.

Now, thanks to the following result due to Jorgens in 1954, we obtain our
desidered theorem.

Theorem 1.0.2. Let v : R? — R a C? map with det Hv = 1. Then v is a
polyminial of degree two.

Proof. Since 1 = det Hv = v350yy — vxy2 we have that v vy, > 0; so we can
suppose that vz., vy, > 0, that is v is a convex function. Now we introduce
the following change of variables:

w‘{ E:=x -+,
n:=y+ vy

So we obtain

1+ v, Ugy
Ugy 1+ vyy

det(Jy) = det ( ) = 2+ Vg + Vyy > 2

So 9 defines an open map. Since v is convex, it holds:
(Du(z2,y2) — Dv(z1,y1), (T2 — 21,92 — y1)) =0
for each (x1,1), (2,72) € R2. Equivalently:

0 < (z2 — z1)[vz(22,Y2) — va(21,y1)] + (Y2 — y1)[vy (22, y2) — vy (71, 91)]

If we substitute the change of variable in the last inequality, we obtain, using
the Cauchy-Schwarz inequality:

|(z2,92) — (x1,y1)| < (w2 — 21,92 —y1)| - [(§&2 — &1, m2 — m))|
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and so v is a closed map. Since v is open and closed, 1 is a diffeomorphism.
Introducing the complex variable z := £ + in, we define the function:

f(2) = (2 —ve) =iy —vy)

that comes out to be holomorphic. In fact, if in the definition of ¥ we derive
to respect & and 1 we obtain the system:

Oz 0
1 = 875'(1 =+ ’Uzz) + aizvmy
ox Y
y ox
Ay
I = 877(14‘ yy)+a Uy
that has as solution
( @ o Vay
85 N 2+ vy + Vyy
6790 B 1+ vyy
65 N 2+ vy + Vyy
N
on 2 4 Vg + Uy
Oz Vay
L on 2+ Vg + Uyy
From these equalities we obtain that
of _ Uy~ U ; 20y
08 24U+ vy 2+ Vps + Uy
g - _ 20y ) Vyy — Vaa
on 2 4 gz + Vyy 2 4 Uz + Uy
that is
of __,of
23 on
and so f is holomorphic.
Since 5
flz) = 5= o (1.1)

= 1
2+ Uz + Vyy 2+ vz + Vyy

we have that 4

1—|f =—>0
1= 5o o
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and hence by Liouville’s theorem f’ is constant, and in particular 1 — |f/(z)|
is constant. Hence v, and v,, are constant, and by 1.1 is constant also
—Ugz + Uyy and vzy. At the end we have that vy, vyy, vy are constant, and
so v is a polynomial of degree two. O

Coming back to our martix A, and applying the theorem just proved,
we obtain that 1+ u,2, Uz ly, 1 + uy2 are constant, and hence wu,, uy, uz, are
constant. So w is an affine function.

We note that the tecnique used here are ad hoc for dimension two, and
cannot be extended to higher dimension. In order to try to prove the validity
of the Bernstein Theorem in higher dimensions we need a new idea suitable
for extension in all the dimensions. We will see how to do it in Chapter 11.

Note: we start studing the case n = 2, because the case n = 1 is quite
simple. In fact in one dimension the minimal surface equation becomes

u”(l 4 ’ul‘Q _ u/’u/’)

(1 )2

=0
Since the equation 1 + |u/|? — u/[v/| = 0 has no solution, we need to impose
that u” = 0, hence obtaining that the only solutions of the minimal surface

equation in one dimension are the lines. So the Bernstein Problem in R is
trivial.



Chapter 2

Introduction to Measure Theory

The aim of this chapter is to introduce some basic tools on measure the-
ory. We begin by presenting briefly, in the first five sections, some standard
results on outer measures, measures, vector valued measures, and the con-
nections between this objects. Then we will prove in Section 2.6 two impor-
tant covering theorems in R"™, Vitali’s covering Theorem (Theorem 2.6.1)
and Besicovitch’s covering Theorem (Theorem?2.6.6), that we will extend for
metric spaces in Chapter 4. Section 2.7 is dedicate to study the possibility
of differentiating in R™ a Radon measure p with respect to another Radon
measure v (Theorem 2.7.3) obtaining D, u, the “derivate of pu with respect
to v ”, and then how to recover p from D, u (Theorem 2.7.4). Finally in Sec-
tion 2.8 we will study the Riesz Representation Theorem (Theorem 2.8.5),
an important theorem that links functional analysis with measure theory,
and makes possible to give a notion of weak convergence for Radon measures
in metric spaces, that we will study in Section 2.9.

2.1 Owuter measures and properties

We start by proving some basic properties of outer measures.

Definition 2.1.1. Let X be a set. A map p: P(X) — [0,00] is called an
outer measure on X if:

o 1(0)=0

o if AC|JAi, then p(A) < u(A;)
=1 =1
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Definition 2.1.2. A set A C X is said to be u-measurable if

p(M) = p(M 0 A) + p(M\ A)

It is clear that if p(A) = 0, then A is p-measurable, as every subset of
A. Moreover, if A is p-measurable, then also X \ A is p-measurable.
Measurable sets are very important in measure theorey, as it can be seen in
the following theorem.

Theorem 2.1.3. Let X be a set, u an outer measure on X, and (A;); be
u-measurable sets. Then it hold:

o the sets | Jioy A; and ;2 A; are p-measurable
e if (A;); are disjoints, then
N( U Ai) = ZN(Ai)
i=1 i=1

e ifAi C Ay C ..., then
st =4
e if Ay DAy D ... and u(A;) < oo, then
st =14

Definition 2.1.4. Let X be a set, ;v an outer measure on X; we denote by
M(p) the o-algebra of the p-measurable sets.

Definition 2.1.5. We say that a property P holds p-almost everywhere
(u-a.e.) on X if there is a set A C X such that u(X \ A) = 0 and property
P holds for all x € A.

Now we introduce some classes of outer measures:

Definition 2.1.6. Let X be a set.

e an outer measure p on X 1is called regular if for every set A C X,
there exist a p-measurable set B such that B D A and p(B) = u(A)

e an outer measure p on X is called o-finite if there exists (A;); C
M(p) such that p(A;) < oo and X =J:2, A
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e an outer measure i on a topological space X is called Borel outer
measure if every Borel set is p-measurable

e an outer measure u on a topological space X 1is called Borel regular
outer measure if u is a Borel outer measure, and for each set A C X
there exists a Borel set B such that B D A and p(A) = u(B)

e an outer measure p on a metric space (X, d) is called locally finite
if for all x € X there exists vy > 0 such that p(B,, (x)) < 0o

e an outer measure p on a metric space (X,d) is called Radon outer
measure measure if y is a Borel measure satisfying

1. p(K) < oo for each compact set K C X
2. p(A) =inf{pu(V) |V open , VDO A} forall AC X
3.

A)
w(V) = sup{ u(K) | K compact, K C V' } for each open set
VcX

e an outer measure p on a metric space (X,d) is called Carathéodory
outer measure if

n(AU B) = u(A) + u(B)

for every A, B C X such that d(A,B) >0

There is some important connections from the classes of measure defined
above

e if 1 is a Radon measure, then p is Borel regular

e let (X, d) be a separable complete metric space; if p is a locally finite
Borel regular outer measure on X, then p is a Radon outer measure.

e let (X, d) be a separable complete metric space such that the closed
balls are compact; let p be a Radon outer measure on X. Then p is a
locally finite Borel regular outer measure

e another important connection is the following one:
Theorem 2.1.7 (Carathéodory’s criterion). A Carathéodory outer

measure is a Borel outer measure

In particular the Carathéodory’s criterion allows to prove that a measure
is a Borel outer measure, just proving its additivity on “distant” closed sets.
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Now we present some important approximation properties for some classes
of measures, that allow us to approximate the measure of a set with the mea-
sure of “simple” sets.

Theorem 2.1.8. Let pu be an outer Borel measure on a metric space (X, d).
Then, for every Borel set B C X with u(B) < oo and each € > 0, there
ezists a closed set F' C B such that

wB\F)<e
Furthermore if

Bc v
=1

where each V; is an open set with u(V;) < oo, then for every e > 0 there
exists an open set W C B such that

w(W\B)<e

Remark 2.1.9. There is two important particularizations of the theorem
above:

e if the outer measure u is Borel outer reqular, then the above theorem
remains true also if we only required that B is p-measurable. Moreover,
in this case we can approximate every sets from the outside with open
sets, and not only the measurable one.

e if i is a Radon outer measure, the approximation from the inside with
closed sets can be made with compact sets

Definition 2.1.10. Let u be an outer measure on X, and A C X, we denote
by uL A the function defined on the subsets B C X by:

(WL A)(B) := u(AN B)
Theorem 2.1.11. It hold:
e LA is an outer mesure on X
o M(pu) € M(pLA)

o if A e M(u) and p(A) < oo and if v is a Borel reqular outer measure,
then ul_ A is Borel reqular
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2.2 Measures

The “problem ”of measures iis that there can be non measurable sets, and
so we can not apply a o-additive property on arbitrary disjoint sets. The
notion of measures solve this problem just defining it as a o-additive sets
function on a o-algebra of sets. Clearly we will expect some connection be-
tween outer measures and measures.

Definition 2.2.1. Let X be a set, and M be a o-algebra of subsets of X.
A measure p is a function p: M — [0, 00] such that

e u(0)=0

o if (A;); is a sequence of disjoint sets in M, then
M( U Ai) = ZM(Az')
i=0 i=0

The sets in M are called p-measurable. We call (X, M, ) a measure
space.

For measures it holds a result similar to Theorem 2.1.3.

The most important fact about measures an outer measures is the fol-
lowing one: from an outer measure we can obtain a measure just restricting
the outer measure to its o-algebra of measurable sets. Also the viceversa
holds: from a measure we can obtain an outer measure.

The method to obtain an outer measure from a measure only required that
the measure is defined on an algebra, instead that on a o-algebra. So we
need the following

Definition 2.2.2. A measure on an algebra A is a function p : A —
[0, 00] such that

o u(@)=0
o if (4;); is a collection of subsets of A such that | J;2, A; € A, then

H( Ej Ai) = iH(Ai>
i=0 i=0

A measure on an algebra A generates a function p* defined on all subsets
FE of X in the following way:

W (E) = inf{ S wA) | Ec A, A€ A}
=0 1=0
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Theorem 2.2.3 (Carathéodory-Hahn Extension Theorem). Let p be
a measure on an algebra A, and let u* be the function defined above. Then

e u* is an outer measure such that u = p* on A
o AC M)

o if M is a o-algebra such that A C M C M(p*) and v is a measure
on M that agree with p on A, then v = p* on M provided that u is
o-finite.

If we start from a measure p defined on a g-algebra A there is another
method to generated an outer measure. For £ C X define

W (E):=inf{u(B) | BOE, Be A}
It holds

Theorem 2.2.4. Let (X, A, ) be a measure space. Then the function p**
defined above is an outer measure on X. Moreover for every set E C X
there ezists a set B € A such that B D E and

u(B) = u*(B) = 1" (E) = u™*(E)

Important note: thanks to the two theorems above, we can “confuse”
measures and outer measures, if we work on the measurable sets. So, in
what follows, we can use both the terms “measure” and “outer measure”
indistinctly if we are working with measurable sets.

2.3 Measurable functions

Now we want to extend the notion of measurability from sets to functions
introducing the concept of measurable function, which play an important
role in the theory of integration. We will focus our attenction to functions
f: X =R

Definition 2.3.1. Let X be topological space, and let u be a measure on

X. We say that a function f : X — R is u-measurable if FHU) is
u-measurable for each open set U C R.

The class of measurable functions is closed under the usually elementary
operations.

Theorem 2.3.2. It hold:
e If f.g: X — R are u-measurable, then

f+g, fg, |fl, min(f,g), max(f,g)

are p-measurable, and also i is, provided g # 0 in X.
g
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o If (fi)i are pu-measurable, then

inf f;, sup f;, liminf f;, limsup f;
i>1 i>1 =00 i—o0

are also p-measurable.

Now we present some theorems concerning the approximation of func-
tions:

Theorem 2.3.3. Let f : X — R be an arbitrary function, and jn a measure
on X. Then

e there exists a sequence of simple function (f;); such that fi(x) — f(x)
forallz e X

o if f is non negative, then the sequence can be chosen such that 0 <
h<fhs-<f

e if f is bounded, then the sequence can be chosen such that f; — f
uniformly on X

o if f is u-measurable, then the functions f; can be chosen u-measurable

Next theorem is important because it says that a measurable function
is continous, in the relative topology, on a closed set whose complementary
has arbitrary small measure.

Theorem 2.3.4 (Lusin’s theorem). Let i be a Borel measure on a metric
space X, and A C X such that u(A) < co. Let f : A — R"™ be a u-measurable
fuction. Then, for every € > 0 there exists a closed set F' C A such that

o u(A\F)<e

e f|,. is continous (in the relative topolgy!)

Note: if the measure p is a Radon measure, the set K can be taken
compact.

Now we introduce some notions of convergence for measurable functions

Definition 2.3.5. Let p be a measure on a space X, and let (f;);, [ be
p-measurable functions on X. We say that

e f; converge pointwise almost everywhere to f if

lim fi(z) = /()

i—00

for p-almost every z € X.
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e f; converges almost uniformly to f if f; and [ are finite almost
everywhere, and for each ¢ > 0 there exists a set A C X such that
uw(X — A) < e and f; converge uniformly to f on A

e f; converge in measure on f if for every e

Jim e € X | |fi(w) — f(@)] >} =0

An important theorem that links two of this notions of convergence is
the following

Theorem 2.3.6 (Egoroff’s theorem). Let y1 be a measure on a space
X, A C X such that u(A) < oco. Let (fi)i,f : A — R™ be pu-measurable
functions such that f; — f p-almost everywhere. Then for each € > 0 there
exists a p-measurable set B C A such that

e u(A\B) <e

o fi — f unifomly on B

Note: if X is a metric space, and pu(X) < oo, then the set B can be
taken closed.

Let p be a measure on X and let (f;); be a sequence of p-measurable
funcions on X. Then the following implications hold:

e if f; — f a.e. then

— if u(X) < 0o and f;, f are finite a.e., then f; — f in measure
— if u(X) < oo then f; — f almost uniformly

o if f; — f almost uniformly, then f; — f a.e. and f; — f in measure
e if f; — f in measure, then

— if p(X) < oo then there exists a subsequence (f;;); such that
fi; — f almost uniformly

— then there exists a subsequence (f;;); such that f;; — f a.e.
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2.4 Integrals and limit theorems

In this section we introduce the concept of integral with respect to a mea-
sure, and present some important theorems related to the continuity of the
integral operator.

Definition 2.4.1. We say that a function f : X — R is a simple function
(briefly s.f.) if the range of f is a countable subset of R.

Definition 2.4.2. Let i be a measure on X. We define the integral operator
with respect to u in three steps:

o let f: X — [—00,00] be a nonnegative and p-measurable s.f.; we define

/fdu —Zazu “ai})

where f(X) = (a;);.

o let f: X — [—00,00] be a p-measurable s.f.; we define

/fdu/ﬁdﬂ /f dp

We say that f is p-integrable if either [ f*du < oo or [ f~du <
00.

o let f: X — [—00,00]. We define the upper integral as

/ fdu:= inf{ / gdu | g u—integrable s.f. such that g > f p—a.e. }
b'e X

and the lower integral as

/ fdu:= sup{ / gdp | g u—integrable s.f. such that g < f p—a.e. }
* X X

Definition 2.4.3. We say that a p-measurable function f is u-integrable

if .
Ldeu=/)(fdu

In this case the common value is denoted by

/deu
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If E C X is a u-measurable set and f is a p-integrable function; we define

/Efdu :=/X><Efdu

A function f : X — [—o00,00] is called p-summable if it is p-integrable and

[ Ui < oc
X
A function f : X — [—o00,00] is called locally p-summable if it is u-
integrable and
/ |fldp < o0
K

for each compact K C X.

Now we want to ask to this question: if the functions (f;); converge to
a function f in some sense, wath can we say about [y fidu and [y fdu?
Next three theorems will answer to this important question.

Theorem 2.4.4 (Fatou’s lemma). Let f; : X — [0,00] be p-measurable
functions. Then

/ liminf f;dp < liminf/ fidu
X 1= 1—00 X

Theorem 2.4.5 (Monotone convergence theorem - Beppo Levi). Let
fi: X — [0,00] be u-measurable functions such that fi < fo<... Then

/ lim fidy = lim / fdu
Xz—)oo 71— 00 X

Theorem 2.4.6 (Dominated convergence theorem - Lebesgue). Let
g be p-summable, f,(fi): be u-measurable, and suppose |fi| < g and f; — f
u-a.e. . Then
lim [ [f— fildu=0

X

1—00

Remark 2.4.7. The converse of this last theorem holds if we pass to a
suitable subsequence.
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2.5 Vector valued measures

In the first section we have introduced the notion of (outer) measure, that
is a o-additive function from a o-algebra of sets of a space X to [0,00]. In
this section we introduce the notion of vector valued measures, that allows
us to work with measures having values in R™.

Definition 2.5.1. Let X be a set, and let M be a o-algebra of sets of X.
We say that a function p: M — RP is a measure if

n(B) =Y n(B)
i=0

for each partition B = J;2, B; where B; € M. Sometimes we will omitt the
reference to the o-algebra M.

We note that the condition on the partition of B tells us that every sum
of the form

> u(Bi),  (B)icM
i=0
is absolutely convergent.

Definition 2.5.2. Let X be a set. Let u be a non-negative measure on X
and X be a vector valued measure on X defined on the same o-algebra M.
We say that X is absolutely continous with respect to u,written A < u,
if for every set E € M

u(E) = 0= |AE)| =0

If 1 and A are vector valued measures, we say that u and A are mutually
singular, written X L u, if there exists a set B € M such that |u|(B) = 0
and |A[(X \ B) =0.

First of all we begin by studying a special case
Definition 2.5.3. A measure p: M — R is called signed measure.

If p is a positive signed measure, then y is a finite measure in the sense of
Definition 2.1.1. Moreover a deep connection holds between signed measures
and positive measures.
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Theorem 2.5.4 (Jordan decomposition Theorem). Let u be a signed
measure on a o-algebra M. Then there exists a unique pair of mutually
singular positive measures p*, u~ : M — [0,00) such that

p=pt—p

Now we want to find out if there is also a connection between vector
valued measures i : M — RP with p > 1, and finite positive measures. To
do this we need some definitions and some results.

Definition 2.5.5. Let u : M — RP be a vector valued measure. The (total)
variarion |u| of the measure p is the function |u| : M — [0, 00] defined by

|u|(B) == sup{z |uw(B;)| | B = U B;, B; € M, B; disjoints }
=0

It holds:

Theorem 2.5.6. The function || is a finite measure on X, o-additive on
M. Moreover |u| is the smallest measure v such that |u(B)| < v(B) for
each B € M.

Proof. First of all we prove the o-subadditivity of |u| on M: let (Ey)ir C M
and F € M such that E C Ui Ex. Set EY := E; and for each k > 1 define

the set E} := E}, \ Ur=s o En. Let (F}); be a countable partition of E. Then
for each j we have that (E; N Fj) is a countable partition of Fj. Hence

S EN = 3> uEnE)
j=1 j—l h=1
< ZZWEhﬂF \<ZW Ej)
h=1j=1

Since the partition (Fj}); is arbitrary we conclude that || is o-subsdditive.
To prove the superadditivity reason as follows: fix £ > 0; let (Ej), C M be
a partition of a set £ € M, and for each h let (F')y C M be a partition of
the set E}, such that

|1l (En) SZ (F) |+
k=1

Then we have that

> lul(EBr) < Z |u(F: \+e<lu|( UEk)
h=1

h,k=1
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Since ¢ is arbitrary, we can conclude that |u| is o-additive on M.

Now we prove that |u|(X) < oo. If for absurd |u|(X) = oo, let (X)), C
M be a partition of X and let n be an integer such that

> (X)) > 2(|u(X)] + 1)
h=1

Hence there exists a set E such that [pu(E)| > |u(X)| + 1. Let F:= X \ E;
hence

[(F)] = |p(X) = u(B)| = |p(X)] — u(E) > 1

Now, since |u| is additive, we have that |u|(E) = oo or |u|(F') = oco; suppose
|u|(F) = oo, and set Ey := E. Now we can repeat the above argument to F,
and find a partition of F' in two sets Fy and Fj such that |u(E2)| > 1 and
|p|(F1) = oo. Iterating this process we find a sequence of sets (Ej); C M
such that |pu(Ej)| > 1 for each j. But this imply that the series > 72, ju(E;)
is not convergent. But this is a contraddiction since p is a measure. Hence
#l(X) < oo.

For the last assertion: let v be a positive measure such that |u(B)| <
v(B) for each B € M. Fix B € M, and let (B;); C M be a partition of B;
then

o0

S lu(B:) < 3 v(By) = v(B)
1=0

i=0
Hence |u|(B) < v(B) for each B € M. O

The connection between a signed measure and its total variation is the
following one

Theorem 2.5.7. Let i be a signed measure on X. Then if p = p+ —pu~ is
the Jordan decomposition of u, it holds

ul = pt +p”
Hence
M+:|u|+u M_:Iul—u
2 2

The variation measure |u| allows us to define a notion of support of a
vector valued measure

Definition 2.5.8. Let p be a measure on the Borel o-algebra of a metric
space X ; we define the support of the measure p, supp(p) as the minimal
closed set C C X such that |u|(X \ C) = 0.
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In general, it is not true that

p(X \ supp(p)) =0

To have this result we need that X is separable. Moreover, in this case, it
holds that

supp(p) = {x € U | |p|(Br(x)) > 0 for each ball B,(x) C U}

Now we want to define some integral with respect to a vector valued
measure

Definition 2.5.9. Let u: X — R"™ be a vector valued mesure on X, and let
f: X =R be a|u|-measurable function. We define

/){fduiz</){fdu1,---,/){fdun)

Let p be a positive measure on X, and let f : X — R™ be a |p|-measurable
function. We define

/deM::</Xfldu"”’/Xf”d/‘)

Let p: X — R™ be a vector valued mesure on X and let f: X — R™ be
a |p|-measurable function. We define

fedp= / Jidp;
for =2,
If E C X is a p-measurable set, we define

/Efdu :=/X><Efdu

for o and f as in both cases above.
Now we show how, given a measure, generate a lots of measures.

Definition 2.5.10. Let pu be a non-negative measure and f € L' (X, p; RP).
Define the measure fu as follows

)= [ ran=( [ fidu.. [ span)
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For the variation of this kind of measures it holds

Theorem 2.5.11. Let j1 be a non-negative measure and f € L'(X, p; RP).
Then

[ful=|flp

Proof. For the inequality |fu| < |f|u: let B € M, and let (B;); C M be a
partition of B. Then

i)/jgifd“‘ﬁi/lgi|fd/i=/3|f|du

Hence |fu| < |f[p.
For the other one let D := (z,,), be a dense subset of B; C RP. Fix B € M,
and for each ¢ > 0 define

o(z) :=min{n | (f(z),2.) > (1 = ¢)|f(x)[ }
and let B, := o~ *({n}) N B. Then

[e.o]

(-2 [ 1rlan - ;a—e)/& /] dn
< SUWB)wa) < 310 (B)| < Ful(B)
n=0 n=0
Since € is arbitrary we obtain the desired result. O

It is clear that (fu) < p. Next theorem says that every measure v < p
can be express as above. We state two version of the theorem, corresponding
to the two notions of measures we have introduced.

Theorem 2.5.12. (Radon-Nikodym Theorem - version I)

Let (X, M,u) be a o-finite measure space, and let v be a o-finite signed
measure on M that is absolutely continous with respect to u. Then there
exists a measurable function f such that either f™ or f~ is integrable and

o(E) = [ fn
for each E € M.

Theorem 2.5.13. (Radon-Nikodym Theorem - version II)

Let A\ be a vector valued measure on X, and let p be a non negative scalar
measure on X , such that X < p. Then there exists a function f € L' (X, u; RP)
such that

A= fu
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An important decomposition of a measure is the following one:

Theorem 2.5.14. (Lebesgue decomposition Theorem - version I)
Let v and v be two o-finite measures defined on the measure space (X, M).
Then there exists a decomposition of v

vV=uvy+ 1
such that vy < p and vy < p. The measures vy and vy are unique.

Theorem 2.5.15. (Lebesgue decomposition Theorem - version II)
Let v be a vector valued measures defined on X and p be a non negative
scalar measure on X. Then there exists a function f € LY(X, u; RP) and a
vector valued function vs such that

v=fu+uvs with vs L p

The measures fu and vs are unique.

Note: Thorem 2.5.12 and Theorem 2.5.13 say that if A < p we can
express a measure A in terms of p integrating a function f, that can be seen
as the “density” of A with respect to y. The problem is obviosly to calculate
this such f. We will see in Section 2.7 and in chapter some cases in wich we
can identify the function f with another function, that can be computed.

Now we can state the connection between a vector valued measure and
its variation. Let p: B — RP be a vector-valued measure; then

= (p1,- -, fip)

The problem is that we have p different measures to manage. In order to
solve this problem we reasone as follows: from Theorem 2.5.15 we can find
a function o € L' (X, |u|; RP) such that

p=olul

since if a measure v is singular with respect to |ul|, then v is also singular

with respect to p. Moreover from Teorem 2.5.11 we obtain that |o| = 1
|p|-a.e..
Hence if f = (f1,..., fp) is a p-measurable function we have that

/deuz/E<f,a>dlu|
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2.6 Covering theorems

The aim of this section is the following one: suppose to have a covering F
made by closed balls of a set A C R™; we want to estimate the measure of A
using the measure of the covering. Since a mesure is g-additive of countable
disjoint mesurable sets, we would obtain a countable subfamily G C F of
disjoint sets that, in some sense, provide a covering of A. There are two
principal ways to do this: construct G in such a way that A is covered by an
enlargment of balls in G, or construct a finite number of disjoint countable
subfamilies Gi,...,Gr, where k depends only on the dimension n, whose
union cover A. First way is proved in the Vitali covering Theorem (Theorem
2.6.1) but it required that the measure is (sub)-homogemeous. The other
way is proved in the Besicovitch covering Theorem (Theorem 2.6.6): since
we do not enlarge balls, we do not required any homogeneous property for
the measure, but we can use it only if the set A is the set of the centers of
the balls in F.

2.6.1 Vitali’s covering Theorem

Theorem 2.6.1. (Vitali’s covering theorem) Let F Be any collection
of nondegenerate closed balls in R™ with

sup{diam(B) | B € F} < o0

Then there exists a countable subfamily G of disjoint balls in F such that

where with B we denote the closed ball with radius 5 times the radius of B.

Proof. Let D : sup{diam(B) | B € F }, and set, for each j
D . D
We define a sequence of subfamily G; C F; as follows:

e let G; be a maximal countable! collection of pairwise disjoint balls in
F1

e let Gi,...,Gr_1 have been choosen, and let G be a maximal pairwise
disjoint collection of
k—1
{BG}"HBOB’:@ VB’ € ng}
=1

Tt is possible because R™ is separable.
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o
e define G := U G

k=1
We have that G is a collection of pairwise disjoint balls in F. We need to
prove that the enlargement of the ball in G are a covering of F: let B € F;
then there exists and index j such that B € F;. By the maximality of G,
there exists a ball B’ € |J/_, G; such that BN B’ # (. But diam(B’) > L
and diam(B) < 2}21. So we obtain that diam(B) < diam(B’), and thus

BCB\’. O

Definition 2.6.2. We say that a covering F of a set A is a fine covering
of A, if for each x € A

inf{ diam(B) |z € B,Be F} =0

Remark 2.6.3. We note that the hypothesy sup{diam(B) | B € F} < oo is
necessary. In fact the thesis of the theorem above is not true for the family
of balls F := (B;(0))en-

A thecnical consequence of this theorem is this the following

Corollary 2.6.4. Let F be a fine covering of A by closed balls. Then there
exists a countable family of pairwise disjoint balls in F such that for each
finite subset {B,...,Bn} C F we have

A\GBic U B

i=1 BeG\{Bi,...,.Bm}

Proof. Let G be the family obtained by the Vitali’s covering theorem, and
select {Bi,...,Bn} C F. If A C U2, B; we have finish. Otherwise, let
z € A\ U;~, B;; since the balls are closed and F is a fine cover of A, there
exists B € F with z € B and BN B, = 0 for each k = 1,...,m. By the
construction of the family G we see that there exists a ball B’ such that
BNB #0 and B C B'. Since BN B' # 0, B’ ¢ {Bi,...,By}, and so we
have done. O

An important consequence of the Vitali’s covering theorem, usefull for
the result concerning the Lebesgue measure?, is the following

Corollary 2.6.5. Let U C R™ be an open set, and let 6 > 0. Then there
exists a countable collection G of pairwise disjoint closed balls in U such that

diam(B) < ¢ for each B € G and

,c"(U\ U B) —0

Beg

2In the following section we will derive a Radon measure v with respect another Radon
mesure pu; if p is the Lebesgue measure we can apply this Corollary instead of Corollary
2.6.8.
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Note: it is important that the balls are countable and disjoint in
order to apply the o-additivity of a Borel measure, and that they are in U,
in order to apply some property of balls that are in U.

Proof. Suppose first £L"(U) < oo, and fix 1 — % < 0 < 1. We will define
the family G by induction. Let F; := {B | B € U, diam(B) < 4 }; by
Vitali’s covering theorem we obtain a countable family of pairwise disjoint
balls G; C JFi such that

ve |J B

Beg:

where we reball that, since U is open, U = g, B-
Thus

LUy < S LBy =5 L(B) = 5%”( U B)

Beg Beg BeG

where in the last equality we have taken into account that the balls in G;
are pairwise disjoint.
Hence

L”( U B) > L

n
BegG g

Since (Jpeg, B is measurable, we obtain that

[,"(U\ U B) < (1 _ %)E”(U)

BeGy

Since L™(U) < oo and (U \ Uzzl By,); is a decreasing sequence (G; is count-
able) of measurable sets, we have that there exist disjoint balls By, ..., By,
in Gy such that

My
E"(U\ U Bi> < 6L™MU)
=1
Now let

My
Up:=U\|J B
=1

Fo = {B ‘ B e Uz,diam(B) < (5}
Since Uy is open, reasoning as above, we can find pairwise disjoint balls
Bur+1, ..., By, in Fa such that
M2 M2
U\ B) = c”(U2 v U Bi> < 0LMUs) < 02L7(U)
i=1 i=Mi+1
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Continue this process, we obtain for each k pairwise disjoint balls Bas, 41, .., B,
in Fj such that

E"(U\ ACj BZ) <6k L U)
=1

Since L*(U) < oo and @ < 1, and so % — 0, we obtain the desired result.
In the case L™"(U) = oo we apply the above reasoning to the sets

Upn ={zeU|m<|z|<m+1}, meN
and since L™"(0B,,(0)) = 0 for each m € N, we have done. O

2.6.2 Besicovitch’s covering theorem

The fact that the Lebesgue measure is homogenous is foundamental for the
validity of the above theorems. Now we want to obtain similar result for an
arbitrary Radon measure, that not need to be homogenous. So, we need to
find a new covering of the original one, without enlarging balls.

Theorem 2.6.6 (Besicovitch’s covering theorem). There exists a inte-
ger Ny, depending only on n, with the following property:

let F be a family of nondegenerated closed balls in R™, and let A be the
set of the center of the balls in F; suppose A is bounded.
Then there exists Gi,...,Gn, C F such that each G; is a countable collection
of pairwise disjoint balls in F, and
Np
AclJUU B
i=1 B€G;
Proof. First of all we note that if sup{diam(B) | B € F} = oo, then we
can easly prove the theorem just taking a ball B € F such that diam(B) >
dh%(m; this is possible because A is bounded. So we can take as family
Gy := {B} and as the families G, ..., Gn(,) the empty family. These fami-
lies clearly satisfied the thesis of the theorem.
So we can suppose D := sup{ diam(B) | B € F } < oo. We proced by steps:

Step 1: we start by defining a countable family of balls in F that we
will use later to define the required families of balls.
Define inductively B; as follows:

e let By = B,,(a1) € F such that r > %(%)

o for j > 2let A ::A\Ug;llBi; if Aj =0 we J:=j—1 and we stop.
If Aj # 0, we choose Bj = B, (a;) such that a; € A; and

3
T > Zsup{r]Br(a) e F,acA;}
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If Aj # 0 for each j, we set J := oco.
Then the following facts hold:

e if j > i then r; < %n: in fact if 7 > ¢, then a; € A;, and hence
3 3
ri > Zsup{r | By(a) € Fiae€ Aj} > 17
e the balls (Brj/g(aj))}’:l are disjoint: if we take j > ¢, we have that

a; ¢ Bi, and so

|CL'—a'|>T':E+2T'>E+2§T'>Q+Q
v 3 3'—3 34773 3

o if J = oo, then r; — 0: since a; € A that is bounded and the balls
{Brj/g(aj)}le are disjoint, we must have that r; — 0

e AC U;Izl B;: if J < oo it is trivial; otherwise, if J = oo, let a € A;
then there exists r > 0 such that B,.(a) € F and, for the claim above,
the exists r; < %r; but then a € Uf;ll B;, otherwise we will have a
contraddiction to the choise of 7;.

Now, fix £ > 1, and define
I'={j|1<j<k, BjNnBy,#0}

K:=In{j|r; <3r;}

Step 2: we want to estimante the cardinality of I for each k > 1.
We begin estimating the cardinality of K. Let j € K: then B; N By # ()
and r; < 3rg; let € B, 3(a;), then

.
waaklé|$*aj|+\aj*ak|§§]+(Tj+7“k)é57“k

so B, /3(a;) C By, (ax). Since the balls (BT]./g(CL]’))}]:l are disjoint, we have
that

a(n)b"ry = L"(Bsy, (ak)) ZE B, 3(a;))
jeK

- T (3) > Sen(L)

JEK
= Card(K)a(n)-—=
So we have obtained that

Card(K) < 20"
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Now we want to estimante the cardinality of I\ K. Let ¢ # j € I\ K: then
1<4,j <kand

Bl'ﬁBk#@, i > 3rg

BjﬁBk?é@, Tj > 31
Without loss of generality, we can suppose a; = 0; let 0 < 8 < 7 the angle

between a; and a;. We want to obtain a lower bound for §. We have the
following facts:

e since i, j < k we must have a, € B; UBj, and so r; < |a;| and r; < |a;|

e since B; N By, # 0 and B; N By, # 0 we have that |a;| < r; + r, and
laj| <7+

We can also suppose, without loss of generality, that |a;| < |a;|. In summary

we have:
3r, < 1 < ag| < oritorg
3r, < 1 < ai|l < itk

We can suppose ¢ < j; this imply a; ¢ B;. Hence

lai]? + |aj|* = |ai — a1*  (ri 4+ 1) + |ag|* — 7}

cost) =
2|a;|aj| 2r;la;
T e el 7 L T S 71
2’/“1"(1@'| |aj| 2ri|aj| 27“1'
< Tk T]% Tj-l-?”k_}_i_ T]%, n 47y,
T’j 27’i7"j 27’i 3 2(3rk)(37’k) 2(37’k)
13
- <1
18
Hence: 13
6 > — =:0
> arccos 13 o

From the lower bound for 6, we can derive an estimate for the cardinality
of I'\ K: let 79 > 0 such that if z € 0B1(0), y,z € By,(z) then the angle
between y and z is less than 6y. Let L, such that 9B;(0) can be covered by
L, balls with center in 0By and radius o but not by L, — 1; this is possible
because 0B;(0) is compact. Then 0By, can be covered by L,, balls of radius
rory and center in By. Now, if i # j € I'\ K, then the angle between a; — ay
and a; — ay is more than 6y; so, by construction of rg, the rays a; — a; and
a; — ay, cannot both go through the same ball on 0By,. So Card(I\ K) < Ly,.

In summary, setting M,, := 20" + L,, + 1, we have that

Card(I) < M,
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Step 3: Now we put the balls (B;)7_, in rows, in a way that balls in the
same row are disjoint. To do this we define the row index Z(7) of the ball
B; as follows:

o Z(1) =1
e Z(i+1):=min{j | Bis1(\Br =0 Vk <i+ 1 such that Z(k) =75}
From Step 2 we have that Z (i) < My; so, defining the families
Gy = 1B | 26) = j}

for each j = 1,..., M,,, we have that each family G; consists of disjoint balls,
and the families Gy, ..., Gy, cover A.

Remark 2.6.7. If in the previous theorem we have as hypothesis that A
general (not necessary bounded), but we suppose that sup{diam(B) | B €
F } < oo then we can prove the same result. Reasoning as follows: forl > 1
we define

Ap:=An{zeR"|3D(—-1) <|z| <3Dl}
Fr:={By(a) e Flac A}

Then, for each | > 1, from Step 3 of the previous theorem there exists
Gl ... Qf\/[n countable family of disjoint balls such that

So, if we define

and we set L, := 2M,, we have the desidered result.
Now we present a result of the same spirit of Corollary 2.6.5.

Corollary 2.6.8. Let i be a Borel measure on R™, and F be any collection
of nondegenerated closed balls. Let A be the set of the center of the balls in
F; suppose u(A) < oo and for each a € A inf{r | By(a) € F} = 0. Then,
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for each open set U € R™ there exists a countable collection G of disjoint
balls in F such that
UUBcU

Beg
and
u((AmU)\ U B) —0
Beg
Proof. Fix
1 L <f<1
N,

n

We construct the family G inductively as follows:
let 71 :={B| B € F, diam(B) < 1, B C U }; this family is not empty,
since U is open, and F is a fine cover of A. by Theorem 2.6.6 there exist
families Gy, ..., Gn,, of disjoint balls in F; such that

Ny
AmUcU U B

i=1 Beg;

So:

2

WAUU) < u((AmU) n U B)

1 Beg;

Then there exists an index 1 < j < N,, such that

-
Il

((AmU N U B)>FM(A0U)

Beg;

Now, since G; is countable and p is a regular, there exists M such that
Bl,...,BM2 S gj and

p((ant) N U ) = (1= 0)uAND)
Since U 1 B1 is p-measurable, we obtain that
(AmU\U ><0,u,AUU)

Inductively we set, for ¢ > 1

M;
Ui :=U\J B

j=1
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and
Fiv1:={B|BeF, diam(B)<1,BC U1}

Then U, is an open set, and F;y1 is a fine cover of U;y1. Reasoning as

above, we obtain disjoint balls By, 41, ..., Bag,, € Fit1 such that
Mt M1
p((anon U By) = w((anuw\ U B)
j=1 j=M;+1
< Ou(ANUipr)
< GTAND)

Now, since u(ANU) < u(A) < oo and 6 < 1, we have the desidered
result. O

2.7 Differentiation of Radon measures in R"

In this section we want to answer this question: do two measures that
agree on balls agree everywhere? We will set the problem in R", while the
extension of the results of this and of the previous section will be made in
chapter 4. In particular we will see that, if we take two Radon measures pu, v
on R"™ such that y < v, then we can express p in terms of v just integrating
a function D, p with respect to v (Theorem 2.7.4). The important fact is
that the function D, u is defined as the derivate of u with respect to v (see
Definition 2.7.1), and hence we can calculate it, not as in the case of the
Radon-Nikodym Theorem (Theorems 2.5.12 and 2.5.13). In particular we
can say that if two Radon measures p, v such that p < v agree on balls,
than they agree on Borel sets.

Definition 2.7.1. Let p,v be two Radon measures on R™. For each point
x € R™ we define:

Dyu(z) = hl?j(l)lp v(B,()) Jfv(Br(x)) >0 Vr >0
00 Jif v(Br(z)) =0 for some r >0

1iminfuéf;r(x;) Jfv(Br(z)) >0 Yr >0
+00 Jif v(Byr(x)) =0 for some r > 0

If Dyu(z) = D, u(x) < oo then we say that p is differentiable with
respect to v, and denote by Dyu(x) the common value of the limits.



30 Chapter 2. Introduction to Measure Theory

Now we want to understand when D, i exists and how we can recover u
by integrating D, p.
The foundamental Lemma in this section is the following one

Lemma 2.7.2. Let pu,v be two Radon mesure on R™, and let 0 < o < o0.
Define

D*(u,v) :=={x € R" | Dypu(x) =00}, D(u,v):=R"\D*(u,v)
Then it hold
1. v(D®(u,v)) =0
2. for each A C D(u,v), if v(A) =0, then u(A) =0
3. if AC{z eR" | D, u(x) <}, then u(A) < av(A)
4. if AC{x €R"| Dyu(z) > al, then u(A) > av(A)

Proof. First of all we note that if D, u(z) = oo then Dyu(z) = oo. Hence
D(p,v) is the set of points where both D, u and D, u are finite.
Let’s prove 1: for r > 0 define

Dy := D*(u,v) N B,

Since p is a Radon measure there exists an open set U such that D° C U
and p(U) < oco. Now let x € D2°, and for h € N define

Fp :={B,(z) CU | v(Br(z)) >0, u(Br(z)) > hv(B.(z))}

Define F := (J,cpo Fz; then F is a fine covering of closed balls of Dp°.
Hence for Corollary 2.6.8 there exists a countable disjoint subfamily G =

{B;}; C F such that?
(oA Uz

Hence we obtain that

v(DF) < v GBi) S B < iim) = o GBZ-) <
=1 =1

i=1 i=1

w(U)

Sl

Since u(U) < oo, letting h — oo we obtain that v(D°) = 0 for each r > 0,
and hence v(D*)(u,v) = 0.

Let’s prove 2: for each h € N set A, := An{x € R" | D,u(z) < h}.
Since A = |Jp—; A, we have only to prove that p(Ap) = 0 for each h. So

3Note that v(D°) < oo, and that U N DX = D,
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fix h and € > 0; since v(Ap) = 0 and v is a Radon measure, there exists an
open set U such that A;, C U and v(U) < e. Now for each x € Ay, define

Fo = {B(x) CU | v(B(x)) >0, u(B,(x)) < hv(B(x))}

and F := ¢ A, Fa Then F is a fine covering of A;,, and hence we can apply

Theorem 2.6.6 to obtain countable disjoint subfamilies Gy, ..., Gy, C F such
that
N7L
Ay C U U B
i=1 B€g;

Hence, if we write G; = (B});,

N, oo N, oo
pAD) < ) <3S B <30S ()

=1 j=1 =1 j=1
Ny,
- Zhu( U B) < Nphw(U) < Nyhe
i=1 Beg;

and letting € — 0 we obtain the desired result.

Finally let’s prove 3, because the proof of 4 is similar. Fix ¢ > 0, and let
U be an open set such that U D A; let

F:={B|B=By(a)ac A, BCU, u(B)<(a+e)v(B)}

It is clear that F is a fine cover of A. So, by Corollary 2.6.8 we can find a
countable family G of disjoint balls of F such that

v(a\ U B) =0

Beg

Hence:

u(A) < Z w(B) < (a+e¢) Z v(B) < (a+e)v(U)

Beg Beg

Since ¢ is arbitrary, we obtain

H(A) < av(U)

for all open set U D A. Since v is a regular measures, the estimate holds
also for A. O
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Theorem 2.7.3. Let u,v be Radon measures on R™. Then D,u exists
and it is finite for v-a.e. © € R™. Moreover the function x — D,u(x) is
v-measurable.

Proof. Without loss of generality we can suppose u(R"), v(R") < oo.
We want to prove that D, u exists v-a.e.. For each a < b € R we define

R(a,b) :=={z € R" | D, u(z) < a <b< D,u(r) < +oo}
Using again Lemma 2.7.2 we obtain that
b(R(a,b)) < p(R(a,b)) < av(R(a,b))

and since v(R(a,b)) < oo and a < b, we obtain that v(R(a,b)) = 0.
Now, since

{2 €R" | Du(x) < Do)} = |J Rlab)
a<b
a,beQ

we obtain that D, u exists and is finite v-a.e..

Now we prove that x — D,u(z) is v-measurable. Fix x € R", and let
(yk)r be a sequence of points converging to z such that B, (yx) C Ba,(x).
Set fr := XB,(y,) and [ := XB,(x); since the balls are closed, we have that
lim supy, fr < f. Hence

limkinf(l —fe)>1—f>0
and by the Fatou’s Lemma

((Bar(x)) — p(Br(2)) < p(Bar(z)) — 1imk8up 1(Br(yr))

that is the function x — p(B,(z)) is upper semicontinous, and hence Borel
measurable. A similar assertion holds for the function = — v(B,(z)).
So, fixed r > 0, we have that the function

v(B:(z))
fu(z) = { v(Br()) if u(By(x)) >0
e if (B, () = 0

is p-measurable. Since
D,v=lim f, p—ae.
r—0

we obtain that D,v is v-measurable. O
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Next theorem is the Foundamental Theorem of Calculus for Radon mea-
sures on R", which states that if 4 and v are Radon measures on R", than
v has densitiy with respect to u, and this density can be computed “differ-
entiating” v with respect to u.

Theorem 2.7.4. Let pu,v be Radon measures on R™. Then

/ Dyp dv < p(A)
A

for all u-measurable A C R™. The equality holds if p < v.

Proof. Let A be u-measurable; since p is regular, there exists a Borel set
B with A € B and p(B\ A) = 0; thus v(B \ A) = 0, and hence A is v-
measurable, since v is a Borel measure.

Now fix 1 < t < 0o, and define, for each integer m € Z

Ay = AN{z € R" | t™ < D,v(x) < t"}

Then, from the previous theorem, the sets A,, are Borel sets. Moreover
define
Do(p,v) :={z € R" | D,p(x) = 0}
and
D*(u,v) i= {z € R" | D,pu(x) < Dyp(a)}
Then, from Theorem 2.7.3 we have that

v(AND*(u,v)) =v(AND*(u,v)) =0

Moreover

/ D,p(z)dv(z) =0
ANDo(p,v)

Hence, recalling the definition of the sets A,, and point 4 of Lemma 2.7.2,
we have that

o0

/ADV,u(af)dy(:c) = Z /Am Dyu(x)dv(z) < Z t"™ 1y (A,)

m=—0Q m=—0oQ
o0

=t Y t"w(An) <t Y p(Am)

m=—oo m=—o00

= tu( G Am)étu(A)

m=—00
Hence, for all ¢ > 1 we obtain that

Aammwm$ww>



34 Chapter 2. Introduction to Measure Theory

Letting t — 1 we have the first part of the theorem.

Now we prove the equality in the case p < v: in this case we have that
w(D*(p,v)) = p(D>®(p,v)) = 0. Moreoverwe have that p(Do(p,v)) = 0: in
fact, fixed r,e > 0, for each x € Dy(u,v) N B, it holds that D, u(x) < e;
hence from Lemma 2.7.2 we have that

w(Do(p,v) N By) < v(Do(p,v) N B,) < ev(B,) < oo

Letting € — 0 we find, for each r > 0, that u(Dy(u,v) N B,) = 0, and hence
we conclude that p(Do(u,v)) = 0. Then, recalling the definition of the sets
A, and point 3 of Lemma 2.7.2 , it holds

u(A) = u( D Am)= i 1(Am)

m=—o0 m=—00
o0 o
< 0> ru <t Y [ Do) vl
m=—o00 m=—o0o Am
= t/DV,u(:c)dy(x)
A
Letting t — 1 we obtain the desired result. O

Now we present two important consequences of the theorem above.

Theorem 2.7.5. (Lebesgue decomposition theorem)
Let p,v be Radon measures on R™. Then we can write

V = Vge + Vs
where v, and vs are Radon measures on R™ such that
Vae < [ vs L p

Furthermore
D,vs =0 Dyv=D,vs p— a.e.

and hence
v(A) = / D,v dp+ vs(A)
A

for each Borel set A C R"™.
Furthermore the measures vq. and vs are unique.

Proof. We can suppose u(R"), v(R™) < oo.
Let
F:={ACR"|AdiBorel ,u(R"\ A) =0}
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Choose (Cy)r such that

1
/(Ch) = ik v(A) + 1
and define C := (;2, C. Since
o
PR\ C) <D p(R™\ Cy) =0
k=1

we have that C' € F, and v(C) = inf4cr v(A).
Now, if we define
Vae :=vLLC

and

=vR"\C)

from Theorem 2.1.11 we have that v,., s are Radon measures.

Now, if we take A C C such that u(A) = 0, we must have v(A)=0; otherwise
we would have C'\ A € F, and v(C' \ A) < v(C); absurd. Hence 4. < p.
Moreover p(R™\ C') = 0, and hence vg L p.

Now we want to prove the assertion concerning the densities: fix a > 0 and

set
D :={z e C|Dyvs(z) > a}

By Lemma 2.7.2
ap(D) < v,(D) =0

since D C C. Since vy = 0 on R\ C, we obtain that D,v, = 0 p-a.e., and
hence
D,vVee =Dyv  p-ace.

The proof of uniqueness is easy. O

The following result is a kind of generalization of the Mean Value The-
orem for L' functions, and has a lot of important consequences.

Theorem 2.7.6 (Lebesgue-Besicovitch differentiation Theorem). Let
p be a Radon measure on R™ and f € L*(R™; ). Then

lim fdp = f(x)

r—0 B, (z)

for p-a.e. x € R™.

Proof. Let’s define two measures v, v~ on the Borel sets B C R as follows:

:/Bf+ du v (B) ::/Bf du
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Now we extend the measures to all the sets A C R™ as follows.
vE(A) := inf{v*(B) | B C A, B Borel }

By construction v+ are Radon measures on R” that are absolutly cointinous

with respect to p. Hence, by Theorem 2.7.4 there exists D v and D,v~
such that

vt(A) = / Dywtduy v (A)= / D,v™ dp
A A
for all y-measurable set A C R™. But then
Duu+ =ft D™ =f" p—ae.

Then, by Theorem 2.7.3

im = lim ————[v" x))—v" T
iy fFdn =l S B @)~ (B(a)

for p-a.e. x € R™. O

Remark 2.7.7. In particular we have prove the following fact:

let w and v be two Radon measures on R™ such that v < u, let f be the
function obtain from the Radon-Nikodym Theorem (see Theorem 2.5.12),
that is the function such that v = fu. Hence, from the definition of D,v
and from the theorem above, we have that

 (fm)(Br(@) _ .. 1 /

Dyv(z) =lim —————== = lim —————~ fdu= f(x W — a.e.
D= B @) B @) Sy P T

That is, the function f obtain from the Radon-Nikodym Theorem coincide

u-a.e. with the derivate of v with respect to p.

Moreover, from Theorem 2.7.6 we have the following

Theorem 2.7.8. Let E C R" be L™-measurable. Then

i £(B, () N E)

N TNES) =1 forL"—ae z€F

and .
lim L(By(z)NE)

= "_ge xR\ E
N =2 B, (@) 0 for L™ —a.e. z € R"\
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Since we are working with measures, and sometimes measures can not
see all the sets (i.e. there exist sets of measure 0), if we change a set of a
set of measure 0, topologically we have different objects, but in measure the
two sets are the same. So we need a definition of internal and external of a
set that keep into account this fact.

Definition 2.7.9. Let E C R"; we define the measure theoretic interior
of E as the set of points of density 1 for E, i.e. the set of points x such that

L L(By(@) N E)

B @)

We define the measure theoretic exterior of E as the set of points of
density 0 for E, i.e. the set of points x such that

lim LM Br(x)NE)

"B @)

Note: if F is L"-measurable, from Theorem 2.7.8 we have that L™-a.e.
point z € FE is in the measure theoretic interior of F, and L"-a.e. point
x € R™\ E is in the measure theoretic exterior of E.

As a Corollary of this result (actually the two results are equivalent!) we
have the following

Corollary 2.7.10 (Lebesgue’s points Theorem). Let u be a Radon mea-
sure on R", 1 < p < oo, and f € L*(R™; u). Then

iy f, 1= @l dn=0

r—0 B’V‘(

for p-a.e. x € R".
A point for which this result holds, is called a Lebesgue point of f with
respect to p.

Proof. Let (r;); be a dense subset of R™. If we fix an index ¢, by Theorem
2.7.6

lim |f = ril? dp = [f(z) — i
r—0 B(z)

for p-a.e. © € R™. Then there exists a set A C R” such that u(A) =0 and

tm o 1f il du = |f() - il
r—0 B, (x)

for all i and z € R™ \ A.
Now, if we fix x € R™ \ A, and we choose ¢ > 0, we can find and index 14
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such that | f(z) — ;[P < . Then?

fimsup | |f = f@F do < 27 [twswp [ |- da
B, (x) Br(z)

r—0 r—0

r—0

= 7Y|f(z) = ril? + |f(x) — i) < e

—Himsup/ |ri — f(x)|p}
Br(x)

Hence, by the arbitrary of ¢ we can conclude. O

2.8 Riesz Representation Theorem

In this section we present an important theorem that links functional anal-
ysis and measure theory: the Riesz representation Theorem, that allow us
to identify the dual space of Cy(X;RP), where X is a locally compact and
separable metric space, with the space of finite vector valued Radon mea-
sures on X.

We start with some definitions.

Definition 2.8.1. Let X be topological space and f : X — R™ be a continous
function; we define the support of f as

supp(f) :={z € X | f(x) # 0}

Moreover we denote by C.(X;R™) the space of continous function f: X —
R™ with compact support. In the case n = 1 we write C.(X) instead of

C.(X;R).
If we define, for f € C.(X;R"),

[flloo := sup{[f(z)| | z € X}

we obtain that || - || is @ norm on C.(X;R™). We denote by Cy(X;R") the
closure of C.(X;R™) with respect to the norm || - ||oc. We have that

feCy(X;R") <= Ve >0 3K C X compact s.t. |f(z)]<e Ve X\K

4We use the following inequality:
la =" < 2" H(ja — " + | —b]")

that can be proved noting that the funtion f(z) := |a —z|” 4 |b — x|? achives its minimum
: a—b
mx = 3 -
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Definition 2.8.2. Let X be a locally compact and separable metric space.
We say that a function p: X — RP is a Radon vector valued measure
if p is a vector valued measure in each U € X defined on the o-algebra of
Borel sets of U. Moreover if also p is a measure on X we called p a finite
vector valued Radon measure on X.

An important consequence of Lusin’s Theorem (see Theorem 2.3.4), state
in a way that is usefull for later, is the following one:

Corollary 2.8.3. Let X be a locally compact and separable metric space,
and let p be a finite Borel measure on X. Let f : X — R be a p-measurable
function. Then there exists a disjoint sequence (K;); of compact sets such
that ||v||ec < ||fllo and

u(X\DIQ)—O

and f,. 1is continous for each i. Equivalently we can say thatl there exists
a sequence of functions (f;); C Ce(X) such that f; = f in K; and || fi|lcc <
[ llo-

Note: this theorem imply that if X is o-finite, then C.(X) is dense in
LP(X, p) for each 1 < p < oc.

Notation: Let X be a topological space. We recall that we denote by
B(X) the o-agebra of the Borel sets of X. Moreover with the notation

K=<f

we mean that f € C.(X), 0 < f <1, K compact and f|,, =1, and with the
notation

=V

we mean that f € C.(X), 0< f <1, V open and supp(f) C V.

Let X be a locally compact Haurdorff space. Our aim is to identify
the space of Radon vector valued measures on X with the space of locally
bounded linear functional on C.(X;R").

Let 4 : X — R" be a Radon vector valued measure; we can define a linear
operator L, on C.(X;R") as

Lu(f) 3:/de/i=zn;/Xfid/li
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for f=(f1,..., fn) € Co(X;R™). Since p is a Radon measure, L, is locally
bounded: in fact let K be a compact set

sup{ L,(f) | f < K} = Sup{zn:/xfidmlf<K}
=1

= sun{ [ (ro)dul 17 <K}

< [ul(K) < oo

where ;1 = o|u|, and in the last step we have used the fact that u is a measure
on K, and hence |u|(K) < co. Moreover we note that we have equality in
the last step if X is o-finite, thanks to the note after Corollary 2.8.3.

The other part of the identification is much harder, and it will be proved in
the following theorems.

Theorem 2.8.4 (Riesz Representation Theorem - I form). Let X be
a locally compact Hausdorff space, and lt L : C.(X) — R be a positive linear
functional, that is L(f) > 0 if f > 0. Then there ezists a o-algebra M on
X and a positive Radon measure on M, such that

L(f) =/deu

for each f € Ce(X).

Proof. Note that L is monotone: in fact if f < g, then

L(g) = L(f) + L(g — f) = L(f)

We start by proving the uniqueness of u. We racall that u is a positive
Radon measure on X if p is a Borel measure satisfying

1. u(K) < oo for each compact set K C X
2. p(A) =inf{ (V) |V open, VDO A} forall A e M
3. w(V)=sup{ pu(K) | K compact , K C V } for each open set V C X

Hence p is characterized by its value on compact sets.

So, let p1 and po positive Radon measures on M that satisfied the thesis of
the theorem. Let K be a compact set, and fix € > 0.. Since us is a Radon
mesure, there exists an open set V such that K C V and

p2(V) < pa(K) +¢
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Moreover, by the Urysohn’s Lemma, there exists f € C.(X) such that K <
f < V. Hence

k) = [ xwdm < [ awm =)= [ fan

< / xv iz = (V) < oK) + €
X

Since € is arbitrary we conclude that u;(K) < po(K). Interchanging the
role of 1 and ps we obtain that p; and ps agree on the compact sets, and
hence they are equal on M.

Now we proced by constructing p and M. We define i as follows

e if V C X is an open set we define
u(V) :=sup{ L(f) | f < V'}
e for arbitrary £ C X we define

w(E) :=inf{ (V)| ECV,V open }

First of all we note that, since p is monotone on the open sets, then p is
well defined.
Define

e My as the class of the sets £ C X such that
- uwE) < oo
— w(E) =sup{ u(K) | K C E, K compact }

e M as the class of the sets £ C X such that EN K € Mp for every
compact set K

Now we will proced by steps.

Step 1: p is an outer mesure on X.
In fact p(0) = 0 and, if A C B, u(A) < u(B). To the o-subadditivity,
let Vi, Va be open sets: then p(Vi U Va) < p(Vi) + pu(V2). Moreover let
g <= V1 UV, and let hi, hg such that hy < Vi, ho < Vo and hy + he =1 on
supp(g). Hence

L(g) = L(h1g) + L(h2g) < pu(V1) + u(V2)

Now we prove that u( U2, El) < 32 n(E;y) for each (E;); € P(X). If
for some i it holds p(E;) = oo, then the inequlity is trivial. Otherwise if
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for each i, pu(F;) < oo, then fix ¢ > 0. Then for each ¢ there exists an
open set V; such that E; C V; and u(V;) < u(E;) + 5. Let V := U2, Vi,
and let f < V. Since supp(f) is compact, there exist V;,,...,V;, such that
supp(f) C V5, U---UV;,. Let hy,, ..., h;, be a partition of unity subordinate
to Vi, ..., V;,. Hence

n

n n e oo
L(f) = Llhi, ) <> Vi) < (M(Ez'j) + 271) <Y wE)+e
J=1 j=1 j=1 i=1
Hence, for the arbitrary of e first, and of f after, we obtain that u is o-
subsdditive.

Step 2: Mg contains the compact sets.
Let K be a compact set, K < f, and define the open set V := { f > %},
then K C V. Let g < V; then g < 2f and hence, since L is monotone,

p(K) < (V) =sup{ L(g) [ g < V' } < L(2f) < o0

Moreover it is obvious that a compact set satisfied the second condition that
defined Mp.

Step 3: every open set V such that p(V) < oo belongs to Mp.

Let V open set with u(V) < oo, and let a € R such that o < (V). Let
f <V with o < L(f); this is possible thankss to the definition of x on open
sets. If we denote by K := supp(f) we have that for each open set W with
K cW, f <W, and hence L(f) < u(W). Since pu(K) = inf{ u(W) | W 3
K,W open }, we obtain that L(f) < p(K). Hence the compact set K is
such that K C V, a < u(K) < p(V). Since « is arbitrary we can conclude
that V € Mp.

Step 4: Let (E;); C Mp disjoint, and let E := |J;2; E;. Then p(E) =
o2, u(E;). Moreover if u(E) < oo, then E € Mp. We will prove it in
three points:

1. let K1, K3 be disjoint compact sets; hence u(K1UKs) > p(K7)+u(K?).
Since X is a Hausdorff space, there exist disjoint open sets V1, Vo such
that K1 € Vi, Ko C V. Moreover, if we fix ¢ > 0, there exists an
open set W such that K3 U Ko C W and pu(W) < p(K; U Ks) + ¢.
Finally there exist functions fi, fo such that f; < W NV, and L(f;) >
w(WnNV;)—e, for i = 1,2. Hence

p(Ky) + p(K2) < p(WNV)+p(WNns)
< L(f1) + L(f2) +2¢
<

w(W) 4+ 2e < u(Ky U Ks) + 3¢
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2. if u(E) = oo, then from the o-subadditivity of p the result follows.
Otherwise, if u(E) < oo, fix € > 0; for each E; there exists a compact
set K; C E; such that u(K;) > p(E;) — 5. Hence, for each n € N

u(B) > u( K ) > You(B) — =
i=1 =1

and hence

w(E) > w(E;) —¢
=1

We conclude for the arbitrarity di e.

3. if u(E) < oo then fix € > 0; hence there exists N > 0 such that

N
p(E) <> u(E) +e
=1

From the previous point we obtain that

w(E) §,u< GKz) + 2¢

i=1
Since K := Ufil K is compact, for the arbitrarity of e.

Hence we have obtained the desired result.

Step 5: Let E € Mg and € > 0. Then there exist a compact set K and
an open set V such that K C ECV and pu(V \ K) <e.
We known that there exist a compact set K and an open set V' such that
K cFECYV and

u(V) = 5 < w(E) < p(K) + 5

Since V' \ K is open (we recall that a compact set in a Hausdorff space is
closed!) and u(V\K) < p(V') < oo, from Step 3 we obtain that V\K € Mp.
hence, from the previous Step

u(K) +p(V = K) = p(V) < p(K) + ¢

and since pu(K) < oo we conclude.

Step 6: Let A,B € Mp. Hence AN B, AU B, A\ B belong to M.
Fix € > 0; from Step 5 we have that there exist compact sets K7, Ko and
open sets V7, Vo such that

KicAcVvy, p(Vi\Ki)<e
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Ky CcBCVy, u(Vo\Kj) <e

Since

A\BCVl\KQC(Vl—Kl)U(Kl\VQ)U(VQ\KQ)

we obtain that
w(A = B) < pu(Ky — Va) + 2¢
Since K \ V3 is a compact set contained in A\ B we conclude that A— B €
Mp.
Since AUB = (A\B)UB, and A\B, B € Mp and u(AUB) < pu(A)+u(B) <

oo, from the previous Step we obtain that AU B € Mp. Same argument
for AnNB=A\(A\ B).

Step 7: M is a o-algebra that contains the Borel sets of X.

1. M is closed for complementarity: let A € M and let K be a compact
set. Then A°NK = K\ (AN K), and since K and AN K are in Mp,
then A¢ e M.

2. M is closed under countable union: let A :=J;2, A;, where 4; € M,
and let K be a compact set. Define By := A1NK and B, := (A,NK)\
U} B; for n > 2. Hence (B,), is a sequence of disjoint sets in M.
Moreover ANK = |J;2, By, and hence u(J;2; Bn) = p(ANK) < co.
For Step 4 we obtain that AN K € Mp, and hence A € M.

3. If C'is a closed set, then CNK is a compact set, and hence CNK € Mg,

and hence C' € M. Hence M contains all Borel sets. In particular
X eM.

Hence we have obtained the desired result.

Step 8: Mp={FE e M| u(F) < oo}
Let £ € Mp; then ENK € Mp for each compact set K, and hence E € M.
Now let E € M with u(E) < oo. Fix € > 0; then, from the definition of u
we known that there exists an open set V such that £ C V and u(V) < oo,

and hence, for Step 3, V € Mpg. Moreover, by Step 5, taking V itself as the
open set, we find a compact set K C V such that

wV\K)<e
Since EN K € Mp, there exists a compact set H C £ N K such that
wENK)<pu(H)+e
Since E C (ENK)U (V' \ K), it follows that

p(E) <p(ENK)+p(V\K) < p(H) + 2 < oo
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Hence F € Mp.

Step 9: p is a measure on M.
This easly follows from the previous Steps.

Step 10: L(f) :/ fdu for each f e Co(X).
X

It is sufficient to prove that
L(f) < /X fdp (2.1)

In fact, if (2.1) holds, then L(—f) < [y —fdu, and hence L(f) > [y fdpu.
So we have to prove (2.1): fix f € C.(X); since f(X) is compact, there exists
a < b € R such that f(X) C [a,b]. Fix € > 0 and choose pionts yo, ..., Yn
such that

Yo<a<yr < - <Yp-1<Yn=0>

and y; —y;—1 < €. Denote by K := supp(f), and define for eachi=1,...,n
Ei={reK|yi1<f(z)<y}

Since f is continous, f is Borel measurable, and hence the sets E; are disjoint
Borel sets, whose union is K. Since u(K) < oo there exists open sets V;
such that F; C V; and

u(Vi) < p(E) +

and f(x) < y; + ¢ for each z € Vj. Let (h;)}_; functions such that h; < V;
(= L(h;) < p(V3)) and >°7  hi = 1 on K. We have that h;f < hi(y; +€)
and y; — e < f(z) on E;; moreover pu(K) < L(>_;" | h;). Hence we obtain
that

n

L(f) = Y _L(hif) <> (yi+e)L(h)
=1 =1

= Z(!a! +yi +¢e)L(hi) — |al Z L(hs)

=1
>l + i+ ) (B + =) = lalu(K)

<
i=1
n e n

= Z(W +yi + E)E + Z(yz —e)u(Ey) + 2eu(K)
=1 i=1

<

5(\a|+b+€+2,u(K))+/de,u

Since ¢ is arbitrary we conclude. O
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Now we present a particular version of the above theorem that it will be
usefull for our aim.

Theorem 2.8.5 (Riesz Representation Theorem - IT form). Let X be
a locally compact and separable metric space, and let L : Co.(X;R™) — R be
linear and locally bounded, that is

sup{ L(f) | f < K'} < o0

for each compact set K C X. Then there exists a unique Radon vector
valued measure = (1, ..., un) on X such that

=3 /X i dpn
=1

for each f € Co(X;R™). Moreover for each open set A C X it holds

ul(4) = sup { L(f) | f € C( AR, ] <1}

Proof. We start by proving the uniqueness: suppose 1, o are Radon vector
valued measures satisfing the thesis of the theorem. Since

ral(A) = sup { L() | £ < A} = |12l (4)

for each open set A, we obtain that |u1| = |u2| =: v. Now, writing u; = oqv
and po = ogv, with |o1(z)| =1 and |oa(x)| = 1 |nul-a.e., we obtain that

/(f,01—02>d1/20
X

for each f € C.(X : R™). Hence o1 = 09.

Now we prove the existence of this measure. Suppose first n = 1. We
want to use the previous theorem, but since we do not known if L is positive,
we have to modify it: so we define the funcional L* on the space { f €
Ce(X) | f=0}as

L*(f) == sup{|L(g)| | g € Ce(X), gl < [}

Hence

e L*(f) € R: in fact since in the definition of L*(f) we work with func-
tions g such that |g| < f, we have that supp(g) C supp(f); hence, since
supp(f) is compact, for the homogeneity and the locally boundness of
L we conclude.

e L* is positive: if f > 0, take g = 0; then L*(f) > |L(g)| = 0.
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e L*islinear: let f1, fo € C.(X) such that fi, fo > 0. First we prove that
L*(fi+ f2) > L*(f1) + L*(f2): let g1,g92 € C(X) such that |g;| < f;
for i = 1,2; we can suppose that g1, g2 > 0. Then |g1 + g2| < f1 + fo,
and hence

L(g1) + L(g2) = L(g1 + g2) = |[L(g1 + g2)| < L*(f1 + f2)

For the opposite inequality, let g € C.(X) such that g < f1+ f2; define
the funcions, for i = 1,2

_9
_ f1+f2fZ 7f1+f2>0

0 fitfa=0

gi -

Then g; € C.(X), g; < fi and g1 + g2 = g. Hence
IL(9)| < |L(g1)| + [L(g2)| < L*(f1) + L*(f2)
Now we define the functional L on C.(X) as
L(f) = L'(f) = L'(f")
Clearly L is linear and positive, and E( f) € R for each f € C.(X). Hence

for the previous theorem there exists a positive Radon measure v on X such
that

£ = [ fav

for each f € C.(X). Moreover, for each open set V, it holds

v(V) =sup{ L*(f) | f <V} =sup{ L(f) | f € C(V), [f| <1}

Now we want represent L. Since

L) < L(f) = /X v < [l

we can extend L to a functional L € (L'(X,v)) = L*(X,v). Hence there
exists a function o € L*>(X,v) such that

) = [ soav

for each f € L'(X,v). In particular

1) = [ foa
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for each f € C.(X). Hence if we define the measure p := ov we have the
desired representation of L.

For the case n > 1 we can reason component by component obtaining a
function o = (o1, ...,0,) such that o; € L*°(X,v) for each ¢ and

00 =3 [ fes
=1

for each f € C.(X;R™). So we define the measure p := ov.

Now we want to prove that |o(z)| = 1, v-a.e.. Let U C X with v(U) <
00. Then, from Corollary 2.8.3 we obtain that there exists a sequence of
functions (fi)r € Co(X;R™) such that |fx| < 1, supp(fx) C U and (fi,0) —
|o|, v-a.e. on U. Then

[ 1ol = tim [ (0w = tim 105 < v(0)

On the other hand if we take f € C.(U;R"™) with |f| < 1 we have that

[ o< [ jola

Hence v(U) < [, |o|dv. So we have obtained that |o(z)| = 1, v-a.e. on
every open set U with v(U) < oo. Since X is a locally compact separable
metric space, we can write X as

o
X:Um
=1

where the K;’s are compact subsets. Moreover, since v is a Radon measure
on X, we have that v(K;) < oo for each i; hence we obtain that, for each
i, there exists an open set U; such that K; C U; and v(U;) < co. Applying
the above result to each U; we obtain that |o(x)| = 1, v-a.e. on X.

So we have obtain that || = v, and hence the desired result. O
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2.9 Weak convergence and compactness of Radon
measures

In this section we will introduced a notion of weak convergence for Radon
measure, derived from the identification given by the Riesz Representation
Theorem, and we will study the properties of this convergence.

Definition 2.9.1. Let X be a locally compact and separable metric space,
and let (ug)k be a sequence of vector valued Radon measures on X. We say
that uy, converge weakly to the vector valued Radon measure p, or that ug
is weak* convergent to p, written ur — p, if

hm/fdukz/ fdu
k—oo X X

for each f € C.(X;R™).
Note: we can endowed the space C.(X;R™) whith a topolgy, and con-
sired the weak® convergence in the dual space of C.(X;R"), and transfert

it to the space of vector valued Radon measures on X, thanks to the Riesz
Representation Theorem.

First of all we prove two important results about the weak* convergence:
lower semi-continouity and compactness.

Theorem 2.9.2. Let (uy)k, p be vector valued Radon measures on a locally
compact and separable metric space X, and suppose that pr, — p. Then for
each open set A it holds

Hl(A) < liminf || (4)
k—o0
Proof. Define the linear functionals on C.(X;R")
L= [ fau L) = [ fdm
X X

From the Riesz Representation Theorem (see Theorem 2.8.5) we have that,
if f € Ce(X5R™), [fI <1, supp(f) C A

Lu(f):/deM:kli_{gO/deukSlikn_1>i£f\uk|(A)

and hence we obtain the desired result. O
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We also easily have compactness

Theorem 2.9.3. (De La Vallée Poussin Theorem)
Let X be a locally compact and separable metric space. Let (ug)r be a se-
quence of vector valued Radon measures on X such that

S‘;p‘ﬂkKK) <0

for each compact set K C X. Then there exists a vector valued Radon
measure i on X and a subsequence (g, )n such that py, — p.

Proof. Let K C X be a compact set, and let M := sup, |ux|(K). Let
D := (fn)n be a contable dense subset of C.(X;R™). Since for each h and j
we have that

| [ fhdi] < Wlledt
K

we can find, using a diagonal process, a subsequence (,uhj ); and a sequence
(an)n, C R™ such that

/ Jn dpn, 2% ay
K
for each h. Hence we define the linear functional L on D as

L(fn) = an

Since |L(f)] < M| f|l~ We can extend L to a bounded linear functional L
on C.(X;R™). From the Riesz Representation Theorem we have that L can
be represent with a finite vector valued Radon measure pu. Now we wanto
to prove that pj, — p. Let f € Co(X;R") and fix € > 0; then there exists
an integer h such that || f, — f|lcc < 7. Next choose an integer J such that
for each j > J it holds

€
‘/fhd,uhj_/fhdﬂ‘<2
K K
Hence, for i > J

’/deuhj_/deM’ = ‘/K<f_fh)d“h1 +‘/K(f—fh)du

[ tudi, = [ faan

< 2M||f = fulloo +€ < 3e

+

For the arbitrary of € we conclude.

Since we can write X as countable union of compact sets (K;);, we can
apply the above argument to each K;, and hence using a diagonal argument
to obtain the desired result. O
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Now we present some “measure kind” properties of the weak convergence
of Radon measures, first in the case of non negative measures, and then for
general vector valued measures.

Theorem 2.9.4. Let (uk)g, v be non negative Radon measures on a locally
compact and separable metric space X. Supppose that py, converge weakly to
. Then for each compact set K C X

lim sup i, (K) < p(K)

k—o00 o

and for each open set U C X

liminf 11, (U) > p(U)

k—o0
Proof. Let K C X be a compact set; fix ¢ > 0, and let U D K be an open
set. Choose f € C.(X) such that 0 < f <1, supp(f) CU and f =1 on K.
Then

n(U) 2/ fdp = lim [ fdu > limsup pg(K)
X k—oo Jx k—oc0

Since p is a Radon measure, we can approssimate p(K) from the outside
with open sets. So

p(K) =sup{ w(U) | U D K, U open } > limsup py (K)

k—oo

The proof for the open sets is similar.

Theorem 2.9.5. Let X be a locally compact and separable metric space,
and let (ug)g be a sequence of vector valued Radon measures on X . Suppose
that

pe = p, k| —o
for some wvector valued Radon measure p and some mnon negative Radon

measure o, and that
sup |kl (X) < o0

Then |u| < o, and for each Borel set B @ X such that o(0B) = 0 it holds

lim i (B) = u(B)
k—00

Note: if in the theorem above we have that the measures p are non

negative Radon measures, then |up| = pg, and hence we can say that if

pr — 1, then for each Borel set B € X with u(0B) = 0 we have that

limy i (B) = u( B).
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Proof. We begin by proving that |u| < o: let A € X, and define, for ¢t > 0
Aypi={zx e Al|d(x,0A) >t}
Let f € C.(A) such that x4, < f < xa. Hence, from Theorem 2.9.2

(40 < limint ] (A) < Yymin [ Fdle] = [ fo < a(a)
k—o00 k—oo Jx X

Now A; T A, and since u(A) < oo we have that |u|(A;) — |u|(A); so we have
obtained that |u|(A4) < o(A) for each A € X. Since a locally compact and
separable metric space can be write as a countable union of compact sets,
we obtain that |u| < o.

For the second assertion: let p; be the ith component of the measure py,
fori=1,...,n, and let ,uii be the positive and the negative part of ji ;.
Since ,uii < |pg| < M for some M < oo, we can suppose that ,ufﬂ. — uii for
each i = 1,...,n. Moreover, from py; = ,u:,i — Hg i passing to the limit we
obtain that

wi=vi—vo,  vE<|u<o

7 7
Now, let B € X be a Borel set such that ¢(0B) = 0; then v;"(9B) = 0
for each i = 1,...,n. Let K be the closure of B and A be the internal of
B. Since E — A = 9B we have that v"(K — A) = 0, and hence v;"(B) =

v (A) = vF(K). Hence from Theorem 2.9.4 we have for each i = 1,...,n

limsup,ufi(B) < limsup,ufi(K)gyii(K)
k—o0 ’ ’

k—o0

= E(A) < liminf g, (A) < liminf i (B)
k—o0 ’ k—o00 )

Hence we obtain that ,ufi(B) — v (B) for each i = 1,...,n. Thus

Jim pi(B) = lim (1 3(B) = py,4(B))

k—o00

= v/ (B) = v (B) = mu(B)

7

and hence pp(F) — p(E). O

An important application of the theorem above is the following one: let
(A¢)tes be an increasing family of relatively compact open sets labelled on an
interval J C R such that A, C A; for s < t. Then we have that 0(9A;) = 0
except for countable many ¢ € J, and hence pup(A:) — p(A:) except for
countable many ¢ € J. In fact let B € X and fix € > 0; hence the set

{t€J|a(8At)>e, Zt@B}

is finite, because the sets 0A; are pairwise disjoint and o(B) < co.



Chapter 3

Hausdorff measures

In this chapter we introduce the s-dimensional Hausdorff measures on a
metric space X. This kind of measures are very useful in geometric measure
theory, because they allow to define an intrinsic notion of s-dimenasional
area. We will study the principal properties of this measures; in particular
the notion of Hausdorff dimension of a set in a metric space (Definition
3.1.7), and densities properties for the Hausdorff measures (section 3.1.2).
Then, in section 3.2, we will study the Hausdorff measures in R™ and their
relation with the Lebesgue measure £" (Theorem 3.2.6); in particular we
prove the isodiametric inequality in R™ (Theorem 3.2.5).

3.1 Hausdorff measures in metric spaces

3.1.1 Definition and properties

We start by defining the s-dimensional Hausdorff measure in a generic met-
ric space, using the so called “Carathéodory construction”.

Definition 3.1.1. Let (X,d) be a metric space, and let 0 < s < o0, 0 <
0 < 0o; we define the pre-measure Hj as follows:

Hs = inf{ia(s)(diam(cj))s | AC [j Cj, diam(Cj) < 5}
j=1

, 2
J=1

for A C X, where

o0
and I'(s) ::/ e "z~ 1 dx is the Gamma function.
0

53
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The constant «(s) has been included in order to have, in X = R",
L" = H"™. We recall that, if n is an integer, then a(n) = wy,.
Now we want to prove that Hj is an outer measure.

Theorem 3.1.2. For each 0 < s < oo and each 0 < 0 < oo, Hf is an outer
measure.

Proof. Fix s and 0. It is clear that #;(0) = 0. Now, let (Aj)x; for each k
select (C’k) such that Ay C (JjZ C']"-C and diam(C]’?) < 4. Then

UscOUe
k=1j=1
and hence, by the definition of the pre-measure H3
diam(C k) s
#(U) =23 a5
kAg k=1 j=1

Since the sets (C¥); are arbitrary, we can take the infima over them, and

hence obtain ’ - -
(| 4ax) < Do mseh
k=1 k=1
O

The pre-measure H3 is not o-additive and not Borel. So we would have
a measure with this properties. The idea to obtain this measure is to force
the coverings that appear in the definition of the pre-measure to follow the
local geometric nature of the set.

Definition 3.1.3. We define the s-dimensional Hausdorff measure H?*
on the subsets A X as follows

H?(A) := lim H3(A) = sup H;(A)

We note that the definition above is a good definition: in fact if §; < do,
then Hj > H3 , and hence the limit in the definition always exists.

Theorem 3.1.4. H® is a Borel reqular measure, for each 0 < s < 0o and
0> 0.

Proof. Tt is clear that H*(0) = lims_,o H3(0) = 0. Moreover

(U Ac) = lim 73 (1 Ar) < lim D7 A5 (40 < 30 M0 (A
k=1 k=1 k=1

k=1
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In order to prove that H?® is a Borel measure, we want to apply Theorem
2.1.7: so, let A, B C X such that d(A, B) > 0; let

d(A, B)
3

and (Cj)y such that AU B C ;2 C, diam(Cy) < §. We define

0<do<

A={k|ANCy#0}, B:={k|BnNCy#0}

Then, A C Jyeq Ck, B C Uiep Ck, and, because of our choise of 6, ANB =
(). Hence

o (B 2 a0 (B o ()

k=1 keA keB
> H5(A) +H;5(B)

Finally, to prove the Borel regularity of H®, we note that diam(B) =
diam(B), and hence

mf{z (M) | Ac | Cr, diam(Cy) <4, Cy, closed }
k=1

Now, if H*(A) < oo, we have Hj(A) < oo for each 0 < § < oo; so we can
find closed sets By, such that

ia <d1am BJ)) SH(S;(A)-J-;
k=1

Now, setting

desired result. ]

Now we present an property of the Hausdorff measures, useful to say
when a set has measure 0.

Theorem 3.1.5. If A C X such that H3(A) =0 for some 0 < 6 < oo, then
H5(A) =0.

Proof. Since H3(A) = 0 for some 0 < § < oo, then for each ¢ > 0 we can
find sets (C5); such that A C J;2,, diam(C5) < ¢, and

o0

Za ) <d1am(C’€)> -
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Hence
1

. € s e—0
diam(C5) < 2(—— )" = 6. o
fam(C5) < als) B
for each j. So we have obtained that the diameter of the sets C; must go to
0 when € — 0. Hence

M (4) = lim H3(A) = lim #5, (4) = 0

Next theorem links Hausdorff measures H® when s varies.
Theorem 3.1.6. Let AC X, and 0 < s <t < oo. Then

o if H5(A) < oo, then H'(A) =0

o if H'(A) >0, then H*(A) = +o0

Proof. Let’s prove the first assertion: let A C X and § > 0 fixed; let (C});
such that A C [J;2, Cj, diam(C;) < 05 since

diam(Cj)\ ¢ _ diam(Cj)\ s fdiam(C}j)\ =3 < diam(Cj)\s /6 t—s
() =) ) <) 6)

2 2 2 2 2

‘We have that

H(4) = inf{ ia(t)(diam(cj))t |AcC fj C;, diam(Cy) < 5}

2
=1 i=1
< 2@ e {Den ("5 14¢ Yo, amicy <o}
i=1 =t
- S @) =

where in the last step, we have take into account that ¢ — s > 0.
The second assertion is the dual of the first one. O

The two properties of the above theorem suggest us how to define a
notion of Hausdorff dimension of a set A: it will be the number s for which
H? is the “correct” measure for measuring A.

Definition 3.1.7. Let A C X; the Hausdorff dimension of A, Hgim(A)
is defined as

Haim(A) :==inf{s | 0 < s < 0o, H*(A) =0}
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We note that if n = H g, (X), then for each s > n H® = 0.

We note that the construction of the Hausdorff measure, and in particu-
lar of the pre-measure, can be generalized as follows: let (X, d) be a metric
space, F a family of subsets of X and f := F — [0,00). Suppose that

e for each 0 > 0 there exists (E;); C F such that diam(£;) < § and
X =UZ Ei

e for each 6 > 0 there exists F' € F such that diam(F) < ¢ and f(E) < ¢

Then we can define the pre-measure

¢5(A) = inf{ if(CZ) ’ AC [j Ci, diam(Ci) < (5, C; € .7:}
=1

=1

and the measure

P(A) = lim 1bs(A)

6—0

for each A C X.

It turns out that s is an outer measure, and that v is a Borel regular
outer measure. This way to construct a measure on a metric space is called
Carathéodory construction.

Hence we can define the following measure

Definition 3.1.8. Let (X,d) be a metric space. For 0 <t < oo define, for
each A € X, the spherical Hausdorff measure as

§'(4) = lim S}(4)

where, for each 0 < § < 0o

SH(A) == inf{ Y diam(Ci) | A € | Gy, diam(Cy) < 6, C; balls }
=1

i=1
It is easy to verify that, for each A € X,

S'(4)
ot

< H'(A) < S'(A)
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3.1.2 Densities

As we have seen in the previous chapter when we have prove the differenti-
ation Theorem for Radon measures on R", in order to understand when a
measure p can be represent in terms of another measure v we have to look
at

Since for the area formula if S C R™ is a k-dimensional surface, then H*(.9)
coindices with the k-dimensional surface area, we have that

H¥(B,(z)) = wpr®

Hence, in order to understand when a measure p can be represent in terms
of the measure H*, we have to study

1(Br(x))
wkrk
This fact suggests the following definition

Definition 3.1.9. Let (X,d) be a metric space, and let v be a measure on
X. Let 0 <k < oo and x € X; define the upper k-dimensional density

of i at x as
_ B,
O(p, x) == limsup uBr(x))

and the lower k-dimensional density of 1 at x as

O(p, ) := liminf M

r—0  wyrk

If ©(p,z) = O(u, ) then we called the common value the k-dimensional
density of pu at x, and we denote it with O(u,x).

In order to prove the foundamental result of this section, we need a kind
of Vitali covering Theorem for the Hausdorff measures.

Theorem 3.1.10. Suppose (X,d) is a metric space, E C X, k > 0 and
let F be a closed fine covering of EE. Then there exists a countable disjoint
subfamily (V;); C F such that one of the following two conditions holds

[e.9]

o Z(diam(%))k = 400
i=1

. ’H’f(E\ij) -0

=1
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Proof. Define Fy := F and choose Vi € Fy such that
1
diam(V;) > 5 sup{diam(V) | V € Fy }

Then inductively define, for i > 1

E::{VG}"H/HOVJ-:@}

j=1

If 7; = 0 then we stop. Else choose V;y1 € F; such that
1
diam(V;y1) > 3 sup{diam(V) |V € F; }

Clearly if the process is stopped, that is there is an integer j such that
F5 =0, then it is obvious that

-
ECU%
=1

and hence the second conditions holds. Otherwise suppose that the process
is not stopped and that > 52, (diam(V;))* < +oo. For each i select a point
x; €V, Letx € E\Uf:1 V; for some s > 1. Since the sets V; are closed and
F is a fine covering of E, we have that there exists a set V' € F such that
zeVand VN, Vi =0 and diam(V) < 2diam(Vs;1) (this is possible
because of the way we have choosed Viy1). Now we note that if n > k
and VN, Vi = 0, then diam(V) < 2diam(V,41). Since the series of
the diameters converges, then diam(V;,) — 0 for n — co. Hence for n > s
sufficiently large we have that V NV, # (). Let n be the smallest integer
with this property; then diam(V) < 2diam(V;,41) and hence

d(z, xy,) < diam(V) 4+ diam(V;,) < 3diam(V},)

So we have obtained that if x € E\ |J;_; Vi for some s > 1, then = €
Bsgiam(v,,) (Tn) for some n > s. Hence, if we fix 6 > 0 and choose s sufficiently
large so that 6diam(V;) < ¢ for each ¢ > s (this is possible because of the
convergence of the series of the diameters), we have that

H’g(B\UV{) < ’Hfs( U B3diam(Vi)(xi)>
i—1 i=s+1
o0
< Z H3(33diam(w)($i))
1=s+1
< 93 (dim(V)

1=s+1



60 Chapter 3. Hausdorff measures

where in the last step we have used B3diam(Vi)($i) as a covering of itself.
Since the series of the diameters converges, letting k& — oo we obtain the
desired result. O

We have the following result

Theorem 3.1.11. Let p be a locally finite measure on a metric space (X, d),
and let A be a Borel set of X. Then, for each t € (0,00) it hold

Ou,z >t for each x € A = p(A) > tSH(A) > t1*(A)
Ou,x <t for eachx € A = u(A) < t28H*(A)

Proof. Without loss of generaity we can suppose t = 1 and A bounded, and
clearly that u(A) < oco.

Let’s prove the first assertion: fix 0 < § < 1, and let U be an open bounded
set such that A C U. Since u(A) < oo we can suppose that u(U) < oo.
Define the family

F = {Br(x) cU|xzeA, diam(B) <4, p(B,(z)) > (1 — 5)wk7“k}

Since the family F is a closed fine covering of U, from Theorem 3.1.10 we
can find a countable disjoint family of closed balls (B;); C F such that

H’“(U\DBZ) —0

This because > o2, (diam(B;))F < 2u(lU2,(B;)) < 28u(U) < oo. Hence

IN
i

= 1 1
di < U
(B < 3 () <
For the arbitrariness of § we find out that S*(A) < u(U), and hence, since
U is arbitrary, the desired result.
Now we prove the second assertion: let 7 > 1, and for h > 1 define the set

(B (x)) 1
Ap = {x€A| o <TVre (O’E)}
Then A = {J;~, A and Aj, is an increasing sequence; hence limy, o, f1(Ap) =
1(A). Let (C;); be a sequence of sets such that diam(C;) < 3, A, € U2, C,
dx; € Ap, N C; and

> 1
D wrrf < HYu(An) + 7

i=1
where r; 1= %diam(CZ-). Hence the sets C! := By, (x;) still cover A, and
hence

w(Ap) <ZM <7'Zwk 2r;) <T2k<7‘[k( )+ %)

i=1
Letting h — o0 and then 7 — 1 we obtain the desired result. O
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3.2 Hausdorff measures in R"

In this section we want to focus our attenction on the metric space R™, prov-
ing some important properties relating the s-dimensional Hausdorff mea-
sures H® and the Lebesgue measure L.

3.2.1 Basic properties

First of all we want to study the behavior of the Hausdorff measures with
respect to isometry, dilatations, and to study some first connections between
Hausdorff measures and Lebesgue measure.

Theorem 3.2.1. It hold:
1. HO is the counting measure
2. H' =L in R
8. H* =0 foralls>n
4. H3(NA) = N¥*H5(A) for all A >0 and A CR"
5. H¥(L(A)) = H*(A) for every affine isometry L : R™ — R™ and A C R"

Proof. 1 : since a(0) = 1, it is clear that H°({p}) = 1; since H is a Borel
measure, points are measurable, and hence the thesis.
2:let AC R and § > 0; then

LAy = inf{Zdiam(Cj) | AC U Cj}
j=1 7=1

IA

inf { idiam(cj) | AcC G C;, diam(C;) < 5}
j=1

J=1

= H5(4)

For the opposite inequality: let A C R" sucht that £!(A) < oo; fix € > 0

and let (Cj); such that A C U2, C; and

LY(A)+e > diam(C))
j=1

For each k € Z we define

I, = [k:é, (1 + k(;)]a Cj,k = Cj NI
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Then diam(C;N1;) < 6 for each j, k, and that diam(C}) > > 72 | diam(C}x,).
Hence:

Zdlam Z diam(C; ) > H5(A)
k,j=1

Since this inequality holds for each § > 0, it holds also for H!. Finally, since
¢ is arbitrary, we can conclude.
3 : since [0,1]" is H®-measurable for each s, H?® is obviously translation

invariant, and
R" = U([O, 1"+ 2)
2€EZ

it is suffice to prove that H*(]0,1]") = 0 if s > n. For this, let 6 > 0; the
idea is to cover [0, 1]™ with cubes

[0,%]"+%, ge{0,...,N}", \]/Vﬁgé

In this way
H(S 0 1 Z ( ) a(s)(\/») NP8 (ﬂ]}O

28

sincen —s < 0and N > 1.
4,5 : easy:
diam(AA) = Adiam(A), diam(L(A)) = diam(A)
for every A > 0 and every affine transformation L : R® — R™. O

Remark 3.2.2. From the previous theorem it follows that, for each A C R"™,
Haim(A) < n. Moreover, it can be proved that, if A is a k-dimensional
submanifold, then Hgim(A) = k. The converse is not true.
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3.2.2 Isodiametric inequality and £" = H"

Now we want to investigate the relation between H™ and L£L™. Motivated by
the first two properties of Theorem 3.2.1, we might expect that H" = L"
for each n € N.

The inequality H™ < L™ is proved using the fact that H§ < L™ and Corol-
lary 2.6.5. Instead, to prove the inequality £™ < H", the idea is the follow-
ing: fix 6 > 0, if we take A C R™ and (C};); such that diam(C};) < ¢ and
AC U;’;le, then we must prove that

£(4) < Y oo (BE)Y”

Jj=1

Using the monotony of L™, we obtain
LrM(A) <> L(C)
j=1
So we should try to prove that, for each set C' C R"
£(C) < £ (Basnic) )
2

But C C R™ not need to be in Bgjuy(c)/2(z) for some z € R™, so we can
not apply directly the monotony of £". This thecnical difficulty is resolved
by the Steiner symmetrization.

Notation: Fix a,b € R™ with |a| = 1. We define
p ={b+ta|teR}

P, :={x e R"| (x,a) =0}
that are respectively the line through b in direction a, and the orthogonal

plane to a.

Definition 3.2.3. Let A C R"™; we define the Steiner symmetrization of
A with respect the plane P, as

1
Sa4): {b+m IteR, |t < §H1(Am;g)}
be P,
ANLE#0
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Figure 3.1: Steiner Symmetrization

Explain in words, the Steiner symmetrization works as follows: we “put
ourseves "in a point b € P,, and we look through the direction «; if we meet
a section of the set A with positive H! = £! measure, we construct a line
in the direction of a, that is centered in b and of lenght the lenght of the
section. It is clear that the set S,(A) is symmetric with respect to P,. But
we also have two important properties, that are crucial for our purpose.

Lemma 3.2.4. It hold:
e diamS,(A4) < diam(A)
o if Ais L™-measurable, so also S,(A) is; moreover L(S,(A)) = L"(A)

Proof. We prove diam(S5,(A)) < diam(A). We may assume diam(A) < oo;
then A C Bg(0) for some R > 0, and hence £'(L{) < R for each b € Py;
then S,(A) C Bgr(0) and so diam(Sg(A4)) < co. Now fix ¢ > 0, and let
x,y € P,(A) suche that

diam(Su(A)) < | — y| + <
By definition of S,(A), there exist b,c € P, such that
r=0b+ (x,a)a, y=c+(y,a)a
Then

e —yl> = [(b—0)+({z—y,a)a)f® = |b—cf+|(z —y,a)
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where in the last step we have take into account that P, L Ra, and |a| = 1.
Now we want to estimate the last term: for this let

ro=sup{t|b+tac A}, s:=inf{t|b+tac A}

vi=sup{t|c+tac A}, t:=inf{t|c+tac A}

Then, if we suppose r —t > v — s

IN

o) |+ (. )] < L) + L (L)

< r—s+v—t T‘—t+1)—8< .
p— 7"'_
- 2 2 2 2 =

(2, a) = (y,a)

In this way we obtain that b + ra,c + ta € A, and hence

|diam(S,(A)) — > < Jz—yP < [b—cf*+|r—t]
= |(b+ra) — (c+ta)|?* < diam(A)?
= diam(A)?

The second assertion follows directly from the Cavalieri’s principle. O

Next theorem is of foundamental importance for two reason: first of all
it will make us able to prove the inequality £™ < H™; in second place it
states that in the class of the sets of fixed diameter, those with maximal
volume are the balls.

Theorem 3.2.5 (Isodiametric inequality). For all sets A C R™ it holds

diam(A) )n

Lr(A) < a(n)< 5

Proof. The idea is this one: if we symmetrizing the set A with respect all
the principal direction, we obtain a set that is cointained in a ball with
diameter less than those of A, and hence we can use the monodocity of the

Lebesgue measure. So, let e, ..., e, be the standard basis of R, and define
inductively B B

Al = Sel (A)
and for i =2,...,n

A; = Sel (Zi—l)

We have take the closure of A in order to work with L£™-measurable sets,

and hence L"(A) = L"(A;) for each 1.
We now prove inductively on 4 that A; is symmetric with respect P, for
each j <i. Let S; be the reflection through F;.

e clearly A; is symmetric with respect to P., for construction
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e suppose Ay be symmetric with respect to P, , ... P, ; for construction
A1 is symmetric with rispect to P, . Fix b E Pepoyand 1 <5 <

k +1; since Sj(Ay) = Ay we have that

LY AN L) = L1 (A N L)

and hence Sj(Ap41) = Ag+1. So we have prove that, step by step,
we mantain the symmetry obtain in the step before. Hence A, is
symmetric with respect to the origin. Then

Z7"L C Bdiam(zn) (O)
2
and hence

£A) < £E) = LA < afn) (T

Now we are in position to prove that £" = H".
Theorem 3.2.6. £ = H" in R".
Proof. First we prove the inequality £" < H™: let A C R"; fix § > 0 and

let (C}); such that diam(C;) < 4§, A C U372, Cj; then, by the isodiametric

inequality
o

s s Lan(t=tely

For the arbitrary of the sets C; we obtain £" < HY for each § > 0, and
hence £ < H™.

For the other inequality, first we need to prove that H§ < L": looking at
L™ as a product measure, we have that, for each fixed § > 0, and for each

A € R" that

L7(A) = inf { S L£MQi) [ Ac Qi diam(Qi) < 6, Qi cubes }
i=1 =1
and hence

H(A) < 1nf{ia (dlam Q”) \Ac@@-, diam(Qs) < 3, Qi cubes |

=1 i=1

= a(n) (?) 1nf{Zﬁ” )| AC U Qi, diam(Q;) < 6, Q; cubes }
Vi
2

.

)" L (4)



3.2. Hausdorff measures in R" 67

Since the result holds for each § > 0, it holds also for H™".
Now we can prove that H" < L": let A C R", and fix § > 0, > 0; let (Q;);
cubes such that diam(Q;) <4, A C U72,Q; and

D LMQy) < LM(A) Fe

J=1

By Corollary 2.6.5 we can find, for each j, a family of disjoint balls (C’fg)k
in @; such that diam(CY) < d and

L”(éj\[jc,{) ~0
k=1

Keeping in mind that H§ < £", and that H3 is a Borel measure, we have
that

Hy(A) <Y HIQ) = D HNQ) <> HyJ <))

j=1 j=1 j=1 k=1

IA
NE
M8
=
<2
IA
NE
NE
Q
3
/N
.
jaV]
| B
2
N
3

j=1k=1 j=1k=1

= > >y eh=ycJob
Jj=1k=1 j=1 k=1

= D LUQ) S LUA) +e
Jj=1

Since ¢ is arbitrary we obtain that Hj < L£", and hence the desired result.
O

3.2.3 Densities

Since we have just proved that £" = H", we know by Theorem 2.7.8 that if
E C R™ is L™measurable

lim L"(By(z)NE)

M = Zn (B, () =1 forL"—ae x€F

and (B 5

2 LB, (2))
Now we want to prove analogus density theorem for the lower dimensional

Hausdorff measures H?® in R™.
For the points that are not in £ we have the following

=0 forL"—ae zeR"\E
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Theorem 3.2.7. Let E C R™ be H®-measurable, and H*(E) < co. Then

lim H(EN B (x)) _ 0
70 a(s)rs

for H*-a.e. z € R"\ E.
Proof. Let t > 0, and define
5(Br E
E; .= {:1: eER"\ F | limsupM > t}
2P T a(s)r

We will prove that H*(E:) = 0 for all ¢ > 0, from which follows the thesis.
Fixed € > 0, since H*L F is a Radon measure, we can find a compact set
K C FE such that

H(E\K)<e

Then U :=R"™\ E is an open set; set

Fi= {Br(az) cU|r<o, EBEr0E) >t}

a(s)rs
then F is a covering of U. Thus, by Theorem 2.6.1, we can find a countable
family G of disjoint balls in F such that

JcUs
BeF  Beg

~

Since diam(B) < 104, we have that

00 di B\ s 00
Hips(Er) < Za(s)( la;n J) :O‘(S)5szrf
=1 ot
5s 0 . 55 00 55 .
< t;”ﬂ (BjNE)= t’HS<]U1mE> < 77{ (E\ K)
55
< —€
t

For the arbitrary of ¢ we obtain that Hj;(£;) = 0, and hence H*(E;) =
0. O

But surprisingly, for the points in E, we have no informations on the
s-dimensional density.

Theorem 3.2.8. Let E C R" be H®-measurable, and H*(E) < co. Then

—0 a(s)rs

<1

for H®-a.e. x € E.
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Proof. First we prove that
S(ENB
lim sup - E N Br(@))
r—0 a(s)rs
Let t > 1, and define
S(ENB
A = {CL‘ e E| limsupu > t}
r—0 a(s)rs

Since H?L F is a Radon measure, fixed € > 0 there exists an open set U D Ay
such that

(HELE)U) < (H'LE)(A) + e

Fix 6 > 0, and define the family

H(EN By(x)) > t}

F = {E(m,r) eU|r <4, (3

Then F is a fine covering of A;. By Corollary 2.6.4 there exists a countable
family G := {B;}; of disjoint balls in F such that

At C U E
Beg
and for every m € N
AN\JBic | B (3.1)
i=1 i=m+1
Hence
m d B s [ee) di "i s
His(A) < Za( )< 1aH;( g)) n Z ()< 1aII;( ))
=1 i=m-+1
< Em:a(s)rf—i- i a(s)b%r]
=1 i=m-+1
R S
< t;H (EﬂBi)+ti:;-1H (ENB;)

- 17{3(157@ E)JF%S%S(EO D E)

=1 i=m-+1

o0 5 m—0oo

Now, letting m — oo and recalling that £ N J;2,, ., Bi — (), we obtain

Hios(Ar) <H(ENU) <

~+ | =

(H*(As) +€)



70 Chapter 3. Hausdorff measures

Hence

H(A) < TH(AY)

and since t > 1 we must have H*(A4;) = 0.

Finallly we note that we need a covering satisfying (3.1), because, with the
simple Vitali’s covering Theorem we would have had an estimate of the
type H*(Ay) < ZH3(A); but 2 is not greater than 1 for all ¢, and hence
we couldn’t have concluded that H*(A:) = 0 for all ¢.

To prove the other inequality, set

H*(EN B, 1
A= {ZL‘EE| limsupM < —}
r—0 a(s)rs 28

We will prove that H*(A) = 0. If we define, for each k > 0

we have that A = J;—,; so we prove that °(By) = 0 for all k.
Fix e > 0; then there exists (E;); with r; := diam(E;) < ¢ for all j, and

such that -
as
“(Bp)—e> ) Q(S)Tjs
=0

Now let x € E; N By, C Ej; from the definition of By, we have that

k a(s)rs
1S . . < J
k:—lH (BN B(xj,rj)) < s
Hence
> as)rs k ” ©
' 5 > k—lZH (EN B(zj,7j)) 2 Z (E; N By)
j=0 J=0
k
> S 3 — S
S <B’“HJL:JOEJ> k—lH (Bs)
And hence "
B _ o S
H*(Br) —e> 3 —H (B
that is

H*(By) < (k+1)e

For the arbitrarity of € we conclude. O



Chapter 4

Differentiation of Radon measures
in metric spaces

The aim of this chapter is to extend the results of Section 2.6 and 2.7 to
the setting of metric spaces. We will only state the principal results. In
particular in Section 4.1 we extend the Vitali’'s covering Theorem and its
corollaries to homogeneous spaces, i.e. a metric spaces endowed of a locally
fintie measure p that is sub-homogeneous. In Section 4.2 we extend the
Besicovitch’s covering Theorem and its corollaries to a special kind of metric
spaces that generalized the property of R™ to have n linearly indipendent
directions. Thanks to these extensions of the covering theorems, we can
prove differentiation theorems for Radon measures as the same spirit of
those of Section 2.7 in these metric spaces.

4.1 Differentiation in homogeneous spaces

Vitali’s covering Theorem provided a new cover from the original one enlarg-
ing the balls; we can use this covering theorem with the Lebesgue measure
because Lebesgue measure is homogeneous, and hence we can controll the
measure of the enlarged balls with the measure of the original balls. So, in
order to extend Vitali’s covering Theorem to more general metric spaces, we
need an homogeneous measure on the space. Actually, since we have only to
estimate the measure of the enlarged balls from above, we just need a sub-
homogeneous measure. This idea is at the base of the following definitions.

Definition 4.1.1. A metric space (X,d) is called doubling if there exists
a constant C > 0 such that every ball B,(T) C X can be covered by at most

71
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C balls of radius 5, i.e. there exists x1,...,x, € X such that
C
B,(z) c | By ()
i=1

Definition 4.1.2. Let (X,d) be a metric space, and let u be a measure
on X. We say that p is a doubling measure, and we call (X,d,p) an
homogeneous metric space, if

o u(X)>0
o 1 s locally finite

o there exists a constant Cq > 1 such that for each x € M and each
r>0

1(Bay (2)) < Capt(B, ()

First of all we see that a doubling measure is sub-homogeneous

Proposition 4.1.3. Let (X,d, ) be an homogeneous metric space. Then
for each x € X and 0 <r < R it holds

p(Br(@) < Ca( )" u(By ()

where o 1= logy Cy.
The connection between the two notions given above is the following

Lemma 4.1.4. Let (X,d,p) be an homogeneous metric space. Then (X,d)
is doubling

To extend the Vitali’s covering theorem tohomogeneous spaces, we first
need a definition.

Definition 4.1.5. Let (X,d) be a metric space, and let pu be a Radon mea-
sure on X. Let F be a cover of a set A C X made by closed balls. We say
that F cover A in the sense of Vitali if for each open set V C X we can
find a countable disjoint subfamily G C F such that

u@AmanJC):o
Ceg

Then the following result holds

Theorem 4.1.6. Let (X,d, ) be an homogeneous metric space, and let F
be a fine cover of a set A C X made by closed balls. Then F cover A in the
sense of Vitali.
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Thanks to this covering theorem, that extend the Vitali’s covering the-
orem in R", we can prove analogous theorems as those in Section 2.7 for
homogeneous spaces. In particular it hold:

Lemma 4.1.7. Let u,v be two Radon mesure on a metric space (X,d), and
suppose that v is doubling. Let 0 < a < co. Define

D*(u,v) = {z € X | Dypla) =0}, D(u,v) i= X \ D*(11,v)
Then it hold
1. v(D®(u,v)) =0
2. for each A C D(p,v), if v(A) = 0, then u(A) =0
3. if Ac{z e X |Dyulx) <al, then u(A) < av(A)
4. if AC{z € X |Dyp(z) > a}, then u(A) > av(A)

Theorem 4.1.8. Let u,v be Radon measures on X and suppose that v is
doubling. Then D,u exists and it is finite for v-a.e. x € X. Moreover the
function x — Dy,u(x) is v-measurable.

Theorem 4.1.9. Let p,v be Radon measures on X and suppose that v is
doubling. Then

/ Dyp dv < pu(A)
A

for all p-measurable A C X. The equality holds if u < v.

4.2 Differentiation in metric spaces

In this section we want to extend the Besicovitch’s covering theorem to
metric spaces. Before doing this we have to underestand better which are
the properties of R™ that make possible to have the thesis of the Besicovitch
Theorem. The two important properties that are foundamental for the proof
of the Besicovitch’s covering Theorem are the following two.

Lemma 4.2.1. Let a,b € R? such that 0 < |a|,|b| < |a —b|. Then the angle

between a and b are at least 5, i.e.
a b ‘
= 2>
la| o]

Proof. We can suppose that a = (|al,0). Write b = (xp,yp). The condition
la|

b|? < |a—b|? implies that x, < ‘5!, while the condition |a|? < |a—b[? implies

That is that angle between a and b are at least I, as desired. O
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Figure 4.1: An example of balls as in Lemma 4.2.2

Lemma 4.2.2. There exists a number N = N(n) with the following prop-
erty:

letay,...,ap € R® and rq,...,ry > 0 be such that

e a; ¢ Cr(a;) if i #j

k

o N, Crfai) # 0

Then k < N.

Proof. Without loss of generality we can suppose that each a; is not the
origin, and that

k
0e ﬂ Crl.(ai)
=1

This condition implies that |a;| < 7;, while the first condition implies that
ri < |a; — a;| for each ¢ # j. Hence we obtain that |a;| < |a; — a;| for each
1 # j. From the previous lemma we obtain that

a; a;

lail  ag[ 1=

for each i # j. We can derive the existence of the number N(n) as follows:
consider the family of cover of S"~! made by closed balls (C2(y;))ics such
3

that y; € S !; since S"~! is compact from each of such cover (Cr,(yi))ier

"D et N(n) be the minimum of

we can extract a finite cover (C2(yi,));2y -
3

this numbers, and select a covering (C2 (y%));v:(?) Now, if we take points
3

Y1,...yp € S 1 such that |y; —y;| > 1 for each i # j, then we conclude that

n(l)

each of this point must be in a different ball of the covering (C§ (Yi;)) =1 -
Hence k < N(n) as desired. O
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This foundamental results are possible in R™ because we have n linearly
indipendend directions. The generalization of this property was made by
Federer, and leads to the following

Definition 4.2.3. Let (X,d) be a metric space. We say that d is (£,1,(C)-
directionally limited in A C X if £ > 0,0 < n < %, ¢ € N, and the
following property holds:

letae A and BC AN Bg(a)\{a}. If 3223 > 1 every time that b,c € B

and x € X are such that b # ¢, d(a,b) > d(a,c) and
d(av [L‘) = d(av C), d(l‘, b) = d(av b) - d(au C)
then Card(B) < (.

We give an example of a such situation, in order to understand the
terminology of the definition: let (V|| - ||) be a normed linear space of finite
dimension. We prove the the distance d induced by the norm || - || is (&, 7, {)-
directionally limited in the whole space V for each > 0 and for £ = +o0.
Let a,b,c € V, and define

e (s

Then
le — al| llc —all
dw,0) = Jo el = || =g =a) = =g~
b—a c—a
d(a,c) ' d( ) )
1b—all” [lc — al
Hence
d(z,c) (b—a c—a)
d(a,c) 1b—all’ lc—al
Now, since the vectors ”Z:Z| and HEZZH belongs to the unit ball, that is com-

pact because V has finite dimension, we can find a number ¢ for which the
property of the definition above holds.

In this kind of metric spaces, the following two results holds

Theorem 4.2.4 (Federer - Generalization of Besicovitch). Let (X, d)
be a metric space, and suppose that d is (§,n,()-directionally limited in
ACX. Let 0 < p < % and let F := {Cy(a) | r < p} be such that for each
a € A there exists a ball Cr(a) € F. Then there exists Gi,...,Goc41 C F
countable disjoint families such that

20+1

AclJ Uc

i=1 Ceg;



76 Chapter 4. Differentiation of Radon measures in metric spaces

Theorem 4.2.5. Let (X,d) be a metric space and suppose that d is (§,7,()-
directionally limited in A C X. Let F be a fine cover of A made of closed
balls, such that for each a € A there exists a ball C\,(a) € F. Let p be a
Radon measure on X such that u(A) < co. Then F cover A in the sense of
Vitali.

These two theorems allows us to prove, for a metric space (X,d) such
that d is (&, n, {)-directionally limited in a subset A C X, the analougus of
the theorems of Section 2.7. In particular it hold:

Lemma 4.2.6. Let (X,d) be a metric space that is d is (§, 1, ()-directionally
limited in a subset A C X. Let u,v be two Radon mesure on X such that
(A),v(A) < co. Let 0 < o < 00. Define

D*(u,v) :=={z € X |Dyu(z) =00}, D(p,v):=X\D*(uv)
Then it hold
1. v(D*(u,v)) =0
2. for each A C D(u,v), if v(A) =0, then u(A) =0
3. ifAc{ze X |Dulx)<a}l, then u(A) < av(A)
4. if AC{x € X |Dyu(x) > a}, then u(A) > av(A)

Theorem 4.2.7. Let (X, d) be a metric space that is d is (§, 1, )-directionally
limited in a subset A C X. Let u,v be two Radon mesure on X such that

w(A),v(A) < co. Then Dy exists and it is finite for v-a.e. x € X. More-

over the function x — D,u(x) is v-measurable.

Theorem 4.2.8. Let (X, d) be a metric space that is d is (§, 7, C)-directionally
limited in o subset A C X. Let p,v be two Radon mesure on X such that
w(A),v(A) < oco. Then

/ Dypdv < u(A)
A
for all u-measurable A C X. The equality holds if u < v.

Note: in Section 12.4 we will give an example of space that is not
(&,m, ¢)-directionally limited. In particular in this space we can not apply
the results of this section, and if we do not deal with doubling measures, we
can not apply neither the results of the previous section.



Chapter 5

Sets of finite perimeter and BV func-
tions in R”

In this chapter we introduced the functions of bounded variations, and in
particular the sets of finite perimeter. A function f € L'(R") is called of
bounded variation if its distributional derivates are Radon measures on R™.
We called a set £ C R"™ a set of finite perimeter if its characteristic function is
of bounded variation, and we define its perimeter (or the (n—1)-dimensional
area) as the total variation of the distributional gradient of its characteristic
function. Sets of finite perimeter are the principal tool we will use to solve
Bernstein probelm. In Section 5.1 we will prove some basic properties of this
class of functions, while in Section 5.2 we will prove an approximation theo-
rem for BV functions (Theorem 5.2.1) and for their distributional derivates
(Theorem 5.2.3). In Section 5.3 we will apply the direct method to prove
the existence of minimal surfaces (Theorem 5.3.3) and, using the fact that
we can approximate a bounded Caccippoli set whith smooth sets (Theorem
5.3.8), we will also prove the existence of a solution for another class of
minimizing problems (Theorem 5.3.4). Finally in Section 5.4 we will prove
a global and a local isoperimetric inequality (Theorem 5.4.2), that allow us
to estimate the volume of a set using its perimeter.

5.1 Definitions and properties

To motivate the definition of this class we consider a minimal problem, the
prescribed curvature problem, that allows us to find out the characterizing
property of these particular sets. At the end of this chapter we will show
(see Theorem 5.3.4) that the space of the sets of finite perimeter is good to
apply the direct method to solve a weaker version of the prescribed curva-
ture problem. Moreover we will prove (see Theorem 5.3.3) the existence of
minimal surfaces and then, in the following chapters, we will focus on their

7
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properties and regularity. This study will allow us to solve the Bernstein
Problem.

Let E C R" be a set with C! boundary, and denote with o,_1(0F) the
(n — 1)-dimensional area of OE. We consider the problem (P):

min {Un,l(aE) —l—/Efd:U | E € R}

where f € L'(R™), and R is the class of the subsets of R having boundary
of class C*.

We note that we are obly to consider sets in the class R since, for arbitrary
sets, we do not yet known how to define a notion of o,,_1(OF).

But it is note that, for sets in R, the (n — 1)-dimensional measure of OF
coincide with H"~1(OF).

The problem P is called prescibed curvature problem. This terminology
is motivated by the following fact: if I' C R” is a graph of a C? function ¢,
we define the average scalar curvature H of T’

H(z):= - divi(x)
=1

where v(x) is the normal vector to I in x, and, if g is a C! function defined
in a neighborhood of x € T, we denoted by V'g(z) = (619(),...,d.9(z))
the projection of Vg on the hyperplane tangential to I' in z. Since

(=Vo(2),1)

= NP

we easly have
Vé(z) )

H(z,¢(2)) = diV(1+|v¢(z)|2

Now, let E be a solution of the problem (P); we can suppose that f is
continous in a open subset A C R"; we can also suppose that A = D x I,
where D C R"! and I = (a,b), and that A N OF is the graph of a C!
function ¢ : D — I such that inf ¢ > a and sup ¢ < b; finally we suppose
that £ N A is the subgraph of ¢ in A. Under this assumptions, it is easy to
prove that
div(—v¢(z)
1+ |Vo(2)?

in the sense of distributions.

) = £z 0(2)
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The fact is that the class R is not good for searching our minimum, since
in some cases! the minimizing set is not in R. We want to find a “correct”
space in which seraching our minimum, and to do this we reasoning as
follows: let (Ej)x be a minimizing sequence for the problem (P); we suppose?
that Ej converges locally to a set . We want to find some properties of the
set F, in order to build up our space. It is clear that, althought the sets E}
have boundary of class C!, the set E need not to has boundary of class C.
So we are searching for a property weakly than the C'. Let A € R; define

F(A):=0,-1(4) + /A fdx
and let
m := inf {Un,l(aE’) —l—/ fdz | E € R}
E

Then m € (—o0,0]: in fact, if we choose B. := B(0,¢), we obtain that

m < o,-1(0B:) + fdz = nwpe™ 1t + / fdx
Be

€

and letting € — 0™ we have that m < 0. Moreover, since

on—1(0Ey) = F(Ey) — i fdx

we have that
3 lim 0,-1(0E;) =m —/ fdx
k—oo E

Now, since o,_1(0E)) > 0, we have that
Ogm—/fdxg—/fda:
E E

—oo</fdx§m§0
E

and hence
and so m € (—o0,0]. From this fact it follows that, for each € > 0 there
exists k € N such that Vk > k
o1 (9E}) < m — / Fdate< |l +e
E
Hence, using the Gauss-Green formula, we obtain

/ div(p)dz = / (o, vg)dop—1 < 0pn1(0ER) < ||fllpr +¢€

!For example see [Amb97, page 6]
2We will see that this assumption is not restrictive, and that F will be our minimum
in a weak sense.
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for each ¢ € CH(R™; R"), where v}, denote the outer normal to OEy. Letting
k — oo we obtain

[ divte)de < 7]
E
for each ¢ € CL(R™;R™).

This property suggest the following definition

Definition 5.1.1. Let U C R" be an open set; we say that a measurable set
E € R™ has finite perimeter in U if

Sup{/Ediv(cp) dz | p € C'Cl(U;]R”), lp] < 1} < 00

We call the number above the perimeter of E in U, and denote it with
P(E,U). If a set E has finite perimeter in each open bounded set, we say
that E is a Caccioppoli set.

The above terminology is motivated by the following fact:
if E ¢ R" with xg € L'(R"), and with boundary of class C!, using the
Gauss-Green formula we have that

/E div(p)dz = — /a ey dony

where v is the outer normal to OF. Passing to the supremum we obtain
that the (n — 1)-dimensional measure of OF coincide with what we call the
perimeter of E. Since our definition required only the measurability of F
and the finiteness of the supremum above, we have in fact extended the
definition of (n — 1)-dimensional measure of OF to a larger class of sets.

Now we want to extend the definition above to all L! functions, and
not only to characteristic functions. To do this we observe that, if ¢ €
CHU;R"™), we have

/E div(ep) dz = /U adiv(e) do

Hence the following definition is a natural generalization of Definition 5.1.1

Definition 5.1.2. Let U C R" be an open set; we say that f € L'(R") has
bounded variation in U if

sup{ [ o)z | € CLURY. Jol <1} < o

We denote by BV (U) the class of functions of bounded variation in U.
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Remark 5.1.3. It is clear that E has finite perimeter inU < xg € BV(U).
It is also clear that BV (U) is a vector space.

From the definition we easly have the following important

Theorem 5.1.4 (Semicontinuity). Let U C R™ be an open set, and
(fr)k € BV(U) such that fy — f in L} (U). Then

loc

IDFI(U) < liminf [Df|(U)
—00
If supy, |D fi|(U) < o0, then f € BV (U).
Proof. Let ¢ € CH(U;R"), |p| < 1; then
/ fdiv(p)dz = lim / frdiv(p) dz < liminf |D fi|(U)
U k—oo Jir k—o0
Now, taking the supremum over all such ¢ we obtain the desired result. [J

Remark 5.1.5. We note that the theorem above does NOT says that the
limit function f belongs to BV (U). For example if we take the function

u(z) := xsin (é) rzeU:=(0,m)

and the functions

0 e (o,j%r
() = e .
X S11 <E> , L & L?,W

We have that the functionsuj € BV (U), u; — w in L}, (U), but uw ¢ BV (U),
since (see Remark 5.1.10 for the first equality)

|Du|(U) = /07r sin (é) - %COS (%)’dm: 00

If we want to conclude, from the semicontinuity, that the function w is in
BV (U) we need to required that the functions u; have equibounded variation.

Remark 5.1.6. We show an example in which we have the strict inequality

for the semicontinuity: let v € U := (0,7) and define fj(x) = %sin(jx)

and set f =0. Then (f;); C CY(U) and f; — f in LY(U). Moreover (see
Remark 5.1.10 for the first equality)

™ T w/j
| ansi= [ leostiode = [ cos(jo) e =2
0 0 0

Hence (f;); € BV(U) and
0= |DSI(W) < limnf | D) =2
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We have called the functions in Definition 5.1.2 functions of bounded
variation because of the following fact:

Theorem 5.1.7 (Structure theorem for BV functions). Let f € BV (U);
then there ezists a vector valued Radon measure [D f] with values in R™ such
that

| raivieyar == [ o-apn =~ [ o.oraips

for all o € CL{U;R™), where |Df| is the variation of the measure [Df], and
hence o is a | D f|-measurable function with |o(z)| =1 |Df|-a.e..

Proof. We define the linear functional L : C1(U;R") — R as

L(y) := —/deiv(<p) dz
Since f € BV (U) we have that
C = sup{L(cp) | p € C(}(U;R"), lp] < 1} < 00

and hence
L(p) < |l¢llL=C (5.1)

Since C}(U;R™) is dense in C,(U; R"), we can uniquely extend the functional
L to a functional
L:C.(U;R") - R

in this way: let ¢ € C.(U;R"™); since ¢ has compact support in U, thanks
to the smooth approximation made by the convolution we can find (pg)x C
CH(U;R™) such that ¢y — ¢ uniformly on U. By 5.1 we see that (L(¢g))x
is a Cauchy sequence in R, and then we can define

L(p) := lim L(o)

k—o00

Using again (5.1) we note that this definition is indipendent of the choice
of the sequence (¢r)r converging to ¢. Then, we have obtained a linear
funtional L : C.(U;R"™) — R such that

sup { L(p) | ¢ € CURY), o] <1} < o0

So we can apply the Riesz Representation Theorem (Theorem 2.8.5) to ob-
tain the desired result. O

Notation: if E has finite perimeter in U, then we write |0E| instead
of |Dxgl, and vg instead of —o.
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Remark 5.1.8. We reacall that, in the proof of the Riesz Representation
Theorem, we defined the variation |Df| of the measure [Df] as

IDAIU) =sup{ L(g) | ¢ € CLUsR™), | <1} < o0

In particular it holds
P(E,U) = |0E|(U)

Remark 5.1.9. Then the terminology bounded variation is referred to the
fact that if f € BV(U), then the measure related to f by the Riesz Repre-
sentation Theorem has bounded variation. Moreover, by the identity

| raivieyas == [ o-aipy

we understand that the functions of bounded variation are the functions
whose derivates, in the sense of distributions, are Radon measures. More
precisely: let f € BV (U); if we define, fori=1,...,n

it = o'|Df|
by the Lebesgue Decomposition Theorem (Theorem 2.7.5) we can write
1= e + g

where pt, < L™ and pi L L". Hence, by the Radon-Nicodym Theorem
(Theorem 2.5.12)

Hoe = fil"
for some f; € LY(U). Then, setting
Df:=(f1,---: fa), [Df]s = (g, - - pu5)

we can write

[Df] =Df L+ [Dfls
Thus f € BV (U) belongs to WYP(U) if and only if

feLPU), [Df]ls=0, Dfe LP(U;R")

The main difference between Sobolev space and BV space is that in this last
one we have a singular part of the Radon measure [Df].
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Remark 5.1.10. Now we present some important facts about BV functions
and sets of finite perimeter, in order to understand them better.

Fact 1: WYY (U) € BV(U): in fact, if f € WYY(U), then f € LY (U),
and Df € LY(U;R"); hence

| raivioyar == [ to.05)da

Hence, passing to the supremum,

| apsi= [ psias

and so Dy
D 0
o) P
0 Df=0

In particular in f € CY(U) and Df € L*(U;R"), then f € BV (U).

Fact 2: The opposite inclusion does not hold. For example, let

U:=(-1,1?%  V:=(0,1) x (-1,1)

Then V has finite perimeter in U, because, if g € CH(U;R"),|g| < 1, we

have that 5 5
. g1 g2
d dx = —7— + 2% ) dxid
/V iv(g) dx /V<(9x1 + 8x2> z1dw2

Since g has compact support in U, we have that

1 1
0
/ d.%‘l / ﬂ dI‘Q =0
0 —1 0z
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and hence, since |g| <1,

1 L ag, 1
/ div(g) dz :/ dxo a—dxl = / —g1(0,z9) dzy < 2
1%

-1 0o 9I2 -1

But xg € WYY (U): in fact, if for absurd xg € WHY(U), then there erists

f € LY(U) such that
0
/XEagdm:—/fgdx
U L1 U

for all g € CX(U). Hence

1 L 9g 1
/fgdx:/ dxg/ —dz; = —/ 9(0, z2) dzo (5.2)
U -1 o Or1 -1

11z @y = sup { /U fgdz| g€ CLURY), gy, ., =0} =0

Then

Then f =0, and hence, by (5.2) we obtain that
1

/ g(O,xQ) de =0
-1

for each g € CL(U). Absurd.

The fact is that xg “jump”on a set of Lebesgue measure 0, and hence
with Sobolev functions, whose derivates are absolutely continous with respect
to L™ we cannot measure this “jump”. Hence we need the singular part of
the Radon measure |OE| to measure it.

Fact 3: if E C R" has C' boundary, and H" Y (ENU) < oo, we have
already seen that E has finite perimeter in U, and

|OE|(U) = H" Y (U N JE)

and also
v=vgp H"'—ae ondENU

where v is the outer normal to OF.
But if E has boudary not of class C*, then |0E|(U) and H" (U N OF)

can diagree violently. For example, let (g;); be an enumeration of Q?, Bj =
By-i(qj), and define

k 00
E.:=JB;, E:=JB
=1 j=1
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Since OE}, is piecewise smooth we have that

NWn—1

k
ny _ qn—1 n—1 . n—:
OER") =1 0By < 1 (| 0B)) < omelss

j=1
Since Ey, — E, from the semicontinuity (see Theorem 5.1.4), we have that
|0F| < liminf |0E| < 0o
k—o0
But E =R?, and
= 4
LYE) <Y L*B))=-
()£ 3£ = 5

Hence L?(OE) = oo; since L™ = H™ (see Theorem 3.1.6) we obtain that
H"L(OE) = o0.

We note that this example also shows that H" ! is not lower-semicontinous

with respect the Llloc convergence. This is the reason why we cannot use the
measure H" "1 to solve problem (P) with the direct method.

Fact 4: if U C Uy, then |OE|(U) < |0E|(U1), with equality holding if
Eel.

Fact 5: |0(E1 U E»)|(U) < [0E1|(U) + |0E2|(U) , with equality holding
when d(Ey, Eg) > 0.

Fact 6: if L"(E) = 0, then |0E|(R™) =0 ; in particular if |E1AEs| = 0,
then |OE1|(R™) = |0Es|(R™).

Fact 7: it is important to note that supp|OE| C OF: in fact, recalling
the definition of |OF| and of the support of a measure, we have that

supp|0E| = R™\ U {A open | ¢ € CH(A;R") = /A<g0, vg)d|OE| = 0}

Hence if x ¢ OF, then there exists r > 0 such that B,(x) C R™\ E; we have
two cases:

e if B.(x) CR"\ E, then XE|p, (,, = 0, and hence

/ (p,vE)d|OE| = / xediv(p)dz =0
By (x) By ()
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e if B.(x) C E, then XE|p, () = 1, and hence for every € CH(B,(z);R")
we have that

| tewmdos= [ dive)de= [ (pvpwhdons =0
By (x) B, (x) 0B, (x)

Hence |OF| is a measure concentrated on OE, and then it holds
/ div(p)de = / - vpd|OE|
E oF

a kind of Gauss-Green formula for sets of finite perimeter. We will see that
this formula can be improved.

Moreover Caccioppoli sets are characterized by the property above: in
fact if E C R™ is a Caccippoli set, then

/Ediv(go)dx:/aEgo~d[8E]

for each o € CHU;R"™) and for each U open bounded subset of R™. The
converse s also true: let & be a set such that there exists a vector valued
Radon measure w with locally finite total variation such that for each open

bounded subset U of R™ and for each o € CL(U;R™) it holds

/Ediv(go)dx:/ngo- dw

/Ediv(cp)dx:/ncp- dw < |w|(U) < 00

Hence, if |E| <1

Thus [0E|(U) < |w|(U)oo, and hence E is a Caccioppoli set. Finally, tanks
to the first part of this point, we have that

/div(cp)dx:/ - dw
E oOF

BV as a Banach space: we want to give to BV (U) a Banach space
structure. So we define, for f € BV (U)

I lBv @) = lfllLr @) + [DFIU)

It is clear that ||-|| gy () is a norm. Moreover (BV (U), |||/ gy () is a Banach
space: let (fx)r be a Cauchy sequence; then, for every ¢ > 0 we can find
n =7n(e) € N such that, if n,m > 7 then

an - meLl(U) + |D(fn - fm)|(U) <é
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Hence (fy)x is a Cauchy sequence in L!(U), and then we can find f € L' (U)
such that f, — f in LY(U). Since (fy)r is a Cauchy sequence in BV (U),
|0f%|(U) is bounded, and hence, by Theorem 5.1.4, f € BV (U). Now we
prove that f,, — f in BV (U): since we already have the L' convergence, we
only need to prove that

[D(fn = PI(U) =0
To do this, we take € > 0, and let n as above; then
|D(fn = fm)|(U) <&

for each n.m >m. Since f, — fm — fn — f in LY(U), again from Theorem
5.1.4 we have that

D(fa = HIW) < liminf [D(f — f)|(U) < £

And so, by the arbitrarity of € we can conclude.

5.2 Approximation

Now we present an important result of approximation of BV functions due
to Anzellotti e Giaquinta; this result allows us to transfer some properties
of C* functions to BV functions.

Theorem 5.2.1 (Anzellotti-Giaquinta). Let f € BV (U). Then there
exists (fi)r C BV (U)NC*®(U) such that

fe = f in LYU)

[Dfil(U) = [DFIU)

Note: we do not assert that |D(fx — f)|(U) — 0, since in this case,
(fr)r would be a Cauchy sequence in W1(U), and hence we would have
that f € WHL(U). But we have seen that BV (U) ¢ WHL(U). For this
reason most of the time we do not see BV (U) as a Banach space, because
CL(U) is not dense in (BV(U), || - | pv)-

Proof. Let € > 0; then, since |Df|(U) < oo, there exists an integer m such
that, if we define

Uy = {erld(x,aU)> m:—k}
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we have

IDFI(UN\UL) <€
Now, set Uy := ), and define for each k > 1
Vk = Uk+1 \Uk_1

Let (£k)r € N be a partition of unit subordinate to the covering (V%), that
is

GECTWVe), 0,<&<1, > &=1
k=1

Note that every x € U belongs at most to two sets Vi, and hence the
summation above is finite for every x € U. Let n be a positive mollifier;
then for each k& we can select £, > 0 such that

supp(ne,, * (f&)) C Vi

[ = (6 = el <

13
/U e, * (7D&) — FDE|dw <
We define

fa = Znak * (fgk)
k=1

We have that f. € C°°(U) since in every point = € U there is a neighborhood
of  where it is the sum of two C°° functions. We must prove that f., €
BV(U) and that the the variations of the functions fj in U converge to the
variation of the function f in U. Since f. — f in L} .(U), we have from
Theorem 5.1.4 that

|IDf|(U) < liminf |Df., |(U)
e—0
Then we need to prove that

lir?j(l)lp |Dfe, |(U) < |DfI(U)
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To do this, we take ¢ € C}(U;R") with |¢| < 1; then

/UfediV(QO) de = ;/Unsk « (f&)div(ep) do
N z; /U ( /U M (7 = y) f (Y)&k(y)div(p)(2) dy) dz (Fubini)
= 3 [ o) W)
= Z/ div(ne, * ©)(y)&k(y) f(y) dy (Leibnitz rule)
i=17U
= ;/Uf(y)div[fk(nsk x )] dy — ;/Uf(y)@(y)msk « (fVE)) dy
= ;/Uf(y)div[&c(nekw)] dy — ;/Uf(y)@(y),nak « (fVE&) — FVE) dy

where in the last step we have take into account that » 7, V& = 0 since
Y roy & = 1. If we denote by (I) the first integral, and by (/1) the second
one, we have that

e for (I): since & (0, * ¢) € CH(U;R™) and [&x(n:, * »)| < 1 we have
that

> [ ity
— /deiv[fl(nek * )] dy + ; /U FAiv[er(ne, * )] dy

< |DFIU)+ > IDfI(VR) < [DFI(U) + 2| DF|(U — Th)
k=2
|IDfI(U) + 2¢

IN

where we have take into account that the intersection of more than
two sets Vi is empty.

e for (I1): since |p| < 1 we obtain that

an<y / ey (fD&) — D& de < e
k=1"U
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Hence
/ fedivpdz < |Df|(U) + 3¢
U

uniformly in ¢. Then, passing to the limit in ¢, and for ¢ — 0 we obtain
that
limsup [Df:|(U) < [Df|(U)
e—0

So we have obtained the desired result. O

As a consequence of the theorem above, we obtain two facts: the first one
is important in the development of the trace of a BV function (see Chapter
7), while the second one state that the functions given by the theorem above
allow also to approximate weakly the distributional derivates.

Corollary 5.2.2. Let f, f. as in the theorem above. Then for each € > 0,
for each N > 0 and for each xo € OU we have

lim / fe—fldz=0
p—0 pN Bp(xo)ﬂU’ =/l

Proof. Considering the construction made in the Theorem of Anzellotti-

Giaquinta, if we take p < #ﬂ we have that B,(z9) N"Uy = 0. Now we want

to see how many V}’s intersect with B, (zo):

1
VkCVk+1 = {x€U|d(:U,8U) > m}

and so

ey s R Rl

Then, if we take

ko := {H—m—l

we have that B,(x¢) N Vi, = 0. Then

k=ko+1

> ¥

/Bp(aco)mU |fe = fldz < /Bp(xo) Z e, * (f&) — f&|dz

IN

*For r € R we define
[r] =max{n €Z|n<r}
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and hence, recalling the definition of kg,

=V

1/ 1 & ————, ¢
— fe—fldr € —— <Thotm+ DN
PN I, oy pN 2ko 2ko
N 2 V—0
= 2" X0

21/
O

Theorem 5.2.3 (Weak approximation of derivates). Let (fi)r C C*°(U)N
BV(U) be functions satisfing the thesis of the Theorem 5.2.1. Then, for each
¢ € CHR™; R"™) we have that

lim Ucp- d[D fx] Z/UQD -d[Df]

k—oo

Proof. Let ¢ € C}(R™;R™); we note that if supp(y) C U or suppy C R\ U,
then the result follows directly from the previous theorem. Fix € > 0, and
let Uy € U as in the previous theorem; choose a cut-off function ¢ € C*(U)

such that
(=1on U, supp(¢) cU
0<¢<1

Then
/ (0. Df)dr = / (CoDfi) da + / (1= C)p, Dfi) da
U U U
- / div(Co) fi de + / (1 - Op, Dfi) de
U U

But
—/diV(Ccp)fkdx = /C@'d[Df]
U U
- /gp-d[Df]—F/(l—C)@'d[Df]
U U

< / o dIDf] + [l DA\ U) (5.3)
U

IA

/ e-d[Df] +¢
U
where in (5.3) we have take into account that supp(1—¢) C U\ U and that

(1= Qoo < 1.
Moreover, since |D fi|(U) — |Df|(U), for k big enought, we have that

/U (1= Q. Dfi) d < [ollool DIIT \ T1) < [t
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So we have obtained that
| [ e-dpn) = [ o-anp)] <2<l
U U
Letting ¢ — 0 we obtain the desired result. O

Now we present some results of the same spirit of Theorem 5.1.4.

Theorem 5.2.4. Let f,(f;); C BV(U) such that fj — f in L}, (U) and
lim |Df5|(U) = [Df|(U)
J]—00

Then for every A € U

|IDF|(ANU) > limsup |Df;|(ANT)

J—00

In particular, if |Df|(0ANU) = 0 we have

IDSI(4) = lim [Df;|(4)

Proof. Define B := U \ A; since A and B are an open sets, from the semi-
continuity (see Theorem 5.1.4) it follows

DJI(4) < liminf [Df;|(A)
j—o0

Df|(B) < liminf | Df;|(B)
Jj—o0

From the other inequality

IDFI(ANU) +|DfI(B) = IDFI(U) = lim [Df;|(U) = limsup |Df;|(U)

J—00

v

limsup |Df;|(ANU) + liminf |D f;|(B)
: j—00

J]—00

limsup |Dfj|(ANU) +|Df|(B)

Jj—00

v

Since |Df|(B) < oo we have the first assertion. The second one follows easly
from the first one. O

Remark 5.2.5. In particular, if f € BV (Br) we have for almost every
p < R that |Df|(0B,) = 0; hence for almost every p < R it holds

lim |Df;|(B,) = |DJ|(B,)
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Proposition 5.2.6. Let f € BV(U) and A € U such that |D f|(0A) = 0.
Then, if fe:= [ *ne,
|Df[(A) = lim | D f[(A)
e—0

Proof. Since f. — f in L}(U) we have that
IDFI(A) < liminf | D£.|(A)
e—0

For the opposite inequality take ¢ € C}(U;R"™) with || < 1; then we have
the following properties

/U fodiv(i) dar = /U F(div(p)). dv = /U fdiv(p.) d

lpl < 1= Jpe| <1
supp(p) C A = supp(p:) C A. := {z € R" | d(z, A) < ¢}
Hence

| #div(e)do < |Ds(A)
U
Taking the supremum over all ¢ we obtain

D (A) < [DfI(Ae)
Hence

lirgl_f(l)lp\Dfsl(A) < lim |Df|(A:) = [Df|(A)

where in the last step we have used the definition of the measure | D f|. Now,
since |Df|(0A) = 0 we obtain the desired result. O

Remark 5.2.7. If we take f € BV (R"™) and A = R"™ we obtain that
[DfI(R™) = lim | D f[(A)
e—0
In particular, if f = xE
P(E) = lim [D(xg):|(R")
e—0

This s the original definition of perimeter of a set given by De Giorgi in
[DG5Y]. Actually De Giorgi does not use our mollifiers, but the functions

n _ |yl?

9e(y) := (me)"2e” "<

This functions possess many of the properties of our mollifiers, and in par-
ticular it can be shown that

EH/\ngld:L’
U
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1s a decreasing function. Hence De Giorgi defined the perimeter of a set E
as

P(E) := lim |D(xE)| dz

e—0 Rn

This definition coincides with our one.

5.3 Existence of minimal surfaces

In this section we will prove that in the space of functions of bounded vari-
ation we can apply the direct method to solve two minimal problems: this
is possible because the space BV is relatively compact in L! (Theorems
5.3.2 and 5.3.5), while we have already prove the semicontinuity (Theorem
5.1.4). Having proved the existence theorems, the problem will be to prove
the regularity of this minimal sets (see Chapter 9).

Definition 5.3.1. We say that a Caccippoli set E is a minimal set in U,
or that E has least area in U, where U is an open subset of R™, if for each
A €U it holds

|OE|(A) < o0

and

|OF|(A) = inf{ |0F|(A) | F Caccioppoli set ,EAF € A}

Next result, together with Theorem 5.1.4, we will give us the existence
of minimal surfaces.

Theorem 5.3.2 (Compactness). Let U C R" be an open bounded set with
Lipschitz boundary. Let (fx)r C BV (U) such that

Sl;p I fell By () < o0

Then there exists a subsequence (fi,;); and a function f € BV (U) such that
fi. = f inBV(U)

Proof. For each k, let g, € C*°(U) such that

/U\fk — gildz < % (5.4)

/|ng\dx</d|ka|+1 (5.5)
U U

Such a functions gy exist by the Theorem 5.2.1. From the condition (5.5) we
have that (gx)x is bounded in W!(U). Hence, by the Rellich-Kondrachov
Theorem there exists (gx,); and f € L'(U) such that

gr; — [ in LYU)
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Then, by (5.4) it follows that fi, — f in L'(U), and hence, by The-
orem 5.1.4, since (fx)r has equibounded total variation, we obtain that
feBV(U). O

Now we can easly prove the existence of minimal surfaces.

Theorem 5.3.3 (Existence of minimal surfaces). Let U C R" be an
open bounded set, and let L C R™ be a Caccioppoli set in R™. Then there
exists E C R™ coinciding with L outside U, and such that

|0E|(R™) < |0F|(R")
for each set F coinciding with L outside U.
Proof. Since U is bounded, there exists R > 0 such that U C Bg; then
|0E| = |0E|(Bg) + |0E|(R™ \ Bg)

Since F' = L outside Bg, we only need to prove that there exists £ C Bp
coinciding with L outside U, such that

|0E|(Br) < |0F|(Br)
for each F' € Bp coinciding with L outside U.
Let (Eg)r be a minimizing sequence; since 0 < |0F|(Br), we have that
(|0Ek|(Bgr))y is uniformly bounded; moreover, since Br is bounded, also
S By, [XE,|dz is uniformly bounded. Then (xg, )i is a bounded sequence

in BV (BRg); from the compactness theorem (Theorem 5.3.2) there exists a
subsequence, still denoted by (xg, )k, and a function f € L'(Bg), such that

xg, — f in LY(Bg)

Since xpg,(x) — f(z) for L"-a.e. x € Bpg, we can suppose that f is the
characteristic function of a set F, coinciding with L outside U. Finally,
from the semicontinuity of the perimeter (see Theorem 5.1.4), we have that

|0B|(Bg) < limnf |9E, | (Br)
j—)OO

and hence E provides the required minimum. O

Note: in some sense, the set L determines the boundary values for F,
that is, £ minimize the area among all surfaces with boundary 0L N oU.
For example, in R? let

Q:=DBy, L:={(z,y)cR*|2*+(y—1)><4}

Then E = {(3:, y)€L|y> %}, as we can see in the figure below.
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Now we want to prove that with the direct method in the BV space, we
can solve also a weaker form of problem (P). So consider the problem (P)*:

min { P(E,R™) + /E flx)dz| ECR"di Borel}

where f € L'(R"). We want to prove the following result

Theorem 5.3.4. Problem (P)* has a solution. Moreover we have that
inf{an,l(E) +/ fla)dz | E € R} -
E

min { P(E,R") 4+ /E f(x)dx | ECR" di Borel}

The second part of the above theorem is important because it states that
the weak formulation of the problem (P) does not decrease the value of the
minimum. And this is not obvious.

To prove the theorem above we need to prove a more general compactness
theorem than Theorem 5.3.2, and a theorem that allows us to approximate
Caccioppoli sets with C'° sets.

We start by proving the compactness theorem, that is of the same spirit
of Theorem 5.3.2, but does not required condition on the boundary.

Proposition 5.3.5. Let F C L} (U) be a family of functions such that

loc

sup || fllpv(a) < o0
fer

for each A €@ U. Then F is compact with respect to the LlloC convergence.

Proof. Since the convergence is metrizable, and the family F is clearly
closed, we only need to show that every sequence (fj); C F has a con-
vergence subsequence. It is also sufficied to prove that if K C U compact
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then (f;); has a convergence subsequence, because, in this case, we can fill
up U with an increasing sequence of compact sets, and hence use a diagonal
process to obtain the desired result.

So let K be a compact subset of U, and let § := d(K,0U) > 0; fix
a convolution kernel 7. For each ¢ € (0,p) let ff := f; x n.. Then, for
each fixed e, the functions f]‘-E satisfied the hypothesis of the Ascoli-Arzela
Theorem. In fact the functions f5 are continous and

50 -F@I = | [ 05e-na] <5l
Ml syl = < Ll — o]

IN

So the family ( f;)] is equi-Lipschitz, and hence the functions f; are equi-

uniformly continous. Hence we can find, with a diagonal process, a subse-

quence (j)x such that the sequence (f; 1) converges uniformly in K for
p

each p > 1, and hence converge in L!(K), since K is compact. Hence

1im8up/ | fhy = fuyldz < limsup[/ |fhk—fhk,1|d$+/ \fh = Ip,, 2l d
K K P K v

k,k'—o00 k,k'—o00

+/K|fhk’1 _fhk,7l|dx}
2C

2C
+hmsup/ f — f ' de = —
P kK ’h’“ el P

where C := supy, |Dfp,|(K:) < oo, because K. € U. For step (x) we have
used the results of the following lemma.

Since p is arbitrary we can conclude that (fy, ), is a Cauchy sequence in
L'(K), and hence there exists a subsequence that converges in L'(K).

So we have obtained the desired result. O

Lemma 5.3.6. Let f € BV, (U), K C U be a compact set, and ¢ <
d(K,0U). Then

/Klf—feldw<6\Df|({w€R"Id(w,K)<6})

where fo == f *n;.

Proof. We can suppose f € C1(K.), where K. := {x € R" | d(z,K) < ¢ }.
Let y € R™ such that |y| < 1. Starting from the identity

1
flotey) - flo)=¢ / gimety) at
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we obtain
/K|f(:c+€y)—f(x)|da:§€/K d:c/ol‘gi(x—i-ety)’dt
_ 6/1 dt/K’ach(aﬁLaty) dxzs/ol dt/thy gi( )| a
< / dt/ —5/K gi(m)‘dx
< eIDfIK E

Hence, multipling by n(y) and integrating over R", we obtain
[ do [Vt en) - @lnto) dy < <D
K n
But
@ = £@] = | [ e+ - rands] =] [ faten) =@
[ 15+ 20 = @l ay

IN

and hence the conclusion. To prove the result for general f € BVj,.(U) the
result follows by taking an approximating sequence (f;); C C*(U)NBV (U)
such as in Theorem 5.2.1. 0

Now we want to prove that we can approximate a Caccippoli set with
C™ sets. To do this we need the following

Theorem 5.3.7 (Coarea formula for BV functions). Let f € L'(U)
and defined fort € R

Fo={zecU]| f(x) >t}

Then
+oo
DFI(U) = / OR|(U) dt

—00

In particular we obtain that if f € BV (U) F; has finite perimeter in U for
almost every t.

Proof. Let ¢ € CH(U;R™), |p| < 1; suppose f > 0; then

flx) = /OOO XrF, dt
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Hence

Lﬁm@mx:témémmmmmwm:Awaémwmm
)

_ / at [ div(e)dz < / OF|(U) dt
0 Fy 0

If f <0 we obtain that
0
fo == [ - xn@)

and hence, with the same computation as above an recalling that [;; div(p) udz =
0, we have

0
/mmmmg/mmwmt
U 00

Hence for arbitrary f we have
+oo
[ savioyas [ pRi@)w
U —0o0
Taking the supremum over all ¢ we obtain
+o00
A < [ oRI0)

—00

Hence we obtain that if the right-hand side is finite, then f € BV (U).

For the other inequality we can suppose f € BV (U), otherwise it is triv-
ial. We proceed by steps.

Step 1: first we suppose that the formula holds for f € BV (U)NC*>(U);
let(fx)r € BV(U) N C*(U) are the appoximation functions of f given by
the Anzellotti-Giaquianta Theorem. Hence, since fy — f in L'(U) and

+oo
/ |f—fk|d$=/ dt/ IXF,, — XF,|dz
U U —o0

where Fi; := {x € U | fr(x) < t}, we obtain that there exists a subsequence,
denoted again with (f)r, such that

XF, — XF in LI(U)
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for almost all t. Hence
+oo
DAW) = Jim IDAIE) = Jim [ joR(©)
k—o0 k—o0 — oo

+oo “+o00
— liminf / O F (U dt > / lim nf |9y |(U)
—00

k—oo  J_oo — 0

v

+oo
/ OF|(U) dt

—00

and hence the desired result.

Step 2: now, if f € BV (U)NC*®(U), we can find a sequence (f;); of
piecewise linear functions such that f; — f a.e. and |Df;|(U) — |Df|(U); if
we suppose that the formula holds for this class of funcions, with the same
calculation as above we prove the result for f € BV(U) N C*(U).

Step 3: finally we prove the result for f piecewise linear function. Write

o0
U=JUiuN
i=0
such that U; are disjoint open sets, f(z) = (¢, z) + b; if * € U;, where
c; € R™ and b; € R, and H" }(N) < oo. Then it holds

+oo
/ |OF|(U;) dt = / |IDf|dx = ;. L™(U;)
—0o0 Ui

In fact, if ¢; = 0 it is clear; if ¢; # 0 let v; := ﬁ, hence, since F; has
piecewise smooth boundary, we have

+o0 +o0
/ OF,|(U;) dt :/ WLz € Uy | (2, ¢5) + b = 1) dt

—00 —0o0

+oo
= / H" Y {2z €Uy | (z,¢;) = t})dt

—00

—+o00
= o ’H"fl({x ceU; | (v,x) =t})dt
= el L™(Us)

where in the last step we have used the Fubini’s Theorem. Now, since
HHN) =< o0

H I NN{zeU]| f(z)=1t}) =0
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for almost all ¢, and hence
OF|(U) =H" Y (NNIF,) =0

So

400 o +oo
/ OF,|(U) dt = / OF\(Us) dt < |DFI()
() i—1 7/~

O]

Now we can use this result to approximate Caccippoli sets with C* sets.
We will use a lemma that we will prove after.

Theorem 5.3.8. Let E be a bounded Caccioppoli sets in R™. Then there
ezists a sequence (Ej); of smooth sets such that

Ej-}E

and

|OE;|(R") — [OE|(R")

Proof. From the Anzellotti-Giaquinta Theorem we known that yp can be
approximated by a sequence of functions f. := xg * .. From the Coarea
formula we have that

1
IDEIE) = [ 10Ba|®") i (5.6)
0
where we have take into account that 0 < f. < 1. But we known that
lim | Df2|(R") = | Df|(R") (5.7

From the next Lemma we known that if ¢; — 0 for j — oo, then for each
O0<t<l1
XE.; = XE a.e. in R"

Hence for the s.c.i. we obtain that

OE|(R") < liminf |9E. | (R") (5.8)
.]*)OO

Hence
1
pri@) D tim DI Xt [ jop @) ar
Jj—o0 Jj— Jo

1 (5.3)
> / liminf |0E.|(R") dt > |9E|(R")
0

j—o0
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Hence for almost every ¢ € (0,1) we have that

OB|(R") = liminf |9E,|(R")

Now, thanks to the Sard’s Lemma?, if we fix j we can suppose that for
almost every t € (0,1), OEj; is smooth. So there exists ¢t € (0, 1) such that,
if we set Fj := FE.,;, OF; is smooth for each j. For such a ¢ it hold

e OF}; smooth
® Fj — F
o |OE|(R™) = liminf;_o |OFj|(R")

Finally we can select a subsequence such that [0E|(R") = lim;_,« [0F};|(R"),
and hence obtained the desired result. O

Lemma 5.3.9. Let 0 <t <1, and suppose €; — 0 for j — oo, define
E ¢ :={x e R" | f.,(x) > t}

where fzj :=nej * xg. Then

1
— dr < ——m—— - d
/R" ’XEsjt XE‘ x_min{t,l—t} /Rn‘fej XE’ €z
Proof. By definition we have that
foy—xp>t B, \E

XE—fe; 21—t in B\ E.y

Hence
[t =xelas = [ i —xelass [ If, - el
Rn Ee,\E E\Ej;
> LBy \ E) + (1 — DLM(E\ Esy)
> min{z,1 —t}/ ’XEEjt — Xxe|dz
Rn

Now we are in position to prove Theorem 5.3.4:

‘Theorem (Sard): Let f : R* — R be a smooth function, and let C = {z €
R™ | Vf(x) = 0}. Then £'(C) = 0.
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Proof. (of Theorem 5.3.4) The function
E — |0E|(R™) +/ f(z)dx
E

is lower semi-continous with respect to the convergence L}, (R™) because the
first term is lower semi-continous, while the second one is continous with
respect to the convergence L], (R™). The compactness follows by Theorem
5.3.5; in fact

OBI®) + [ fa)de < max{1, Lo} 0PI + [ xeda]

n

Hence if (E}); is a minimizing sequence of Borel sets for problem (P)* we

have that
sup {lan](R”) —1—/ XE; dx} < 00
R’ﬂ

Hence if we apply Theorem 5.3.5 to the family (xg,); we obtain that this
family is compact with respect the LlloC convergence in R”.
So we can apply the direct method of the calculus of variation obtaining
that there exists a minimum for the problem (P)*.

For the equality of the two infima we clearly have that inf(P) > min(P)*;
for the opposite inequality, from the above theorem we can approximate ev-
ery ammisible set for the problem (P)* with sets ammissible for the problem

(P). O

Now we have to prove the regularity of the minimal sets, but first we
have to understand better the structure of the sets of finite perimeter. We
will do this in the following chapters.

5.4 Isoperimetric Inequalities

We conclude this chapter by presenting some inequalities relating the £"
measure of a set and its perimeter.

Theorem 5.4.1 (Sobolev’s and Poincaré’s inequalities for BV'). The
following two facts hold:

1. There exists a constant C1 = C1(n) such that
11l 2 gy < C1| DFI(R™)

for all f € BV(R").
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2. There ezists a constant Co = Ca(n) such that

1f = (Dl (B,)) < ColDII(Br(2))

for all f € BV(R"™), where (f)z, := ]{B ( )fdy.

Proof. (1) From the approximation Theorem 5.2.1 there exists (fx)r C
C*>(R™) N BV(R™) such that

1Dl = [ 1DA1as = [ apg = DsiE)

and
fe = f in LYR")

and hence, possibly passing to a subsequence, fr — f poinwise a.e.. From
the Gagliardo-Nirenberg-Sobolev inequality we know that there exists a con-
stant C1; = C1(n) such that

1fell L1e mny < C1lID fill L1 ey
for each k. Hence

lim inf || fx[| 1+ (gny < Crliminf ||D fy[|gn = C1[Df|(R"™)
k—o0 k—o0

Since
* n_ n_
il = [fulm T = [f]7T L7 —ae.

by the Fatou’s Lemma we have

1l < liminf || fill e < CaIDSI(R?)

(2) Again from Theorem 5.2.1 there exists (fi)r C C°°(B,(z))NBV (B, (x))
such that
fe = f in LY B,(2))

/ Dfildz — |Df|(By(x)
B ()

From the Poincaré inequality on balls, there exists Cy = C(n) such that

1k = (fi)arll e (B, @) < Cz/ D fy|dz

By ()

for each k. Hence

liminf |[fx = (fi)arllLre (5, () < C2lDfI(Br(2))
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Since, possibly passing to a subsequence, fr — f pointwise a.e., from the
Fatou’s Lemma follows that

/ |f = (f)xﬂ"l* dz < liminf/ | fr — (fk)a:,r
B, () k=00 JB,(x)

Y dx

and hence the desired result. O

If we apply the previous theorem to characteristic functions of a set, we
obtain the following

Theorem 5.4.2 (Isoperimetric Inequality). Let E C R" be a bounded
set of finite perimeter. Let Ci,Co be the constants of the above theorem.
Then

1. LYE)"+ < C1|0E|(R)
2. For each ball B,(z) C R"
min{L"(B,(x) N E), £"(B,(x) \ E)}"% < 2C5|0E|(By(x))
Note: we would expect an estimate of the type
L7(By(2) N E)*5 < ¢[|0B|(B.(x)) + H" (9B, () N E)

So the estimate in the theorem is more accurate.

Proof. (1) Just apply point (1) of the previous theorem to f = xpg.

(2) We want to apply point (2) of the previous theorem to f = X gnB, (2);;
but first we have to check that E'N B,.(z) has finite perimeter in R™. Let g
be a smooth function such that

supp gn, C B3 := Bg(z)
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0<gn<=<1, 95 =1
Vgl < h

Then xggn — XeXB = Xens in LY(R™). Also xggn € BV(R"): let ¢ €
CH(R";R™); then

/ xegndiv(p)dz = / xediv(grye)dz — / XE(Vgn, @) dx

< |OB|(R™) + / V| da
Rn

But
/Rn \Vgp|dz < hLY(B3"\ B) = ha(n)[ } (Lagrange)

<r<§<r+%)

> w
~

— ha(n)n(r + &) (
< 3nan)(r+3)" " =:c

Then by the semicontinuity we obtain that xgxp € BV (R™). So, aplling
point (2) of the previous theorem, and writing B for B,(x), we obtain that

I£ = Darlios = [ rons - ‘E(“)B) da
_ L\E‘W da + /BmE’l _ Wl*dx
< (W)I*L”(Bmm

Now, if we suppose L"(BN E) > L"(B \ E) we have that

LB\ E) /.. e
(B) = E(n(L\g) )(E (BQE))

V

If = (F)a,

n—1

%(E”(B N E)) "

v

and hence
L (BﬂE) <2C’2](‘9E|( )
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Chapter 6

The Reduced boundary in R”

In this section we define a particular subset of the boundary of a set of
finite perimeter F, the reduced boundary 0*E. This notion was introduced
by De Giorgi and is the key concept of the geometric measure theory, that
will play a foundamental role in proving the regularity of the boundary of
minimizing sets. The principal result of this section is Theorem 6.3.2, that
state that the reduced boundary is rettificable, i.e. 0*F is, up to a set of
zero |OFE|-measure, a countable union of compact subsets of C' surfaces,
and the vector vy assume the geometric role of the outer normal to these
surfaces; moreover we will prove that the perimeter measure |0E| is nothing
else that the H"~! measure restrict to the reduced boundary 0* E. The proof
of this result uses a particular thecnique of the geometric measure theory,
the blow-up: blowing up a set E consist in exploding a set near a point of
its boundary. We will prove in Theorem 6.2.1 that, in a point x( of the
reduced boundary, a set E of finite permiter has the same behaviour of an
half space whose boundary can be consider as the tangent plane to the set
FE in z¢. Finally, in Section 6.4 we will prove some useful properties of sets
of finite perimeter we will use in the following chapaters.

6.1 Definition and properties

First of all we need a definition of boundary of a set that remains unchanged
for sets that differ only by a set of measure zero, since we are working with
equivalent classes of sets. We start with a lemma

Lemma 6.1.1. Let E C R" be a L"-measurable set. Then there exists a
L"-measurable set E C R™ equivalent to E and such that

0 < LMENBy(z)) < wpp”
for all z € OF and all p > 0.

109
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Proof. Define
Ey :={z € R" | there exists p > 0 with L"(E N B,(z)) =0}
Eyi:={x € R" | there exists p > 0 with L"(E N B,(x)) = wnp"}

e FEy, Ey are open: let z € Ep; then there exists p > 0 such that L"(EN
B,(x)) = 0; then, if y € B,(x) and we define r := p — |z — y| we have
that £"(E N B,(y)) = 0; hence y € Ej.

Let « € Ey; then there exists p > 0 such that L"(E N B,(x)) = wyp”,
that is £L"(B,(x)\E) = 0; then, ify € B,(x) and we define r := p—|z—

y| we have that £"(B,(y) \ E) = 0, and hence L"(E N B,(y)) = wpr™;
hence y € Ej.

o L"(ENE) =0,L"E;\ E)=0. For Ey: for each x € Ey let p; > 0
such that L"(E N B,,(x))) = 0; since R™ is separable, we can find a
countable family of points (x;); C Ey such that

Eo c | By, (1)
=0

Then -
LYENE) <Y LYENB,, () =0
i=0
For F1, reasoning in the same way, we can find a countable family of
points (z;); C Ep such that

oo
El - U Bpaci (.%'Z)
=0

Then

LYELN\E) <Y LBy, (2:) \ E) =0
=0

Then, if we define E :=(EUE))\ Ey we have that E is L"-measurable, F
and FE are equivalent; moreover, since Fy and E; are open, if x € OF, then
x ¢ Fo U E;. Hence we obtain the desired result. O

Then we can give the following definition

Definition 6.1.2. Let E be a L™ -measurable set in R™, or better, an equaiva-
lence class of sets. The boundary of E, still denoted with OF, is the set of
points such that

0 < L"ENBy(z)) <wnp™ Vp>0

By the Lemma above, this is a good definition.
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Note: we note that, with this definition of boundary of a set, if E is a
set with finite permimeter in a open set U, then the support of the measure
|OF)| coincides with OF.

We have seen in Examples 1 that the boundary of a set can have Lebesgue
measure greater than 0.

Definition 6.1.3. Let E C R™ be a set of finite perimeter. A point x € R™
belongs to the reduced boundary of E, denoted by O*E, if

1. |0E|(By(z)) >0  ¥r>0

2. Jlim v d|OE| = vg(x)
r—0 By(z)

3. |lvp(x)| =1

Since supp|0E| C OF, it is clear from condition (1) that 0*E C OF.
Moreover, from Theorem 2.7.6 we have that

|OE|(R™\ 0*E) = |0E|(OE\ 0*E) =0
So, in |0E|-measure, OF and 0*FE are the same object.

Example: A simple example is when OF is a C' hypersurface and
x € JE. We have already seen that in this case

OF =vdH™ ' on dF

where v is the outer normal to OF. Since supp(|0E|) C OF, we have that

/ d[OE] = vdH" !
By (x) OENBy(x)

/ d|0E| = H* 1 (0E N B, (x))
By (x)

Moreover

Since v is continous on OF we have that condition 2 of the definition above
is satisfied in each point of OF. It is also clear that the other two conditions
hold in every x € dF. So, if OF is an hypersurface, we have that 0*F = 0F.

Now we present a divergence theorem, useful for prove some results, that
we will refine later.

Lemma 6.1.4. Let E C R" be a set of finite perimeter, and let ¢ €
CHR"™;R"). Then for each x € R" and for almost every v > 0 it holds:

[ avtpar= [ feumdosi+ [ (oajane
EnU,(z) B, (x) ENoU,(z)

where v is the outer normal to OU,(x).
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FE
—V
B, (z)

Proof. Let h € CY(R™); then

| o) dop| = [ aivthoray= [ nitoray+ [ (Thoay

(6.1)
Fix € > 0, we define the functions
1 ,t €10,¢]
,_ 0 Jdt>r+e
ge(t) = r+e—t
—— r<t<r+e

€

and
he(y) == ge(|z — yl)

Hence he € WH1(R™). So, taken an approximating by mollifier sequence
No * he such that 1y * he — he in WH(R™) and also uniformly!. Then (6.1)
holds for every 7, * h; letting 0 — 0 we obtain

[ e vey o = [ natordy+ [ (Vheg)ay

Now, letting ¢ — 0 we obtain
| avoa= [ oo+l [ (e.Vh)d ©2)
By (x) Br(z) —0JE

Since
0 . ,y¢3r+e($)\Ur(x)
Vhe(y) = _ty-r , otherwise
€ly — x|

if we define

F(r) = /U ). = /U e

!This can be done since h. is continous and has compact support.
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from the Coarea Formula (see [EG92], Chapter 3) we have that

ro= [ ([, xetemanriw)d

Hence, for almost every r» > 0 we have that

3 F'(r) :/ (p,v) dHnt
ENaU,

Since F'(r) is the last term in (6.2), we have the desired result. O

Now we present some densities properties of a set of finite perimeter in
his reduced boundary points.

Theorem 6.1.5. Let E € R™ be a set of finite perimeter, and x € 0*E.
Then there exists positive constants A1, As, A3, Ag, As such that

L7(By(z) N E)

1. liminf > A
r—0 rn
r—0 rh

8. liminf W > Aj
r—0 rn—

FE|(B,

4. limsupw < Ay
r—0 "
r—0 rn

Note: conditions land 2 of the above theorem tell us that situations
likes whose in figure below can not be possible
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Proof. First of all we prove some implications for the inequalities above.

(1) = (2) : let ¢ € CHE;R"), |¢| < 1; then, from the Gauss-Green
Theorem

0= / div(p)dy = /E div(ep) dy + /R e

Hence we obtain that E has finite perimeter in R" < R™ \ E has finite
perimeter in R". Moreover |0E| = [OR" \ E|, vg = —Vgn\ g, and hence

O*E = 9*(R" \ E)

(4) = (5) : fix R > r; since |0E N By (x)|(R™) = |0E N B,(z)|(Bgr(x)),
from Remark 7.3.6 we have that
|0E N B,(2)|(Br(2)) = |0B|(B,(z)) + H" ' (EN B, (x))

Since
HY(ENIB,.(x)) < H" 1 (0B, (x))

,r.n—l — T.n—l

= nwy,
then, if (4) holds, passing to the superior limit we obtain that
|OF N B,(x)|(Br(z)) < A4 + nw, =: 4s

To prove (4) : let ¢ € C}(R™;R™) such that Pl = VE(¥); then, from
Theorem 6.1.4 we have that

0= / div(p)dz = <1/E(:U),/ vp d|OE| >+/ (vp(z),v)dH 1
By () B, (x) ENdBr(x)

Averaging with respect |0F|(B(z))

= (vg(x v - vgp(z),v n—l
0= {0p(e), f, VB UOED T G [, PP

Since x € 0*F the first integral goes to vg(x), and hence

[ s ane |
. ENOBr(x)
lim

lim, OE|(B, (2)) =1

Then, for r sufficiently small

n—1
1 < ‘/Emam(z)<VE(:E)’l/> 7 ‘ H* Y ENIB,(r))
2" |0E|(By(x)) ~ |9E|(Br(z))




6.1. Definition and properties 115

Hence
|OE|(By(x)) < 27-[”_1(E N OB, (x))

Tn—l — Tn—l

= 2nwn = A4

To prove (1) : define the function
g(r) =LY (ENBy(z)) = / H"Y(ENOB,(z))dp
0

where the equality above is by the Coarea formula (see [EG92], Chapter 3).
Hence, for almost every r

3 ¢ (r)=H"YENIB,(z))

N
—~
E
N—
|
N

C|0(E N By(x))|(R™) (isodiametric ineq.)
< C [|8E](Br(x)) FHYYEN aB,(x))] (see (4) = (5))
< 3CH" YENIB,(z)) =3C¢ (r)

N

where in the last step we have used a inequality proved in the previous point.

Hence )
L1

n > —

9r) g () = o
and integrating from 0 to r we obtain

T,n

(3Cn)n

g(r) >

To prove (3) : From the local isoperimetric inequality (Theorem 5.4.2)
we have that there exists a constant C' such that

[OE|(Br(x))

rnfl

LYEN B, (z)) LYE\ By(z)) }

)

ZC’min{

r?’L rn

Then, using point (1) and (2), for r sufficiently small

BB ) o (A1 A2y,

rn—l
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6.2 Blow-up

In this section we will study better the reduced boundary using the blow-up,
an useful thecnique in the study of the geometrical properties of a set.

Let E C R™ be a set of finite perimeter, and let € 0*E. Define, for
r >0,
Yy—x
r

gr(y) =T+

and set
E, =g, (F)

We have a “change of variable formula”: let R > 0 fixed, and consider
¢ € CHR™;R"); then

1

[ e = o div(p(gr(2)) do
Br(z)NE, r Brr(z)NE

— i [ diveog)(@)ds
r B.r(z)NE

Since ¢ € CY(Bg(z)) & po g € CH(B.gr(z)) we have the following two

equalities
1
[ dpxel= o [ diDyd
BR(JJ) r BTR($)

/ d|9E,| = nll/ d|oE|
Br(z) r Byr(x)

We will use a lot this formulae.

Now, the idea we want to prove is that the unit vector vg(z) define a
“normal”to JF in x; more precisely, let

H(z) := {y eR" | (y —z,vp(x)) = O}
Ht(x) = {y eR" | (y —z,vp(x)) > 0}

H™ (z):= {y eR" | (y —z,vp(x)) < 0}
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The result is the following

Theorem 6.2.1. Let E C R" be a set of finite perimeter, x € 0*E. Then
E, - H (x)

Proof. We can suppose x = 0 and vg(0) = —e;. Let (r;); — 0, and set
E; := E,;,. We want to apply the Compactness Theorem (see Theorem
5.3.2); to do this we need to work in a open bounded set with lipschitz
boundary. Since 0 € 0*E and vg(0) = e, from the formulae above we have

that
/B R
. R
P 0B (Br0) o
and
/ dD;xE,
lim 2220 -0 i=2....n (6.4)

r—0 |0E,|(Bgr(0))
From point (4) of Theorem 6.1.5 we obtain that

limsup/ d|OE,| < >
Br(0)

r—0

Moreover
IXE, 1 (Br(0)) < L"(Br(0)) < o0
Hence
IxE. || BV (BR(0) < 0

So we can apply the Compactness Theorem obtaining a subsequence, still
denoted by (E,,);, and a function fr € L'(Bg(0)) such that

E,, = fr in Bg(0)

We can supppose that fr is the characteristic function of a set in Br(0).
Repeating the same reasoning to every R > 0, and using a diagonal argu-
ment, we obtain that there exists a subsequence, still denoted with (r;);,
and a set C' C R" such that £, — C' in R". By semicontinuity we also have
that C' as finite peimeter in every bounded set. Moreover, by Theorem 2.9.5
we have that

Jj—00

lim d[Dxp] = / d[Dxc]
By (0) BT(U)

for almost every r (in particular for those r such that |0C|(0B(r)(0)) = 0).
Hence, recalling (6.3) and (6.4) we have that

hm d]@E]| = hm leXEj = —/ leXC
J=00 JB,.(0) J—eo ' +(0)
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Thus, by semicontinuity

/ d|60|<—/ dD; xc
B,.(O) B,,'(O)

and hence, since Dy xc < [0C],

/ dyacy_—/ Dy
B;-(0) B;-(0)

If we differentiate Djxc with respect to |0C|, from the identity above we
obtain that

Dixc = —|0C]|

Hence, since
(Dixcs - - -, Dnxc) = ve|0C|

and |vo| = 1 we obtain that
Dixc=0 i=2,...n

Hence vo = —e, |0Cl-a.e.; so, if we take an approximating sequence of
smooth functions f. := 7, * xc, and consider ¢ € CL(R";R") we have that

/n<g0, Df.)dx = /CdiV(Ue*SO) dx = /C<(ng*cp),l/c)d]80] = —/Rn(ne*npl)d]@(]]

So all the functions f. depend only on x1, and they are decreasing functions.
Then there exists v € R such that

C={zeR" |z <~}

We want to show that v = 0. Suppose v < 0; since £; — C

0= £7(C'N Bpyy(0)) = lim £7(E; 1 Bpyy(0)) = lim —£(E B, 1 (0))

Jj—0o0 Jj—00 T’j

A contraddiction to (1) of Theorem 6.1.5. On the other hand, if v > 0 we
have that

1= £7(C 1 By (0) = lim L(F; 1 By (0)) = lim —£7(E N B, (0))

J—00 J—00 Tj

Hence we have a contraddiction to (2) of Theorem 6.1.5. Then v = 0 and
the desired result is proved. O
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H
H*(x)

(z)
. H~ ()
s

So we can say that C is a “tangent”plane to OF in 0. More precisely
Theorem 6.2.2. Let E C R” be a set of finite perimeter, and x € 0*E.
Then

"(B EnH'
L LB N B H (@)

r—0 wpr™

)t (E(Br(@) \E) N H (@)

r—0 wpr™

=0

=0

3 lim LY Br(z)NENH™ (z)) 1
r—0 wpr" 2

L OB|(B, () _

= n—

4.

r—0 rn—1

Proof. We can suppose x = 0. For (1) : since xg, — XH-(0) We have that

LB (0)NENHY(0) = rL7(By1(0) N E,nH*(0))

r—0

= T”/ XE,.dy —=10
B (0)NH*(0)

The proof of (2) is similar as (1). For (3) : we have that

LM(Ba)NENH(2) _  LYBy(e)NH (z) L(Be(x)\ E) N H(x))
WwnT o wnT Wnr
g 1
2

where in the last step we have take into account that H ™ (z) is an half-space.
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For (4) : if we take a L > 0 such that |0C|(0Br(0)) = 0, that is for
almost every L > 0, from Theorem 6.2.1 we have that

T |05, (BL(0)) = [0H ™~ (0)|(BL(0)) = H"'(H(0) N BL(0)) = w1 L™

Hence
0E|(B,1(0)) _ |0E,|(B(0))
wp—1(rL)n=1 wp_1 L1

6.3 Regularity of the reduced boundary

Now we can prove the foundamental result, due to De Giorgi, concerning
the regularity of the reduce boundary. First we need the following

Lemma 6.3.1. There exists a constant C = C(n) such that
H"1(B) < C|0E|(B)
for each B C 0*F.

Proof. Fix € > 0; since |0E| is a Radon measure there exists an open set
A D B such that

|0E|(A) < |0E[(B) + €

From point (3) of Theorem 6.1.5 there exists Az > 0 such that for every
r€0'FE

r—0 rn—1

> As
Then, for r sufficiently small, and for a fixed k € (0, A3)

0B|(B,(2))

Tnfl —

for each x € 0*E. Then, if we define
F = {Br(x) CA|zeB, p>10r, |OE| > kr”_l}

we have that F is a fine covering of B. Then, from Theorem 2.6.5, there
exists a countable family G of disjoint balls in F such that

(o]
B c | By, ()
=0
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Hence
=:C
0o f_/\_l\ oo
n— n—1_.n— n—l Wp—15""
H N (B) < an,l(zs by 1) < S S OBI(B ()
i=0 1=0
= 0108|( By, () < CIOE|(U) < C(|0BI(B) +¢)
i=0
Since, first € and then p, are arbitrary, we can conclude. O

Next theorem allow us to say that a set of finite perimeter has “ measure
theoretic C! boundary”.

Theorem 6.3.2 (Structure theorem for sets of finite perimeter - De
Giorgi). Le E C R" be a Caccioppoli set. Then

1. It holds

O E = (GK) UN
=0

where |OE|(N) =0 and K}, is a compact subset of an hypersurface S;
of class C*.

2. vg K, 1s perpendicular to S;
3. |OE| =H"LO*E
4. O*E = OE
Proof. Consider (1) and (3) of Theorem 6.2.2:

LM Br(x)NENHT(x))

(1) l1_r>r[1) wpT™ =0
3 lim L"Br(x)NENH (z)) 1

r—0 Wp ™ 2

For each i, by Egoroff’s Theorem (see Theorem 2.3.6) we can find disjoint
|OE|-measurable sets (F;); such that

0E| (a*E\ G F) —0
=0

and the convergences in (1) and (2) are uniform.
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Now fix an i; by Lusin’s Theorem (see Theorem 2.3.4) we can find a
countable family of disjoint compact sets (G},), C F; such that

oEI(r\ U 6i) 0
h=0

and

VE| is continous
Gh

Denoted by (k;); the family (G},);n, we define

vl Y ye)

i—0

we have that |0E|(N) = 0 and the convergences in (1) and (3) are uniform
in every K;, and vg, is continous.

Now we want to prove that each K; is contained in a C' hypersurface S;.
To do this we want to apply the Whitney Extension Theorem (see [EG92]
Section 6.5) to: function f = 0 on K;, d = VE|, - To do this we have to
prove that

p(8) := sup { |<”E|(§)_’yx‘ N gy e Ki 0< ly—a| < 5} %0

Fix 0 < € < 1; since the convergence in (1) and (3) are uniform in K;, there
exists r. > 0 such that for each ¢ € K; and each r € (0,7¢)

LY By (z)NENHT(z)) _ &
wpr™ — 9n+2

and
LY Br(z)yNENH™ (z)) S 1 e
W™ -2 2nt2
We state that if 6 < % then p(d) < . Suppose not; then there exists
z,y € K; such that 0 < |y — x| < d and

[(vE(®),y — 2)]
ly — |

> €

Suppose (Vg (z),y —z) > 0; then, for z € R"

(ve(@),y —x) + (ve(e), 2z —y) 2 ely — x| = [(ve(r), 2 — y)|
> ely—a| -z -yl

(vp(x),z —x)
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Hence B,|,_,|(y) C H*(x). Moreover B.j,_y(y) C Bjy_g|(z,): in fact
lz—z| <|z—y[+ly—2z| < (e+ Dy — x| <2y — =
where in the last step we have take into account that € < 1. Hence
By (y) C H(2) N Byjyy|(2) (6.5)

Since |y —z| <6 < %
ETL
LYEN BQ|y,x‘($) N H+(Q?>) < 27‘*)71‘3/ - x‘n
and

£(BN By (1) 2 £"(BN By )V (1)) > (3 — 5 Joon(ely—a])"

Hence by inclusion (6.5) we obtain that

1 en e
(5 - W)Wn(dy —zf)" < 27Lwn|y — z|"

that hyelds € > 2. Absurd. The case (vg(z),y —x) < 0 is similar.

So we can apply the Whitney Extension Theorem and obtain that there
exists f € C1(R") such that fix, =0 and (Df)|,. = vE|,. - so, if we define

S, = {m €R"| f(z) =0, |Df(z)| > %}

we obtain that S; is an hypersurface, K; C S; and v, is perpendicular to
S;. 1

Now we prove (3): since |0E| and H"~! are regular, we can prove (3)
only for Borel sets. So let B C R" be a Borel set; by the previous Lemma,
HH(N) = 0; so

H"Y(BNOE) = H L ( [j BN K) - i H"Y (BN K;)
i=0 i=0

Let 7; := H" 'L K;. From the Area Formula (see [EG92], Chapter 3) we

have that B
(B, ()
r—0 w111
Thus, from (4) of Theorem 6.2.2, we obtain that

i Be(@)
r0 [0E| (B, (z))

=1

=1
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Since |0F| and v are Radon measures, from the Differentiation Theorem for
Radon measures (see Theorem 2.7.4) we obtain that

0E| =~
Hence
H" Y (BNO'E) = Y H'"Y(BNK;) =) |0E|(BNK))

i=0 i=0
= |0E|(BNJ*E) = |0E|(B)

To prove (4) let A be an open set such that A N J*E = ; then from
point (3) we obtain that
|OE|(A) =0

Hence x g is constant in A; since supp(|0E|) C OF we obtain that ANJE =
0. O

6.4 Some applications

In this section we will use the results of the previous section to study the
behaviour of the union and the intersection of Caccioppoli sets.

Lemma 6.4.1. Let E, F' be Caccioppoli sets in R™. Then, for any open set
A C R"” it holds

[0(EU E)|(A) +|0(E N F)|(A) < |OE|(A) + |0F|(A)
Proof. Supppose f, g are smooth functions such that 0 < f,¢g <1, and let
pi=f+g9-Ffg, v:=1fg
Then
|Del = |Df +Dg+ fDg+gDf| < (1= f)IDf|+ (1 —g)|Df]

|Dip| < f|Dg| + g|Df]|

Hence
|De|(A) + |Dy[(A) < [Df|(A) +|Dg|(A)

Now note that if [0E|(A) or |0F|(A) is not finite, then the theorem is clearly
true. If both F and F have finite perimeter in A, let (f;); and (g;); be
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respectively the approximating smooth functions of x g and xr given by the
Angzellotti-Giaquinta Theorem. In particular we have that

[Dfj|(A) = |0E|(A), |Dg;l(A) = |0F[(A)
Moreover, if we define ¢; := f; + g; — fjg; and ¥; := f;g;, we have that
©j = XBUF, Yj = XENF
Hence, from the semi-continuity Theorem, we have that
OBV E)|(A) +[0(ENF)|(4) < liminf(|De;[(4) +[Dy;l(4))

< liminf([Df;|(4) +|Dg;|(4))
[OE|(A) + [0F[(A)

Remark 6.4.2. From this lemma we have an important consequence: if E
and F have least perimeter in A, and if EAF € A, then both ENF and
E U F have least perimeter in A. In fact, since we can write

EUF=FU(E\F), (ENnF)=E\(E\F)
from the minimality of E and F we get
[OF|(A) < |0(E U F)|(A)

and

|0E[(A) < [0(ENF)|(A)
Hence, from the lemma above we obtain that
[0(EU E)|[(A) + [0(ENF)|(A) = |0E|(A) + |0F|(A)

and so

[0F|(A) = |0(E U F)|(A)
|0E[(A) = [0(E N F)|(A)
In particular

0E[(A) = |0F|(A) = [0(E U F)|(A) = [0(E N F)|(A)
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Lemma 6.4.3. Let E := E; U Ey and suppose that H" 1(E; N Ey) = 0.
Then for any open set A we have

[0E|(A) = [0E1[(A) + |0E2[(A)

Moreover if E has least perimeter in A, then the same is true for E1 and
Es.

Proof. Since the reduced boundary of a Caccioppoli set is H"~'-measurable,
we have that

OB |(A) + |0E2[(A) = H' N0 BN A)+H" (9" B2 N A)

H"I«wEﬂJmEgmA)—H”4«mEﬂmegmA)

= WY [(0*ELUOEy) \ 0"E] N A)

+H"H([(0*E1 UO*Ey) NO*E] N A)

~H" (0" E1 N 9*Ey) N A)
(
(

IN

H (9" By UO By \ 0" E]) + H' L (9*E N A)
—H"L((0"E1 N 0" Ey))

Now, since -
O*E1NO*Ey COE1NOEy C By N Ey

and
O*ELUO*Ey\O*E C (0*E1NELy)U(0*(E2)NE)U(0*E1NO*Ey) C E1NE;

we have that
H”_I(G*El N a*EQ) =0

and
/Hn—l(a*El U 8*E2 \ a*E) —

Hence we get

|0E1[(A) + [0E:[(A) < [0E|(A)
The opposite inequality clearly holds.

Now, suppose E has least perimeter in an open set A; let F' be a Cac-
cioppoli set such that F' = E outside a compact set K C A. Then

|OF|(A) + [0E2[(A) = [0(F U E2)[(A) > [0E|(A) = [0E1[(A) + |0E2|(A)

Hence F4 is a minimal set in A. With the same method we can prove the
minimality of Fy in A. O



Chapter 7

Traces and extensions in R"

From the definition of BV functions, if f € BV(U), and we take ¢ €
CH(U R™), we can write

| raivieyas == [ o-aipy

But if ¢ € C}H(R™;R") we cannot write a similar formula. Inspired from
the fact that if f € BV (U)NC*(U), and U is bounded and have Lipschitz
boundary we can write (see Theorem 7.0.4)

/ fdiv(e)dz = — / (o, Df)dx + (o, v) dH™ !
U U

f
ou
where v is the outer normal to OU, we want to extend the above formula to
all BV functions. To do this we need to talk about the value of f € BV (U)
on OU, even if £L*(OU) = 0, and so we need to define the trace of a BV
function of the boundary of a set. This is the aim of this chapter. Moreover
we will use the notion of trace to prove some important properties of BV
functions: extension of BV functions (Theorem 7.3.2), convergence of traces
(Theorem 7.3.3) and the Gagliardo’s extension Theorem (Theorem 7.3.4).

First of all we need to extend the classical Gauss-Green Theorem to sets
with Lipschitz boundary

Theorem 7.0.4. Let U be an open bounded subset of R™ with Lipschitz
boundary, and let p € CL(R™;R™). Then

/U div(ep) dz = / (o, ) dHL

oUu

where v denotes the outer normal to OU.

127



128 Chapter 7. Traces and extensions in R™

Proof. Using partitions of unity, and the fact that OU is compact, we only
need to prove the following fact: let o € C%!(A), where

A= ag,b1] X -+ X [an—1,bn—1]
for some a; < b; € R, and define
Q= {:U =(z1,...,Tp-1,2,) ER" | (x1,...,2p-1) €A, 0 < 2, < a(ml,...,xn,l)}

Then for each ¢ € C}(R™;R") and each i = 1,...,n it holds

|55 ar=[ o tmicen e (7.1)

where vq is the outer normal to €. Note that

e 1 Da(z)
vale) = ( vq+um&W’¢LHDM@P)

if v, = a(x1, ..., 2n-1).
Let’s prove formula (7.1): since we can suppose that a € C%!(R"), we can
consider a sequence of mollifiers (p:)., and the mollified functions a. :=
a*p. € C*°(A). It hold

ae — « uniformly on A

and

oo Oa
83}? (T1y. .oy Tp_1) — a—xi(xl, ey Tp—1)
for a.e. x € A and each i =1,...,n — 1. Hence if we define

QE = {.’17: (xlv"'amnfla'zn) e R" | (l'l,...,$n,1) GA, ngn Sas(l‘la"'al’nfl)}

from the classical Gauss-Green Theorem it holds

/G¢M—/ (0 (Ve es)es) dHP!
e 00

where vq_ is the outer normal to 9€2.. Note that

S (. — )
5 VI+[Dac(@) 1+ [Doc(z)?

if £, = a-(x1,...,2y—1). Hence, letting ¢ — 0 we obtain the desired result.
O
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7.1 The cartesian case

Let’s start with a Lemmal:

Lemma 7.1.1. Let R} := {x € R" | z, > 0}, and let j1 be a positive Radon
measure on R with u(R) < co. For p >0 and y € R"™1 = OR" et

C;r(y) ={reR"|z=(z1), ly—z|<p, 0<t<p}=DB,(y) x(0,p)

Then for H" '-a.e. y € R*1

: + _
plif(r]h pn_l M(Cp (y)) =0
Proof. For each k define
Ccr 1
A = {y e R*! | limsup'u(pi_(ly)) > —}
p—07F p" k

Then we show that H"~1(A;) = 0 for all k. Fix € > 0; for each y € Ay, there
exists p, < € such that

n—1

u(CH () > 2L

Then Ay, C Uyea, Bp,(y). By the Vitali covering Theorem (see Theorem
2.6.1) we can find a countable subset (y;); C Ay such that

By, (yi) N By, (y;) =0, ifi#]

oo
Ap C U Bsyp,, (vi)
i=0

Then
H' T AR) S w1 ) (5py)" ™! < kw1 5"y pu(C (w)  (T:2)
=0 =0

Setting
Lo:={zeR"|0<z, <€}

we have that C;;_ (yi) C L for each i; moreover, since the sets C;;, (y;) are

disjoint, because their basis are, from (7.2) we obtain
H T (Ag) < 2kwn 15" H T (L)

And since pu(R%) < oo, letting € — 0T we have the desired result. O
HAR

We recall that with the notation B,(z) we denote the ball of center = and radius r
contained in R~
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Next proposition is the foundamental brick to define traces of BV func-
tions on the Lipschitz boundary of an open set.

Proposition 7.1.2. Let A C R*! be an open bounded set, w : A — R a
lipschitz function of constant L, and let § := inf{w(y) | y € A} > 0. Let

U ={z=W,z,) eER" |y A 0<z, <w(y)}
S 7{ :(yvxn) 6Rn|y€Aa xn:w(y)}

Let uw € BV(U). Then there exists a function u™ € L'(S) such that
/ lut|dH™ ™ < /14 L2|Du|(U) + C(U)/ |u| dz
S U

where c¢(U) is a positive constant depending only on U.

(2) /[]udiv(¢)dx:—/lj¢. d[DUH/Suﬂso,w o

for each ¢ € Cg (A x R*L:R™), where v denotes the outer normal to S.
(3) lim / lu(z) —ut(Z)|dzr =0
@)NU

for H" l-a.e. TE S.

Proof. Suppose first u € BV (U) N C*(U); fix § € (0,0) and for t € (0,9)
we define the functions

Ut - S - R
(y,w(y) — u(y,wi(y))
and the sets

U={z=yt) e AxR|0<z, <w(y)}

St = {x = (y,t) c AxR | Tn :CUt(y)}
We note that

/ut(:c) dHt = / w(y,w(y))v 1+ |Dw(y)|? dy
S A
= / w(y,wi(y)) V14 |Dw(y)|? dy = / z)dH" !
A
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We want to prove that (u;); is a Cauchy sequence in L*(S): so, let 0 < t; <
ty < §; then

/S iy — | AHPL = / u(y, wes () — (i, (1)) |/ 1+ D ()P ly

w(y)—t1
< \/1+L2/ ‘/ Ou yafn)dfn dy
(y)— t2 &U"
< \/1+L2/ dy/ |Dun Y, Tn)| dzy,
< 1+ L2|Du|(Uy, \ UtQ) 220

Hence (u); is a Cauchy sequence in L'(S); then there exists a function
ut € LY(S) such that u; — u™ in L1(S).

Now we want to prove the local estimate for the trace. We note that
from the inequality above we have, in particular, that

/ gy — g, | AH"Y < /T 22| Du|(Uy, \ Ty)
S

So if we take to = t, passing to the limit for £; — 0 we obtain that

/ lug — ut|dHY < /T + L2 Du|(U\ T)
S

Hence
/!uﬂd?—[”l < /\u+—ut]d7-[”1+/ut|7-[nl
s S S
< \/1—|—L2\Du|(U\Ut)+/ | AR
St
<

I+ D2 Du|(U\Ty) + / ] A
St

Integrating from 0 to d we obtain
5/S\u+d%"1 < 5m|Dul(U\U5)+/()6 dt . |u| dH
:
< VT PIDUWA T + VT at [ utsaiay
5v/1 + L2|Du|(U \ Ty) +@/ |u|

U\T;
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B, (T)

Figure 7.1: Graphic situation

So we have obtain the estimate

A/ 2
/\uﬂcm"l < x/1+L2\Du|(U)+1j;L/ |u| dz
S U

Now we want to prove assertion (2): let ¢ € CL(A x R;R"); then from
the Gauss-Green theorem

/ udiv(gp)daﬁ——/ <<,0,Du>dm—|—/ ulp, vy dH !
Ut Ut

St

Now since vy = v, and

/ u(p, v) dH" ! —/Ut<<PtaV> du
s, s

passing to the limit fro ¢ — 0 and using the continuity of ¢ we obtain

/UUdiV(@) dz = _/UQO' d[Du] +/u+<g0, v)ydH" !

S

Finally we prove the limit in (3): consider T := (g,w(y)) € S, where
g€ A and 0 < p < d(T,0A x Rt U A x {0}). since we want to estimate

[ @) -t @) s
UNB, ()

we want, fixed p, to determine m in such a way that B,(Z) N U, = 0 in
order to simplify the calculate.
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Figure 7.2: The construction of m

Since w is a lipschitz function the graph of w lies under the cone generated
by the ray starting from = and with slope L; hence, as we can see in Figure
7.2, we have to take m = pv/1 + L2; since m must be less than §, we must

)
take p < NAERR

So if we take m = pv/ 1+ L2, and we noting that B,(y) is the projection of
B,(7) on A, we have that

[u(y, t) —u" (7,w(7))| dt

A
T
S
[oN
<
€
= £
T <
&

/ u(z) - ut (Z)|dz
UNB,(T)

lu(y, t) — ut (y,w(y))| dt +

IN
i
o
<
g
S

dy

o (Y) w(y)—m
@ |’LL+ (ya w(y)) - u+ (?7 w?)| dt
)

w(y
)_

o

P w(y

We study separately the two integral on the right: for the second integral
we have

w(y)
[oav [ )t el di=m [t ) -’ @.o@)] d
By (y) w(y)—m By (9)

Since m = pv1+ L?, from the Lebesgue’s point Theorem (see Theorem
2.7.10) we have that

1
lim v/1+ L2—— [u* (y,w(y)) — ut (F,w(@))|dt =0
p=0 P B, (y)
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For the first integral

w(y)
/ dy / lu(y £) — u* (y, 1)) dt
B, (y) w(y)—m
_ / ds / lu(y, w(y) — s) — u (y,w(y) — 5)|dy
0 By (7)

[ ) = o)V DR dy

= mds ug(z) — ut(x)| dz
/0 /S gy, 1@ @)
< VI+I? /0 as|Dul(U\ Ts) 1 (B,(7) x RY))

IN

< mV/1+ L2Dul(U\ Unm) N (B,() x RT))
< mv/1+ L2|Du|(B,(3) x (0, M))

for some M > 0; hence, apply the previous Lemma we obtain that

0 < hm/ / —ut(y,t)|dt
p—>0p By (y) (y )’
< 1 _
< lim 5 Dul(B,(3)  (0.31)) =0

for H" l-a.e. 7 € A.

Now take u € BV (U); from the Anzellotti-Giaquinta theorem (see The-
orem 5.2.1) there exists (ug)r € BV (U) N C*(U) such that

e u, — uin LY(U)

e |Duy|(U) — |Du|(U)
/ d[Duyg) —>/ d[Du] Vo € CHAx RT;R")

1

. Iimn/ lu(z) —ug(x)|de =0 Vk,VgeS
P20 P7 JUnB,(v)

Now, since w is Lipschitz, there exists a constant ¢ indipendent from p and
7 such that, for p suffficiently small,

cL™(By(y)) < LU N By(y)) < L™(By(y))
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Hence, from p sufficiently small, we have that £L"(U N B,(y)) has the same
behavior of p™; hence

. 1 / _
lim ————— w(z) —ul (7)|de <
p—0 ﬁ”(U N BP@)) UNB, () ‘ ( ) k( )’

1 )
i ([ ) - w@ldet [ ) - uf @)ds) =0
p=0 07N JunB, () UNB,(7)

Hence we obtain that all the traces of the functions wu; coincides, and are
equal to

1
uwh (7, w(y :lim/ u(x)dx
k( ( )) p—0 En(Ume(y)) UNB ( )

p(¥)

for H" La.e. (y,w(y)) € S. So we define

u((7,w(®))) = w (H,w([@)))

for H" !-a.e. y € A. Hence we obtain (1) and (2) as limit for k — oo of (1)
and (2) written for uy. Finally we obtain (3) as follows

; /
lim — w(z) —ut (g, w®))|dr <
B ] 1) = @)
1 1
lim — / () — ug(2)] dz + lim ~ / (@) — uf (7, w0(@))| de = 0
p=0 p" JUnB,(y) p=0 p" JUnB,(y)

O]

7.2 The general case

Now we present the general case of the theorem above, but first we need a
definition

Definition 7.2.1. Let U C R" be a bounded open set. We say that U has
Lipschitz boundary of constant L, if we can find open sets Vi,..., Vi and
functions w1, . ..,wy, such that each w; : R"™' — R is a Lipschitz function,
L is the maximum of the Lipschitz constants of the functions w;, and, upon
rotation and traslation, for each i it holds

AUNA; ={(z,y) eER"I xR |y =wi(x)}

UNA;={(z,y) ER"IXxR|0 <y <wiz)}
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The generalization to bounded open sets with Lipschitz boundary of the
previous theorem is give in the following

Theorem 7.2.2. Let U C R™ be a bounded open set with Lipschitz boundary
of constant L. Let u € BV (U); then there exists a function ut € L'(0U)
such that

1. there exists a positive constant c¢(U) depending only on U such that
/ lut|dH™ ™ < /14 L2|Du|(U) + c(U)/ lu| dz
ou U
2. for each p € CH(R™;R"™) it holds

/Uudiv(go)d:n:—/Usp. d[Du]+/ ut i, vy AH !

oU

where v denotes the outer normal to OU.

3. lim / lu(x) —ut(2)|de =0 H" ' —ae 2€0U
UNB,(z)

4o Nt | zoe oy < Null poo (o

Proof. Since U is a bounded open set with lipschitz boundary of constant
L, we can find p open sets Q; := A; x (0, M;) where A; is a open set in R~ 1,
M; > 0, and lipschitz functions w; : A; — (0, M;) of constant L; such that

0; = inf{wi(y) ’ Yy < Az} >0 L; <L
U =UNnQ ={z=(y,xn) ER" |0 <z, <w;(y)}
Si=0UNQ ={z=(y,zn) €R" |z, =wi(y)}

Let u; := uj, ; then u; € BV (U;). So, foreachi =1,...,p we are in the same

hypothesis of the previous Theorem; so there exists functions u;" c L(S))
satisfying the thesis of the previous Theorem. In particular

1 1
uf (2) = lim / u(z)dz = lim / u(z)dzx
p=0 p™ JuinB,(2) p=0 p™ JunB, ()

So if we define
ut(z) =uf () ifzeU;

we have that u™ is well defined. Moreover we have immediately point (3) of
the Theorem, since it is a “local”property, and point (4); in fact

lut(z)] < lim |uT(2) — u(x)|dz + lim |u(z)| dz
P=0 JUNB,(z) P=0 JUNB,(z)
< Oty {102 fulie)
UNB,(z)
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Now we want to prove point (2): let Qo € U such that U C U?_,€;, and
let (a;)?_, be a partition of unity subordinate of the covering (€;)?_,. Then,
if p € CH(R";R")

P
/ udiv(p) de = / udiv(app) de + Z/ udiv(a;p) dx
U U — Ju
Since a;p € CH(Q4;R™), we have that

/ udiv(oyp) do = —/ a;p - d[Dul] +/ ula;(p, vy dH !
U U

i

foralli=1,...,p, and

/U udiv(agp) dz = — /U ao - d[Du]

since supp(app) € U. Hence

/Uudiv(go) dz = —/U¢.d[Du] _|_/ (o, 1) dxm!

oUu

Finally we prove point (1): let o and (a;)}_, as above, and let 6 =
min{dy,...,d,}. Since ayu € BV (U;), from the local estimate of the trace
in each U;, we obtain that, for each § € (0,0)

— 1+ L2
[ eawtanet < s L@\ @)+ Y [ sl do
Si

U\(U:)s
< \/1+L2/ B \u|d\Dai\+\/1+L2/ ~ «a;d|Du| +
U\(Ui)s U\(Ui)s
1+ L2
v+/  aifulde (7.3)
0 A\T)

where in the last step we have used the fact that
D@w|(U) < [ JasldiDul + [ Jul|Dey|da
U U
Now if u € BV (U) and o € C}(R"), we have that

[(au) ¥ (@) — au™ (7)] < lim (@) — a(@)u(z)] dz
P=0 JUNB,(T)
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From the countinuity of «, if we fix € > 0, we have that there exists p. > 0
such that if x € B,_(T), then |a(z) — a(Z)| < €; then

|(auw)™(T) — au™(T)| < € lim lu(z)|dz = C(e) =%0
P=0 JUnB,(z)

for H" 1-a.e. T € OU. Hence
(au)™ =aut  in L'(OU)

Hence, from (7.3) we obtain that

/ ilut|[dH™ < V14 L2
U U\(U3)s
V1+ L2 /
1)

U\(U:)s

|u|d|Day| + V1 + L2/ a; d|Du| +
Us

i—(Us)s

a;lul dzx

Now, since U; \ (U;)s C U \ Us, recalling that

p p
Zaizl on OU , Zaigl on U
i=1 i=1

we obtain that, for each § € (0,6),

p p
/ lut|dH ! < \/1+L2/ B Zaid|Du|+\/1+L2/ Y |Dau| da +
U U\U U\U

9 i=1 § §=1
V14 L2 b
5/ . Zaz\u|dx
U\Us ;=1

V14 L2|Du|(U\ Us) +
L 1
\/1+L2(($%§;|Dail)+5)/ ] de

U\Ujs

IN

o(U)

and the proof is complete. ]
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7.3 Some applications

Now we present some important applications of the Theorem above. First
of all we prove that the trace operator is linear and bounded.

Theorem 7.3.1. Let U C R"™ be an open bounded set. Then the trace
operator
Tr: BV(U) — LYoU)
u —ouT

s linar and bounded.

Proof. Trivial. O
Now we want to understand what happend if we paste two BV functions.

Notation: let U, A be open bounded subset of R™ such that 0A N U is
Lipschitz. Let u; € BV(U\ A) and us € BV (UN A). We denote by uj” and
u, the traces of u; and up on 0A N U respectively.

Theorem 7.3.2. Let U, A be open bounded subset of R™ such that 0ANU
is Lipschitz. Let uy € BV(U \ A) and ug € BV (U N A). Define

I yin U\ A
" lu ,imUNA

Then uw € BV (U) and

|Du|(U) = |Du1|(U \ A) + |Dus|(U N A) Jr/aA ., |u;r — u27|d’H"_1
N

Note: this theorem says that we can measure the “jump”of a func-
tion v € BV in a set of Lebesgue measure 0 with the measure |Du|. An
important difference between BV functions and Sobolev functions is that in
this last case, we cannot expect a similar result, unless uT = u; Hr—ae.,
since the derivates of a Sobolev function are absolutely continous with re-
spect to the Lebesgue measure.
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Proof. Let ¢ € CL(U R™); we can eventually consider an open set B with
lipscitz boundary such that suppy € B € U. Hence, denoting with v the
outer normal to U \ A, we have that

/ ~urdiv(p)de = —/ - d[Duy] +/ uf (p, vy dH™ !
U-A U\A dANU

and

/ updiv(p) dz = —/ ¢ - d[Dug] — / u?(g@, v) dH 1
UNA UNA OANU

So

/Uudiv(go)d:r _ —/U\Agp-d[Dul]—/UmAw'd[Duﬂ—i—

/B =) )

If we take ¢ such that || < 1 we obtain that [;; udiv(p) dz < co, and hence
u € BV(U). In particular we have that, for every ¢ € CL(U;R"?)

| wr—abemawt == [ oDy
0ANU OANU

Defining the vector measures

A= (uf —ud)vdH"IL(OANT)
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p = Dul(0ANT)

we obtain that A = —u; hence, passing to the total variation we obtain that

/ luf —ug [dH"! = —/ d|Du|
0ANU JANU

O]

The trace operator has also a good behaviour with respect to the con-
vergence of BV functions.

Theorem 7.3.3. Let U C R" be an open bounded set with Lipschitz bound-
ary; let w € BV(U) and (uj); C BV(U) such that

uj —u in LY(U)
and
|Du;|(U) = [Dul(U)
Then
u;r —ut  in LYOU)

Proof. Since u —u; € BV (U) for each j, we can apply the local estimate of
the trace, obtaining

| )t < VI DD ) (0\Ts) +e(U6) [ Jumuy|da
U U\Us

+ ot

Since (u —u;)T =u +

; and for each open set A C R"

[D(u — uy)[(A) < [Dul|(A) + [Du,|(A)
Hence

| it < VIFE(IDd\ TP 0T ) +

+c(U, 5)/ u—wujde
U\Us

Since from Theorem 5.2.4

limsup |Du;|(U \ Us) < |Du;|(U \ Us) < |Du|(U \ Us)

Jj—00
we have that

limsup/ lu™ — u;'| dH™ ! < 2V/1+ L2|Du|(U\ Us) =0
ou

Jj—00
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Now we wanto to state a converse of Theorem 7.2.2

Theorem 7.3.4. (Gagliardo Extension Theorem) Let 2 C R™ be an
open bounded set with Lipschitz boundary, o € L'(09Q) and € € (0,1). Then
there exists a function u € WH(Q) € BV(Q2) such that

o ut =, H" l-a.e. on 00
o |[ullLiq) < ellellnian)
e [ Dul[1q) < C(e,00) ¢l 00

Moreover u is continous and locally Lipschitz in Q, ||ulpe @) < ¢llLe@a0)-
Moreover if 9Q is of class C*, then we can choose C(e,00) =1 +¢.

Now we present some important properties concerning the trace of a BV
functions that will be useful later.

Remark 7.3.5. Let U be an open set in R", and f € BV (U); let A € U
be and open set with Lipschitz boundary. Then f, € BV(A) and f|U\Z €
BV (U \ A). Denoting with f} and fy respectively the traces of f|U\Z and
f|4» we have that

1im1/ |£(2) — fa(2)|dz =0 for H" '-a.e. € DA
p=0 p" B (x)nA
1im1/ |f(2) — fi(x)]dz =0 for H" '-a.e. x € DA
=0 P By @)\a

From Theorem 7.5.2 it follows that

[ 18t = x1awt = pyi04) (7.4)
0A
Moreover, from the proof of Theorem 7.5.2, we have that

Df = (fi — fi)vdH" ' ondA

where v s the outer normal to 0A.

In what follows we will deal with balls; so now we consider the special
case of U = Ug(y), A=U,(y), with0 < p < R and y € R™. For simplicity
we suppose y = 0. We write f;’ and f, instead of f;{ and f, respectively.
Since | D f| is a Radon measure on Ur(0), we have, from (7.4) that for almost
every p

f:(:v) =f, () = f(z) H L — q.e. on oU,(0)
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Moreover, looking at how we have constructed the trace of a function f in
the proof of Proposition 7.1.2, we have that

[ (px) = lim f(tz) in L'(IU1(0))

t—p
tgN

where N is a set of measure 0. Similary for f+.

Remark 7.3.6. Now, if we take f € BV (A) and define

_Jf sinA
F‘_{ 0 ,inU\A

from (7.4) it follows that

DFI(U) = | DFI(A) + /a AL

In particular, if we take A and U as above, and f = xg, where E C R"
s a set of finite perimeter in U, we have that for the p’s such that XE)p =

xE H" l-a.e. on dU,(z), for z € R™, (for simplicity we will omitt the point
x when we will write balls)

P(ENU,,Ug) = P(E,Ur\U,) + H" 10U, N E)
Similary, putting A :=Ugr \ U, and U := Ug
P(E\ B,,Ug) = P(E,Ug\ B,) + H""1(0U, N E)
and
P(EUB,,Ug) = P(Ur\ (EUU,),Ur) = P((Ur\ E)N (Ur\ B,),Ur)

= P(Ur\ E,Ur\U,) +H"" 19U, \ E) = P(E,Ug\ U,) + H" 10U, \ E)

UR
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Chapter 8

Some inequalities for minimizing perime-
ter sets in R"

The aim of this chapter is to obtain some estimates concerning BV functions,
that will lead us to some important inequalities for sets of finite perimeter.
In particular in Section 8.2 we will prove that the function

1

is non decreasing; moreover we will prove an upper and a lower estimate
estimate for the perimeter and a lower estimate for the Lebesgue measure
(Proposition 8.2.1) of minimal sets. These estimates will be very useful in
chapter 9, where we will study the regularity of minimal surface, and will
be foundamental for solving the Bernstein Problem.

8.1 Technical results

Definition 8.1.1. Let E be a Caccioppoli set, and let U be an open set. We
define

v(E,U) :=inf{|0F|(U) | F Caccioppoli set ,FAE € U}
Let f € BV(U), with U open set in R™. Define
v(f,U) = inf {|Dg|(U) | g € BV(U), supp(g — f) C U}

If U = U, we write v(f,p) and Y(f,p) in place of v(f,U) and (f,U)
respectively.

145
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Note: (f,U) is a measure of how close f is to being minimal in U.
Clearly, if E is a minimal set in U, we have ¢(E,U) = 0.

First of all we want to estimate the distance of the trace of a BV function
on the boundary of two balls in terms of the gradient of the function.

Lemma 8.1.2. Let f € BV(Ugr), 0 < p<r < R. Then

f e st < [l o)

/ ) = ) a3 < /

- d"x% : [Df]’

Proof. First of all we consider

[ () = o) an?

where h is a C! function. So, if we define a(z) := h<|i) we have that

2l
L (5 ) = o) et

1 1
= — / Oéf_ den—l —— / Oéf+ d/Hn—l
r U, P )

Up

X

= - i d’H”—l _ + el dHn_l
/Maf (0. 70 /aUpaf (g,

l
~ [ ag-dpy
UT\BP

where in the last step we have take into account that div(ag) = 0 in R™\{0}:
in fact

diviag) = adiv(g) + (Va,g)
n
1 x? 1 T
_ _ ? h(—
a; (|96|n n!x|”+2> NG v (|$|)’x>

1
|x|n+3

|2|*(Vh(;),2) =0

T
|z]

So by Theorem 7.2.2 we obtain the last step of the equalities above. Since
if we define the linear functional on C.(A)

Lu(h) = [ ndla-(Df) = [ hg-aipy]
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from the Riesz Representation Theorem (Theorem 2.8.5) and from the den-
sity of C1(A) in C.(A), we have that

lg - [DAII(A) = 1Lyl = Sup{/AfdiV(ag) dz [ a € Ci(A), |af <}

Then if we restrict h such that |h| < 1, and hence |a| < 1, we have that
9 AN E) = [ fdivlag)ds
UA\B,

and hence
/a ML) = () |4 < g DA\ By)

From Remark 7.3.5 we have that for almost every p < r, |Df|(0U,) = 0 and
ff=f"=f So

f 1 en )< [ dgeon)] s
for almost every p < r.

Now fix a p < r; from Remark 7.3.5 we can find a sequence (p;); such
that p; — p, (8.1) holds, and f~(p;:) — f~(p-) in LY(OU;). Taking the
limit in (8.1) we obtain that (8.1) holds for every p < r. Finally, taking the
supremum over all h € C! with |h| < 1 we obtain the desired result.

The proof of the second inequaility is similar to the proof of the first
one. O

Now we want to obtain a covergence results for v and v when we calculate
them in balls that converges to a bigger ball.

Lemma 8.1.3. Let f € BV(Ugr), p < R. Let (p;); such that p; < p and
pi — p. Then
Zli)ngo V(fv Pz) - I/(f7 p)

and

Proof. Fix € > 0; then there exists a function g € BV(U,) such that
supp(f —g) C U, and
[Dgl(Up) < v(f,p) +€

For j large enough we have that supp(f — g) C U,,. Hence

|Dg|(U,) = [Dg|(Uy;) = v(f, pi)
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Since € is arbitrary we obtain that

hmsupy(fnoi) < V(fap)

1—+00
To prove the other inequailty, for each ¢ we can find a function g; € BV (U,)
such that supp(g; — f) C U,, and

1
v(f,pi) + A > |Dgi|(U,,;)
Hence

[Dgil(Up) = |Dgil(Up,) = IDFI(Up \ By,) = v(f, p) = IDfIUp\ By,)
and therefore, since |Df|(U, \ B,,) — 0,

The second statement follows immediately from the first one. O

Next result is very important, because it estimates the difference of
v(f,p) and v(g, p) in terms of the integral difference of the traces of f and g
on the boundary of U,. This results tells us that if f and g have H" !-a.e.
the same trace on OU,, then v(f, p) = v(g, p). So we can think v(f,p) as

inf{|Dg|(Uy) | g~ = [~ in L'(3U,)}
Lemma 8.1.4. Let f,g € BV (Ugr) and p < R. Then

lw(f,p) —v(g,p)| S/ If~ — g | dH™ !

P
Proof. Since the inequality is simmetric, we can just prove that
v(fip) —v(g:p) < / |f~ =g |dH"!
au,

Fix € > 0; then there exists a function ¢ € BV (Ug) such that supp(f —¢) C
U, and
(Dol (Up) <v(f,p) +e

Let (p;)i be a sequence such that p; < p, p; — p and
[DfI(0U,) = |Dg|(8U,) =0

and supp(f — ¢) C U,,. Define, forevery i

gi 22{ 4 ,%n Up;
g ,inUg\ By,
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Then by Proposition 7.3.2 we have that g; € BV (Ug), and

v(g.p) < |Dgil(Up)
— IDe|Un) + DG\ Blo) + [ 1 =gt

Up,

< Dg|(U,) + [Dgl(U,\ B(pi)) + / g ldH

Up,

< V(f,p)+6+|D9|(U,o\U¢)+/ gl dH!

pi
Since € is arbitrary we obtain

v(g.p) — v(f, ) — DU\ Uy,) < / - g annt

Up;

Now, letting 7« — oo we obtain the desired result. O

Remark 8.1.5. if ¢(f, R) = 0, from the previous result it follows that, for
every g € BV (Ug),

DFI(U,) < |Dg|(U,) + /a A =g

Next two results are thecnical results we will use to obtain an useful
formulation of the estimate of Lemma 8.1.2.

Lemma 8.1.6. Let f € BV(Ur) and 0 < p <r < R. Then

[/UT\U,) d”;‘n.Dfuz < 2[/UT\Upmi_1d|Df|}.

1 1 ro
[P0 = 5 1DAW) + =) [ s at]

p

Tn—l

Proof. Suppose first that f € C'(Ug). Define, for 0 < ¢t < R,

f(zx) Jt<l|z| <R
fe(z) = { x

f<tm> | < t

Then

Df(x) Jt<|z| <R
Dfi(z) := t[pf(t;'> _ ﬁ(Df(t%),x)} Jz| <t

]
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Then, for |z| < t,

21 (1)l = 127122 () = et (1)

To calculate it we computed

‘Df(| |)_#<Df<t\%|) ‘ ‘Df< |)‘ +|ly2<D (| |) z)" -
red GRS
‘Df( |>‘ |xl|2<Df( |§|> z)’

) ’Df(tiﬂz [1_ <-’L'7Df<ty%\)>2 ]

. of21 (177)|

Hence, if |z| < ¢

N . (z, Df (t5))?
o)l = i) [1 _ xQDf(ti)f]

[N

Now

v(f,t) = [DFI(U) — (1) < | DI (U) = /U Dfildr  (82)

where in the last step we have take into account that f € C'. From the
Change of Variable Formula, and recalling the definition of D f;, we have

that 1
[ pstar =i [Cea [ paisoe)

Hence

z )2 |2
IDf(x)| da = il/ IDf(2)| [1_<’Df()2>] a1 ()
Ut n oU; ’Df(z)‘

Jun

Since if |a] < 1 it holds (1 — a,)% < 1- 1a, from (8.2) we obtain that

L n—1 t <Z7-Df>2 n—1
v(fit) < n_l/SUt [DfdH 2n— 1) /m EHITI
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hence

1 1-n <Z,Df>2 n—1 1-n n—1 _ _ -n
S /wt S < /{)Ut DSl (=1 [ 1Dl
+ (n =Dt "p(f,1)
d 1-n -n
= g (17" ] IDflde) + (=D
(8.3)

Then, integrating with respect to ¢ from 0 to p we obtain

1 / <$7Df>2 1— / 1—- /
- — = _dx < 7" Df|de—p ™" |Df|dx
2 Juau, 2"t Df| Ur =l U, |

R /Tt_”v,b(f, 1 dt (8.4)

From the Schwartz inequality we have that

[/UT\U ‘<|;U|H,Df)’dx]2 < (/UT\U |x’17”|Df]da:).

@.Df) |,
I /UT\U,, g | PP 4e)

So, from (8.4), we have obtained the desired result for f € C*.
Now, let f € BV (Ug); we can approximate f by C! functions f; such that
for almost every t

[ 10s1as s DA, [ 1 gt o
Ut (9Ut
Now from Lemma 8.1.4, ¥(fi,t) — 1(f,t); moreover, since

[ [0

-|Dfil

S
el

we obtain that the result holds for f € BV (Ug) and for almost every r, p.
Finally, if we fix 0 < r < p < R, we can find increasing sequences (r;); and
(pi); such that the result holds for each p; < r;. Then from Lemma 8.1.3 we
obtain that the result holds for every r, p. O

Lemma 8.1.7. Let f € BV(Ur) and 0 < p <r < R. Then

/Uy- """ d|Df| < [1 + (n—1)log (%)]Tl_n\DfKUr)

Up

+ (n—1)?2 /pr s "log (%)1/)(]‘, s)ds
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Proof. First suppose f € C1(Ug). In this case, from the Change of Variable
Formula we have

/ \ﬂfllnlDflde/ tl"(/ |Df!d7-[”’1) dt:/ £/ (1) dt
U\U, 0 oU

p

where we have set v(t) := fUz |Df|dz. Integrating by parts

/prtl—”y’(t)dt - [tl—”u(t)];—i—(n—l)/prt_"( Ut\Df|dx> dt

rln/Ur |Df]da;+(n—1)/prtn(/Ut IDf!dw> d

Using the fact that the last term in the inequality of the previous Lemma is
positive, we have that

IN

= [ |Df|de <t [H“/U IDf|dz + (n—1) /t sTY(f, 5) ds]

Ut

Hence

/prt_”< 3 IDf|dx) dtg/prt—l[rl—n/w |Dfdx+(n—1)/th—"¢(f,s)ds}
:rl—”log(g) /Ur|Df|dx+(n—I)Ar(it/trs_”w(f,s)ds

— 1" 1og (%) /U |Df|da+
(n—1) [ - logp/pr s "p(f,s)ds + /T(log s)s "Mp(f,s) ds]
p
_plon 1og;/U |Df|dz + (n—1) {/pr log (%)s’”w(f, s) ds]

Hence

/UT\Up DS de < o7 /U |Df|dz + (n — 1)r' " log (%) /U |Df|dz+
(n—1) /pr s log (%)w(f, s)ds

That is the desired estimate for f € C*(Ug). To prove the result for f €
BV (Ug) and for every p,r just reasoning as in the previous Lemma. O
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Putting together all the lemmas we obtain the following
Proposition 8.1.8. Let f € BV(Ug), 0 < p <r < R. Then

1 1 2 1 1
g A= [ ] < [Eipsiwn — S 1psie)

+(n—1)/prs_"¢(f,s)ds} : [rf_l (1+(n—1)log£) /U d|Df|

+2(n —1)? /7” s "log %w(f, s) ds}
p

Proof. From Remark 7.2.2 we have that

/ apf]= [ f@)anrt = L
Uy U t

||

f(tx)z dH !
oUy

Hence

g [, - [ as| < [

The result follows by putting together all the previous estimates. O

f(rz) = f~(px)| dH"

8.2 Estimates for minimal sets

In this section we want to obtain some estimate for the perimeter and the
Lebesgue measure of minimal sets, usign the results of the previous section.
So we consider the thesis of Proposition 8.1.8 when f = xp and F is a set
of minimizing boundary in Ug, that is ¢)(E, R) = 0. It hold:

Fact 1: from the previous proposition we obtain that

[, o gt < [ [l om]

n 1 1
< 2[Rl Bl LRI - B 69)
U\U, r p
and hence, for every p < r < R,
1 1

pn_1|aE|(Up) < g lOE|(Ur) (8.6)

that is the function )
p = ——I10E|(U,)

is a non decreasing function.
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Fact 2: now let 0 < s < r < R and consider the sets! E\ By and EU Bs.
Since F is minimal in Ug, FE is also minimal in U,; hence

P(E\ Bs,U;) = |0E|(Uy)

and
P(EN B,,U,) > |0E|(U;)

Recalling Remark 7.3.6 we obtain
P(E\ By,U,) = P(E,U, \ Bs) + H" 10U, N E)

and
P(EU B,,U,) = P(E,U, \ Bs) + H" 1 (0U, \ E)

for almost all s < r. Hence

P(E,U,) < P(E,U,\ B,) +min(H" 10U, N E),H" 18U, \ E))
< P(E,U,\ Bs) + %s”_lnwn (8.7)

for almost all s. So, if we take a sequence (s;);, s; — r, for which (8.7) holds
we obtain that

OE|(U) < 57 i (33)

Fact 3: now, if we take x € 0*F, we have that

9E\U,) g

pnfl

n—1

Hence, letting p — 0 in (8.6)
0E|(Uy) = " w1 (8.9)

Since 0*FE = OF, this estimate holds for each z € OF.

A similar inequality holds for the £™ measure of E N U, (x).

Proposition 8.2.1. Suppose (E,U) =0, and let xy € E. Then, for every
r < d(zg,0U) we have

7,.71

nE ” >
LUENT(w0)) 2 50

where C is the constant of the isoperimetric inequality (see Theorem 5.4.2).

'For simplicity we omitt the center of the balls.
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Proof. Let p < d(z¢,9U); since supp(xe — xp\v,) C U
|0E|(U) < |0(E\ U,)|(U)

hence

0E|(U,) < /a i (8.10)

On the other hand, from almost every p, it holds

O(ENU,)|(U) = |(‘3E|(Up)+/aU xedH" ! (8.11)

Hence from (8.10) and (8.11) it follows

d
D(ENT,)|(U) < 2/ X dH =20 (B AD,)
U, P

where the last step follows from the Coarea Formula. Recalling the isoperi-
metric inequality (see Theorem 5.4.2) we obtain

n—1

d 1 e
SLYENU,) = 5 (LY(ENT,))
L ENU) 2 5o (£1EN )
Integrating from 0 to r we obtain

G =
n > n
LY(ENU,) > 201/0 (c (EﬂUp)> dp

S 1/’" (1)—1?’17””
- 204 o \p" _QCln

Remark 8.2.2. Since E minimize the perimeter in U, also U\ E minimize
the perimeter in U. Hence if xg € OE and U,(xg) C U we obtain

1
2nw, C1

LM(Uy) < LE N Up(ao)) < (1- )erw

(Ur) < LBV (o0) < (1= 5 ) £°(U)
These inequalities tell us that if we look at the minimal set E from an its
boundary point, the set E, measurally speaking, cannot be too many, nor too

much with respect to a ball.
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Chapter 9

Regularity of minimal surfaces in R"

In this chapter we will study the regularity of minimal surfaces: in particular
we will prove (see Theorem 9.3.5) that minimal surfaces in R" are regular
for n < 7, while in higher dimensions there exist minimal surfaces with
singularities (see Section 9.4). We start by stating in Section 9.1 that the
only possible singularities for a minimal surface E must occour in OF \ 0*E
(Theorem 9.1.2). Then in the following two sections we will prove that
there are no singularity for minimal surfaces in R” for n < 7. The idea to
do this is the following one: given a minimal set £ we blow-up it in a point
x € OF, obtaining a minimal cone C' (see Theorem 9.2.2). Then C will be an
hyperplane if and only if OF is regular in . So the problem of the regularity
of minimal surfaces in R" is turned into the problem of existence of singular
minimal cone in R"®. We will show that we can concentrate on minimal cones
that have only a singularity (see Theorem 9.2.5). In Section 9.3 we will prove
that such a cones cannot exist in R™ for n < 7, proving the regularity of
minimal surfaces for n < 7: we will obtain this result calculating the first
and the second variation of the area functional (subsections 9.3.1 and 9.3.2)
and then showing that the mean curvature of a minimal cone in R™ with the
only possible singularity at the origin, is 0 for n < 7 (Theorem 9.3.4) and
hence that such a minimal cone must be an half space.

In Section 9.4 we will give an example of a minimal surface in R® having
a singularity at the origin (the so called Simons cone), thus proving that
the regularity result obtained is the best possible. Finally, to understand
the behaviour of minimal surfaces in higher dimension we will state that
the singular set of a minimal surface has bounded Hausdorff dimension (see
Theorem 9.3.6).

157
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9.1 Partial regularity of minimal surfaces

In this section we state the theorem of partial regularity of minimal surfaces,
showing that the reduced boundary 0* E of minimal surfaces is analytic and
the only possible singularities must occur in dF \ 9*E. For the proof of
these results see [Giu84, chapters 6, 7, 8]

The principal tool in regularity theorey is the following De Giorgi Lemma

Lemma 9.1.1. For every n > 2 and every a, 0 < a < 1, there exists a
constant o(n,«) such that if E is a Caccippoli set in R™, x € R™, p > 0 and

(B, By(z)) =0
)|

0E|(B, / AoE) | < o(n, @)™
p(z)
then
0| (Boyta)) - | [ aior)| <o [loBIB,w) - | [ dom)
Bap(z) By ()
The meaning of this lemma is the following one: suppose x = 0; the term
A(E,p) = |0E|(B,)— ‘ / aE

- pn—l[H"—l(Bpma*E)—(/Bma* VE(y)dH”_l(y)H

is called the excess, and it is the measure of how much the direction of
vp change in B, N 0*E. So if we can estimate the excess A(FE,p) with
o(n,a)p™ !, then we can estimate the excess A(E, ap) in terms of A(E, p).

The following result shows that OF is analytic in a neighbourhood of
every point z that satisfied the hypothesis of the previous lemma. In par-
ticular it can be shown that all the points of the reduced boundary satisfied
the hypothesis of De Giorgi Lemma.

Theorem 9.1.2. Suppose E is a Caccippoli set in R™, x € OF, p > 0 and
0 < a <1 are such that

By(z)) =0
0E|(B,(x)) ‘ / | <o(na)!
Then OFE N By(x) is an analtic hypersurface forr = pla — aﬁ).

So we have state that the singular set is cointained in OE \ 0*E. This
set can be nonempty, as we will see in Theorem 9.4.7, but we will find an
upper bound for its the Hausdorff dimension (see Theorem 9.3.6).
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9.2 Minimal Cones

The aim of this section is to prove that the existence of singularity for mini-
mal surfaces is equaivalent to the existence of minimal cone with singularity,
and in particular of minimal cones whith singularity at the origin. To obtain
this results we have to blow up a minimal set: this procedure will produce
a minimal cone (Theorem 9.2.2). Moreover we will prove, again blowing up
such a minimal cone (Proposition 9.2.6) and proving a relation between the
minimality of the cone and its exploded (Proposition 9.2.8), that we can
“exclude the dimensions that have more that a singular point” (Theorem
9.2.5).

Since we have to deal with exploded sets, we start by studing the be-
haviour of a sequence of a minimal sets converging to a set.

Lemma 9.2.1. Let U C R" be an open set, and let (E;); be a sequence of
Caccippoli sets of least area in U. Suppose that there exists a set E such
that E; — E. Then E has least perimeter in U.

Moreover, if L € U is an open set with |OE|(OL) = 0, then

lim |OE;|(L) = [0E[(L)
j—o0

Proof. We have to prove that, if A € U, then ¢(FE,A) = 0. Since if
Y(E,B) = 0 and B D A then ¢(E, A) = 0, we can suppose dA smooth!.
Hence

|0E;|(A) < H"1(94)
From the semicontinuity (see Theorem 5.1.4)
OE|(4) < H"L(04)

We want to apply Lemma 8.1.4 to the functions xg; and xg; but we are not

sure that
lim | [xp, — XpldH"™H =0

1—00 [

So we have tot do in this way: for ¢ > 0 and define
Ay ={x e U |d(z,A) <t}

Let T > 0 such that A7 C U. Since E; — E we obtain that

lim IxE; — xEldr =0
J]—00 AT :

et Ae U; if we take ¢ < M and we consider a mollifier p, we have that xa * p

is of class C*°, and supp(xa * p) € U. So, by Sard’s Lemma? there exists a ¢t € (0, 1) such
that 9A; is smooth, where A; := {x € R™ | (xa * pe)(x) <t} € U.
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Then there exists a subsequence (Ej, )s—o0 such that x B, — XE pointwise
a.e. in Ap. Hence, for almost every 0 < t < T we have

lim , X8, — xeldH" 1 =0 (9.1)

k—oo Jg

Since Ej, and E are sets of finite perimeter in A;, from Remark 7.3.5 we
have that for almost every 0 <t < T

(XE;, )a, = XE;,  (XE)a, = XE (9.2)

Hence for almost all 0 < ¢ < T we have that (9.1) and (9.2) hold. For these
t, from Lemma 8.1.4, we obtain that

lim v(E;

k—o0 Tk

At) = V(E, At)
Then

V(E, A)) = |0B|(Ar) = (B, A) < liminf (08, |(A) = v(Ej, A1) = 0

and hence
1/1(E7 At) =0

Since A C A; we obtain that
Y(E,A) =0

Now, let L € U such that |0E|(OL) = 0; we can find a smooth open set A
such that L € A € U; let (£}, ), be any subsequence of (£});. Reasoning
as above we can find a ¢t > 0 and a subsequence, also denoting with (E}j, )k
such that

lim v(E;

k—o0 Tk

Since Y(Ej,, Ar) = ¥(E, Ay) = 0 we have that

At) = V(E, At)

lim |0F;,|(A:) = |0E|(At)
k—o00

Hence by Theorem 5.2.4 we have the desired result. O

We note that, from the Compactness Theorem (see Theorem 5.3.2), the
condition E; — E is not restrictive.

Theorem 9.2.2. Let E be a minimal set in By, 0 € OE. Fott > 0 define
E,:={x€R" |tz € E}

Then, for every (t;);, t; — O there exists a subsequence denoted by (sj);
such that Es; — C' for some set C C R". Moreover C' is a minimal cone.



9.2. Minimal Cones 161

Proof. First we show that for each R > 0 there exists a subsequence (o;);
such that E,; converges in Bp. Since

1
|0E;|(BRr) = t'"|0E|(Bpr;) < annR”—l

where in the last step we hav eused the estimate in (8.8). We have that,
for ¢t such that Rt < 1, E; is minimal in Bg, and frome the Compactness
Theorem (see Theorem 5.3.2) there exists a subsequence (E,;); and a set
Cr C Bpg such that E;, — Cg in Bg. Using a diagonal process we find a
set C'C R™ and a subsequence (Ej,); such that £, — C locally. From the
preceing lemma we obtain that C is minimal.

Now we prove that C is a cone. To do this, from the proof of the previous
Lemma, we obtain that for almost all R > 0

|0E5,;|(Br) — [0C|(Br) (9-3)

Define )
f(t) = F|3E|(Bt) = [0E|(B1)

From (9.3) we have that for almost all R > 0

. . 1 1
lim f(s;R) = ].hm W\aEsj’(BR) = W’(?C’(BR)

Jj—o0 —00

Recalling (8.6) we also have that f is an increasing function, since E is
minimal. Let p < R for which the limit above holds. Since for every j we
can find an integer m; > 0 such that

Sjp > Sj+ij

we have that
f(8j+m;) < f(sjp) < f(sjR)

and hence
1 . . 1
SAl0CI(By) = Jim f(sp) = lim f(5,R) = 5o110C] (Br)

So we have proved that
1

pn—l

10C|(By)

is indipendent from p, for almost every p. Then from Proposition 8.1.8 apply
to x¢o we obtain that

/ e (pr) — xelra)| K™ = 0
0B,

for almost every r, p. Hence C differs only by a set of measure 0 from a cone
with vertex at the origin. O
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It is clear that if FE is regular in 0, then C' is a half space. From the
regularity of the boundary of minimal set it can be prove also the converse.
We only state this result, because its proof is based on some thecnical results
needed to prove Theorem 9.1.2.

Theorem 9.2.3. Let (Ej); be a sequence of minimal sets in By such that
E; — E for some set E € R". Let x € 0*E and (z;); such that x; € OE;,
xj — x. Then for j sufficiently large x; is a regular point of OE; and

lim vg,(z;) = ve(z)
j—00

Remark 9.2.4. From this theorem and the regularity theory for minimal
sets, we have that if there is mo minimal singular cones in R™, then for
every set E C R™ with ¢(E, p) =0, 0EN B, is an analytic hypersurface.

Now, our aim is to show that no singular minimal cones exists in R"
for n < 7, thus proving the regularity of minimal surface in R", n < 7. To
do this we will restrict our attenction to singular minimal cones which only
have singularity at the origin. This is possible thanks to the following

Theorem 9.2.5. Let C be a minimal cone in R™, singular at the origin.
Then there exists k < n and a minimal cone A C RF such that A is a
minimal cone which is singular only at the origin.

This theorem follows by the following three results.

First of all we want to understand what we obtain if we explode a minimal
cone in a boundary point different from its vertex.

Proposition 9.2.6. Let C be a minimal cone with vertex at the origin, and

xo € 9C\ {0}. Fort > 0 define
Cy={zeR"|zg+t(x —xz9) € C}

Then there exists a sequence (t;);, t; — 0 such that Cy; — Q, Q minimal
cone. Moreover QQ is a cylinder with azis through 0 and xg.

Proof. We can suppose xg = (0,...,0,a) a # 0. Since
xc (x) = xo(o + t(x — x9))

and C is a cone, we have that

_ 1
T o1

0G| (B (o, p)) |0C|(B(x0, pt)) = p"~HOC|(Bay, 1)

Arguing as in Theorem 9.2.2 we obtain that there exists a sequence (t;);,
tj — 0 such that Cy; — @, () minimal cone.
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Now we prove that there exists a set A C R"! such that Q = A x R.
Consider the measure

x - [Dxc] = (z,vc)|0C)|

If z is in the interior of C, then |0C| = 0; if x € JC since C is a cone, we
have (x,v¢) = 0. Hence = - [Dx¢c]| = 0. So, for every z € C

aDpxc = —(x — x9) - [Dxc]
and hence, using the Riesz Representation Theorem (Theorem 2.8.5)
[aDnxc| = [{z = 2o, vc) - [0C] | < |z = 20[|0C]
So

2—n n
dIDxe,| = g Daxel < -7 oc) < Ly
vt " ol 2 |wol
B(zo,p) B(zo,tp) 0 B(zo,tp) 0

where in the last step we have take into account that C' is minimal, and
hence used the estimate of Remark 8.8. Hence from Theorem 2.9.5 we have
that

DnXQ = ]liglo DnXCtj =0

Now we want to estimate xq(y,r) —xq(y,s), 0 < s < r, in terms of | D, xq].
Let f be a smooth function defined in Ug; if we defined, for each ¢ > 0, the
function f(y) := f(y,t), it holds

/BR fo-slanw < [ Dyl

Brx(s,t)

Now, taking an approximating sequence (f;); € BV (Ugr) N C*°(Ug) of xq,
we obtain that, for almost all s < t (in particular for those s,¢ such that
(fi)s = (xQ)s) that

/ (x@)s — (x@)i dH™ 1 < / d|Dayol =0
Br Brx(s)

we obtain that there exists a set A C R®~! such that for almost all r, s

xQ(W,s) =Xy, 1) = xa(y)
for almost all ¥y € R"1. So we have obtained that Q = A x R. O

Since @ is a cone, also A is a cone: in fact, for t,s > 0 and y € R,
recalling that xy belongs to the z,, axis

xa(ty) = xq(ty, (1 —t)a +ts) = xq(y, s) = xa(y)
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Now we prove that @) is minimal if and only if A is minimal. To do it
we need the following

Lemma 9.2.7. Let f € BVj,.(R™), that is f € BV (V) for each compact
subset V. Let U C R"! be an open bounded set. Then, for each T > 0,

/Ux(T,T)d’Df‘ > /TT(/U d|D i) di

where fi(y) := f(y,t). Equality holding when f is indipendent from x,,.
Proof. Suppose first f € CY(U x (=T, T)). Since

D10l = (YD) (nfpif(y, D)’ = D)
=1 =1

from the Fubini’s Theorem we obtain the desired inequality.
Now let f € BV(U x (=T,T)), and let (f;); be a sequence of C! functions
such that f; — f in LY(U x (=T, T)) and

lim |Df;|(U x (=T,T)) = [Df|(U x (=T, T))
j—oo
Possibily passing to a subsequence, we can suppose that for almost all ¢ €

(=T,T) we have
fie— fr LNU)

Then, by the semicontinuity we have
fm it |DS51(U) > |Di|(U)
That is, for almost all [t| < T f; € BV(U), and the desired inequality holds

for f € BV(U x (-T,T)).
Now suppose that f is indipendent from x,. Approximating f with C!

functions we obtain that
/ fDpgdz =0
Ux(=T.,T)

for all g € CH(U x (=T, T)). Then, if we take g € CH(U x (=T, T)) with
lg| < 1, we obtain

n—1
/ fdiv(g)dz = / > fDigdx
Ux(=T,T) Ux(=T,T)

i=1

T T
— [ at| pawnay< [ a [ Dy
=T U =T U
Hence we obtain that

T
/ Df|=/ dt/ Dy
(Ux(~T,T)) v Ju



9.2. Minimal Cones 165

Proposition 9.2.8. Let Q = A X R be a cylinder. Then Q is minimal in
R™ if and only if A is minimal in R* 1.

Proof. Suppose A is minimal in R®"~!. Let M be a Caccioppoli set coinciding
with @ outside a compact set K. Let T' > 0 such that

K CA:=Brx(-T,T)

From the previous Lemma we have that

T
ol )= [ a4t [ dony
-T Br

where xar,(y) == xam(y,t). Then M, coinciding with A outside a compact
set H C Bp. Since A is minimal

|0A|(Br) < |0M¢|(Br)
Hence

T
OM]|(A) > / R /B d0A] = 10Q|(A)

where in the last step we have take into account that x¢ is indipendent from
Ty since @ = A x R.

Now suppose @ is minimal in R®. If A is not minimal in R®~! there
exists €, R > 0 and a set E coinciding with A outside a compact set H C B
such that

|OE|(Br) < |0A| — €

Let T > 0 and define the set

v [ EX(TT) fan < T
Tl Q , otherwise

Then M = @ outside H x [T, T]. Since @ is minimal
0Q|(Br x [-T,T]) < [0M|(Br x [-T,T]) (9.4)
On the other hand from the previous Lemma
0Q|(Br x [-T,T]) = 2T'|0A|(Bg)

Moreover, since x s is indipendent from xz,, in Bg x (=T,T) we have
OM|(Br x [-T,T]) = |OM|(Bg x (—T,T)) + |0M|(Br x {~T,T})
2T |0E|(Br) + 2wy, 1 R"! (9.5)
2T|0A|(Br) — 2T¢ + 2w, 1 R"! (9.6)

0Q|(Br x (=T,T)) — 2T€ + 2w, _1 R"*

VANVA

where in step (9.5) we have used the fact that Bg x {—T, T} is regular, while
in step (9.6) we have used the fact that A is not minimal. Now, taking T
sufficiently large, we obtain a contradiction with (9.4). O
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Now we have all the elements to prove Proposition 9.2.5:

Proof. (of Proposition 9.2.5) let C' be a minimal cone in R™ singular in 0
and in xg # 0. Hence C is singular in all the points in the half line through
0 and xg. We can suppose that this half line is the positive z, axis. Now,
if we blow-up C near xy we obtain a minimal cylinder ) with the axis x,,
through 9Q and all the points in the z,, axis are singular, because limits of
singular points. Since we can write Q = A x R, with A minimal cones in
R"~! singular at the origin. Repeting the argument above as many times as
necessary, we obtain Proposition 9.2.6. 0
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9.3 First and second variation of the area

In this section we want to prove that no minimal singular cones can exist
in R™ for n <7, and hence, using Proposition 9.2.6 of the previous section,
we prove the regularity of minimal sets in R™ for n < 7. In the following
section, we will prove that this result is the best possible, showing a minimal
cone in R® singular at the origin.

We consider a cone in R"*! such that C has locally finite perimeter, and
0C' is smooth everywhere except possibly at the origin. We want to show
that OC is regular, or n > 7. This result is due to Simons, but we will follow
the proof due to Massari and Miranda (see [Mir06]).

Our framework is the following one: let A C R™ be an open set, and
u € C?(A); the hypersurface S we consider will be the graph of the function
u. In this case we have that the normal v to S is
Du(y) 1
V1+[Dul?” /T4 [Duf?

v(y) = ( ) yea

We will work in the cylinder 2 := A x R, and so we will extend v to all the
cylinder by

where z := (y, zp41) € Q.
Now we introduce the differential operator J, introduced by Miranda: for
x € S define §(z) := (01(x), ..., dp41(x)) where

0i(x) := Di(x) — (v(x), D(x))v(z)

Explain in words, the differential operator § is nothing but the projection
of the differential operator D on the tangent hyperplane to S.
Finally we define the Laplace operator

n+1
D= ndy
h=1

and the two functions
n+1

H .= Z (5th
h=1

and
n+1

02 = Z ((5ﬂ/j)2

ij=1
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We have that H(x) is the mean curvature of the hypersurface S in = and
that c?(x) is the sum of the squares of the principal curvatures of S in z.

Note: in this two sections we will work for simplicity in R"*! instead
that in R™.

Now we prove some useful identities we will use:

e it holds
n+1
Z I/Z‘(Si =0
i=1
in fact

n+1 n+1

Zz/iéi = (v,D) — ZVZ-2<I/, D)=0
i=1 i=1

e foreachi=1,...,n+ 1 it holds

n+1
Z Uh(sth =0
h=1
in fact
n+1
Zl/héiyh = 5(52’V’2 =0
h=1
e it holds
0ivj = 014
in fact, if 4,5 <n
n+1
5iVj = DZ'Vj —V; Z l/kaI/j
h=1
D; -

= Di( - 7) —vi ) _(Di(vwvy) — vjDivi)
Vv 1+[Dgl? ;
D;gD; D; "
_ ig J92+ i9 ;ZDngkag
1+ [Dgl* (14 |Dg|*)z ;=
D;g n
(A
B —— Z [(Dkangg + DyrgDyDjg)
(1+|Dgl?)2 1=

n
—2DkgD;g ) Dththg}
h=1
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Now, noting that D, D;g = D;D;.g since g is C?, we obtain that
(5@Vj - 5j7/i =0

Now, if i =n 4+ 1 and j < n we have that

n
5n+1Vj = _Vn—i—lg I/kaVj
k=1

1
= 7ZDkQ[DkDJ9(1+ |Dg|?) +D]gZDththg}
(1+ |Dg[?)2 h=1

and

1
Ojns1 = D<W> kz (W)

1
S S z DigD,Dig
(1+|Dgl2)2
1 n n
+—————=> DjgDig Y DrgDiDhg
(1+[Dgl?)z .o h=1
Hence
(5n+1Vj — (5jl/n+1 =0
e for each i,5 =1,...,n 4+ 1 the commutation formula holds
n+1
51'(5j = (5]'51' + Z(Vﬂsjyh — I/j(siljh)(sh
h=1
in fact
n+1 n+1
5i5j = DzD] - Z I/iI/hDhDj - Z[ ((SiI/th + ujdith)Dh - yjyhéiDh]
h=1 h=1

Hence, since d;v; = d;v;, we obtain that
n+1
51‘5]‘ — 5]51 = Z(Vz‘(sj’/h — z/j(Siz/h)éh
h=1

e foreach j =1,...,n+ 1 it holds

DVj = —C2Vj + 5JH
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in fact
n+1 n+1
DV]' = 252(21@ = 252(5]1/2

=1 =1
n+1 n+1

= Z |:(5J(521/Z + Z(Vidjyh — yjéiyh)éhyi]
=1 h=1
n+1

= Z 5]'62'7/2' — Vj62 = (S]H — I/j02
=1

where we have used the fact that ;v = d,v; and Z?:J“ll viopv; = 0.

Firstly we want to calculate the first and the second variation of the area
of S. To do this we consider a function g € C?(2), and the deformation of
S given by

Gila) = + tg(a)v(a)
where t € (—¢,¢) is such that Gy(x) € Q for each € S. Since S is a C?
hypersurface, we have that |0S| = H"LS. So we want to calculate

d2
—H"(GS)

d n
&H (Gt8)|t=o ) dt2

[t=0

9.3.1 First variation of the area

We need a parameterization of G;S: so we define the function ¢ : A — R*+1
as

o(y) = (y,u(y)) +tg(y, uy))v(y)

So, by the Area Formula, we have that

H(GLS) = /A Jdet () dy

where
N i <a¢h a¢h>
(/A 9,
el 0y; 81/]
So
0o o A ou ‘ ov; .
a—yi—EU+t<DZg+Dn+1ga—%)1/]+tga—%, j=1....n
Opny1  Ou Ot

ou
_ t<D- D —) ¢
52/1' ayl + ig + n+1gayi Unt+1 + 19
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Hence, taking into account that || = 1 and hence (D;v,v) = £ D;(|v|?) = 0,
and the definition of v, we have

Nj = hZ::l [(ein+t(Dig + Dnﬂggyl)uh + tggw; )-
(ens + UDjg + Dn+1g§;j)l/h + tggl;:ﬂ
+[ g;i <Dig + Dn+1gg;>un+1 + tgag’;fl }
{g;j + t(ng + Dnﬂgg;)unﬂ + tgag’;jl }
ou du
= it g
ol
#2[ (D Dungg ) (Dag + Dunogy ) + Z ?{]j o]
] (Dsgui + g;pjgunﬂ) + (Dn+1g§ Vi + Dn+1g§u g“ Vs )
+(Digw; + g;j]_)igunH) + (DanS v+ DanSU g“ Vs ) |
+24[(Dv.1)Dig + (D, y>DangZ 4 (D, )Dyg + (Div, y>Dan§:ﬂ
_ bu bu
dy; Oy
g+ 2;3 o o
(D s (o b+ 5 20
- n+1[ V2,185 + vivj
a2+ 32) ()
+t° ( (Vn41Dig — viDp119) (V41 Djg — vjDpiag) + g°vi sy ni:l ZZ ??Zj ) }

d

d
dt /1/det ZJ dt

et(A d
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We recall the formula for the derivate of a determinant

d
37 det(Xiy) = det(X;; jZlAZ] N

where (A};); is the inverse of the symmetric matrix ();j);;. Now using the
fact that

(ANij) e = €ij — ViV

and that

> (5),.

ij=1
= mznjl(&j - Vi”j)(Q( g;; + gz ) -9 nh(]/l@g,;jl + ]Og,;;l ) )
_ 292 (50 w22 ) — g (S - 2]

) el %
)

n 8 " n 9 .
+Zw[<% Div) — s } n+1|: V121+1) ZVJ gyjl

n

8V+1
1_Vn+1 Z vj - }

n n

Un+1 8Vn—i—l
= Zrntl 9 .
n—i—ll 11/1 Dy + gVn-I—l;Vz dy;
n n
8I/n+1 2 aVn+1
.
- gVnH Z;VZ 0y; ntl — Vi 0y;
1= 1=
= 2g¢ 3 “=2g Z(éﬂ/i +vi(v, Dy;)) = 2g( 251‘%' — Up41(V, Dyn+1>)
=1 Y i=1 i=1
n+1
= 29251%'
i=1
and that
ou Ou 1
det(Nij)),y = det (e + 5o ) = ——
( ( 2]))|t70 ) ayz ayj V721+1
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we obtain that

CHGS),y = /MZA (@9),..

i,j=1
n+1

= /Zg (Ghvn ), d
Ap=1

Then, using the Change of Variable Formula, we obtain

d
SHGS), ., = / Hg dH™
S

9.3.2 Second variation of the area

Now we want to calcultate the second variation of the area, that is

d

&(%Hn(Gt&) - dt /Vdet i Z:A”dt/\”dy)

,Jl

— /\/det ij) < ”dt)\”)2

’]_

" Z &A; th” " Z A” d? ”}

7J_ 7J_

Now we want to calculate each of the three terms in the integral. Let’s start
with the simple one, since we have already calculate in the previous section

n+1

(s ),, =1t Xom)

=1
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For the second term we have

n

1
Z >‘w dtQ I = Z 2(eij — vivy) [T(VnHDig - ViDn+1g> :

i,j=1 =0 ij=1 Vnt1
8Vh 3I/h }

(Vn—l—lDJg V]Dn+19> +9g Vn+1z e ay
1 J

= .} [ Z Va1(8i9)% = 2vn41 Z vi(8i9) (Gnr19) + (1 = v 41)(Gnt19)”
= =1

20,2 Y viv(Vng16ig = Vibn19) (Vn11059 — Vidni19)

t,j=1
n n+l
8Vh (9I/h
—|—2g V2 €ii — Vilj
+1 n+1 ;1; ] ? J ayz ay

Now, since

Vnt1 Z vi(0ig) (On+19) = —V3+1(5n+1g)2
i=1

and
n
> vivi(Vat18ig = vibn119) (Vnt1659 — Vidni19)
ij=1
:V2Zn:l/~(5- —252 n252n2n24
n41 1079 Vn4+10n+19 Vi zg Z V; +( n-i-lg) Zyz ZV’L]
i=1 j=1 i=1 j=1
= Vo1 (~Vn410n419)° — 2Vn+15n+19(—7/n+15n+19)(1 —vp 1)+ (6ng19)* (1 — 7y 0)?
= (5n+19)2
and

n n+l n n+l

Vg+1 Z Z(%’ - Vi’/j)ngzgzl; = V721+1 Z Z <(89]Z)2 - Z(dn—&-th)g
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we obtain that

n n+l 8Vh 9 n+1
Z )‘23 dt2 2|6g]* + 292< Z Z (8 ) — Vi Z(5n+lyh)2>
i,j=1 Tli=o im1 h=1 Y h=1
n+1ln+1 n+1
= 2ldg|* + 292< DN Give — vivy {1 0nravn)® = vl Z(5n+17/h)2)
h=1 i=1 h=1
n+ln+1 n+1
= 2|(5g’2+2g2< ZZ 5Vh +Zyn+1 n+1Vh
=11:=1
n+1 n+1 n+1
- Z 205 11VhV; 11 Z vidiv — vyt Z(5n+1l/h)2 )
h=1 i=1 h=1
n+1
= 20691 +2¢° > (6wn)?
h,i=1

where in the last step we have used the fact that Z"jll v;0; = 0.
For the third term: from the equality

n+1 d n+1

> ( i ) Anj = Z Aih dt)\h] —bij

Multipling for )\;k and summing over j we obtain

t zk ZbU)\

Hence

n d n
Z T det)\kz = Z bij ]kdt)\kz = - Z bi;bji

ik=1 i, k=1 ij=1
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Now we want to calculate explictly the coefficients in the summation:

im0 Z)\lhdt)\h”to

S s (4 22) s )

h=1 ay]
8V] 6% 1 aVnJrl -1 8Vn+1
( dy "oy ) T It Ty, T STy, =
n
ov; oy,
v, vp—= + 7)
av; hg ( h(9 hayj
_1 2 aVn-H
+gv n+1 vivi| — Vn+16n+1Vn+1 + (1 - ’/n+1) Dy, ) ]
J

. al/j 81/1- 1 '8Vn+1
= (ayﬁayj) Int1Vi—g,

—gv; [ (v, Dvj) + (v, Dju)}
—gyiviv 7:-%15H+1Vn+1

dv; Oy _ _
( J —+ ? ) — gynilyj@yn_H + gl/iunil(sn_HVj
Gyl (9 j

= g(éiljj + (5]'7/1' + Vj <I/, DV,L>) — Z/gill/j(sil/nJﬂ)

= g(25,~yj + v;(v, Dv;) — VjV;_’l_lén_A'_lVi)

= 29<6iyj —I—l/jgyha;h)

where in the last steps we have used the fact that §;v; = d;v;.
Hence

Zn:bz‘jbjz‘lt:o = 4QQZ<5V9+VJZWL )(61@—1—%2%8%)

ij=1 ij=1 k=1

- 492( > (6ivy)? - Zyn+15n+1yjzuk§;

ij=1 j=1 k=1

—Zl/ 5 uiu 8%—1— i uyyuayzayj>
n+19n+1V4 h e zghkzayhayk
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= 4g2< Z (5il/j>2 — Z 5n+1VjVn+1 <I/, Djl/) — Z 6n+1ViVn+1 <V, DZI/>

ij=1 =1 i=1

- ov; ov;

5 (o) 2)
ij=1 i j
= 492< 6w+ Gnsvy)® + D) (Gnpav)’ + (5n+11/n+1)2)
ij=1 =1 i=1

n—l—]l ’
= d44° Z (5iyj)2

ig=1

So we can write

e L 2 1 ) , ! ;
SH(CS) = /S[g (hzlfshyh) + 5 (2091 + 29 Z;I((sﬂ/h) )
1 n+1
—5492 Z ((5ZVJ)2}(1’H”
ig=1

Hence we obtain that the second variation of the area is

Ci;Hn(GtS) =/S [QQ(HQ —02) + \59\2} dH"
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9.3.3 Simons Theorem

In this section we want to prove the foundamental theorem due to Simons,
that allow us to prove the regularity of minimal surfaces in R"®, n < 7. The
main tools to prove this result are the first and the second variation of the
area calculated in the previous sections, togheter with the following

Theorem 9.3.1. Let C be a cone in R"™ such that OF is regular in R\
{0}. Suppose H=0 on OC. Then

1.5 26 5
§Dc > P —ct + 14|
in every point of OC such that ¢? > 0.
Proof. We have that
1 n+1 n+1
5 De Z Snon(0iwj)? = > On(diw;ondivy)
hz,] 1 h,i,j=1
n+1 n+1
= > (Gn0iy)*+ ) diviOndndiv;
haimj:l h77’7.7 1

Using the commutation formula we have that

n+1 n+1 n+1

Z 5iyj5h6h5i7jj = Z 5i7/j5h<5i(5hyj + Z(Vh(siuk - l/i(shljk)(skyj)
hyij=1 i j=1 k=1
n+1 n+1 n+1
= Z 5iyj5h5i5hyj + Z 5iyj5huh5iuj + Z 6iVth5h5in
hy,j=1 hyi,j3,k=1 hyi,j3,k=1
n+1 n+1 n+1
Z 0iVjORV;iOp V0KV — Z 5h5h7/k5k7/]( ZV’ Z)
h,i,j,k=1 h,g, k=1
n+1 n+1
Z 5h1/k6h5kl/j( ZVZ Z)
h.3,k=1
n+1 n+1

= Z 5iyj5h6i5hljj— Z 5i1/j5hui5huk5kyj
hyi,j=1 hi,j, k=1
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Now, using again the commutation formula, we want to rewrite the first
term of the sum above:

n+1 n+1 n+1
> Swidndibnv = > 66D+ > 6ivi(vbivk — vidhve)kOnv;
h,i,j=1 i,j=1 h,i,j,k=1
n+1 n+1 n+1
= — Z 5Z-Vj5i(021/] Z 0iv;0; Vk( Z vp0n )(5ij
ij=1 i,j,k=1
n+1 n+1 n+1
+ Z 5iVth5in(Vk(5hV3 — Vhfssz)(sst + Z ( Z Vifsi )yj5hyk5h6kyj
hii,j,k,s=1 hj k=1 i=1
n+1
+ Z 5iVjVi5th(Vk5th - Vh(SkVS)(SSI/j
hi,k,s=1
n+1 n+1 n+1 n+1
= — Z 52‘62( Z I/j&iV]‘ ) —c + Z 5iVj5inVk(55Vj ( Z V0, ) Vs
=1 j=1 ',j k,s=1 h=1
n+1 n+1 n+1
Z 5iVj(5in(5kV5(55Vj< Z ) + Z ( Z 1% Z)Vjéhykykéhysésyj
i,7,k,s=1 h=1 h,j,k,s=1  i=1
n+1 n+1

Z ( Z Vi(si)”jéthVh(SkVS(ssyj

h,j,k,s=1 =1
n+1

= —C4— Z (52‘Vj(5ivk(5kl/5551/j

i,5,k,s=1

Hence we have obtain that

n+1 n+1
Z 5iVj5h5hViVj = —C4—2 Z 6il/j6il/k5kljs(5sljj
h7j7k:1 k),i,j,S:].
n+1
= —*-2 Z VjVp0i0kVs0;0Vs
k},i,j,S:l

where in the last step we have used the fact that

n+1 n+1 n+1 n+l
Z 6il/k5kl/s = — Z Vk5i5kys s Z 51'1/]'5]‘1/3 = — Z I/j&‘djl/s
k=1 k=1 j=1 i=1

that hold since Y77 vdx = 0 and Z;Hll vjo; = 0.

Hence we have that
n+1 n+1

1
52702 +ct = Z (5z‘5th)2 -2 Z VjvR0i0kVs0;0Vs

hyi,j=1 ki j,s=1
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We note that

Aloc)? =

Hence, if ¢? > 0 we can write

1 n+1 n+1
57)02 + 04 - |5C|2 = Z (5h5iVj)2 —2 Z Vij5i5kV55i(5jV5
h,i,j=1 k,i,5,s=1
n+1 n+1

_szz( 3 5hyj5i5hyj)2 (9.7)

i=1  h,j=1

Now we want to give an upper bound of this quantity in a point = # 0.
We can suppose that v, = enp41; under this assumption we have that for
each function o € CTR"*!

Optia(z) =0, da(x)=Dia(x) YVi=1,...,n

Moreover, for each i = 1,...,n+1, using the commutation formula, we have
that
n+1
(0i0ns1Vn+1)(x) = (Ong10ivnt1) () + < Z(Vz‘5n+1l/h — Un410iVh ) OpVn 1 ) (x)
h=1
n+1
= - Z SiVnOpVny1(x)
h=1
n+1 n+1

_ _@-( S b )yn+1(x) + ( 3 yhaiah)ynﬂ(x) =0
h=1 h=1

So, in the point x, we have that the the first two terms on the right of (9.7)
can be write as

n+1 n+1 n n+l n
> Gnbiv)? =2 > vimbidvsdidivs = > Y (0n6iy)? =2 Y (8ibnpavs)?
hig=1 oingo=1 h=1ij=1 is=1

n

= Z (6h6iuj)2

ijh=1
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where in the last step we have used the fact that d;v41 = dp+1vi.

Now we want to estimate the last term on the right of (9.7). For this,
we choose e, := z|x|~}; since (x,v(x)) = 0 for each z # 0, in the point = we
have that

n+1

0=10;(z,v(x)) = Z( (ixn)vn + xpdivy ) = 6itni1 + | 2|0y
h=1

So, since for i <n  §;xny1(x) = Djzpi1(z) = 0, we obtain that

divn(x) =0 Vi<n

Hence, recalling that §,41a(x) = 0 and 0,1, = Spvp, = 0 for h =1,...,n,
we have that

n+1 n+1 n n 9

02|5C‘2 = Z ( Z (5hl/](5 5hyj) = Z ( Z (5th52‘(5th>
i=1  hj=1 i=1  hj=1
n n—1 n—1 n
< 2 (X 6 ) (X @) ) =Y Z (§:8n75)?
i=1  h,j=1 h,j=1 i=1 h,j=1

So, if ¢ > 0 we obtain that

n n—1
6c> <> (8i0nry)?

i=1 h,j=1

So we can conclude that in the point x we have

1 n n—1
5Dc2 et —16c)> =2 (8i0n1;)? Z(aa vn)?
=1 j5=1 =1
But in the point x
n+1
52'(5711/3' = (5n(51'l/j + Z(uiényh — l/n(siljh)dhuj
h=1
n+1
= 67151'7/]' = Dnéiuj 5 l/] Z Dh (5 V] |£C|_1(5Z'Vj

)

where we have used that fact that ¢;v; is homogeneous of degree —1, and

hence the Euler’s Theorem on homogeneous functions®.

3A function f : R™ — R is called homogeneous of degree k if for each o > 0 f(azx) =
a® f(z). Euler’s Theorem on homogeneous functions says that a differentiable function
f:+A— R, where A C R" is a cone, is homogeneous of degree k if and only if

"9
Zai i =kf(z) VzeA
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Moreover
n—1 n—1
D (6i0nry)? = a2 (Givy)? = |z 2
ij=1 ij=1

Hence we obtain that

1
51?02 + = [5c? > 262 x| 2

For the last result of this section we need the following

Lemma 9.3.2 (Integration by parts). Let OF be a smooth hypersurface
and let p € CHR"1). Then

dipdH" = / Hov; dH™
oOF oOF

Proof. First suppose that there exists g € C*°(U), U C R"™ open set, such
that

OE Nsupp ¢ C { (T, Tn+1) | g1 = 9(T) }
Since V11 = (1 + \Dg|2)_%, v; = —vpy1D;g for i = 1,...,n, we have that

n+1
dipdH™ = Z/(Eih_Viyh)V;ith(de
OF 1 JU

n+1
= —Z/ ¢Du[ (cin — vivn)vy iy | dT
h=1"U

n+1

-2 2 Vi
= — /U ‘P[Vn-H( — Divpy1 + }; Vn+lthh<7yn:_1> )
n+1
+ Z V;JhViDth] dz
h=1
n+1 n+1
= - / @ [ Vﬁfl( — V31 Y DhgDiDypg + v Y Dththy)
v h=1 h=1
1
vy (H + (v, §DM2>) } dz
= —/ Hov; dH"
OF

The genral case follows easly from partition of unity. O
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Remark 9.3.3. In particular, if OF is stationary, that is H = 0, we have
the standard formula by parts

/ wd;vdH" = —/ vo;udH”
oF OF

provided uv € CH(R"1). Now we want to integrating by parts the Laplace
operator D: if uv € CLH(R™™1) we have that

n+1

/ uDvdH" = — Zéhuéhv dH"™ = / vDdH"™
oF OB ] OF

Now we can prove the fundamental theorem of this section

Theorem 9.3.4 (Simons Theorem). Let C be a cone in R"™ such that
S := 0C is regular, except possibly at the origin. Suppose that for every
g € C! such that supp g N {0} = 0 it hold

d. . B
G H(GiS) =0

and

d2
1 M"(Ci8) = 0

Then either S is an hyperplane or n+1 > 8.

Proof. Since the first variation of the area is 0 for each g € C!, we obtain
that
H=0

Now, using the fact that the second variation is non negative we obtain that
/ g dH" < / 6|2 dH™ (9.8)
S S

Now let g € C! such that supp g N {0} = (), and write the inequality above
for the function gc in place of g, obtaining

/9204 dH" < / |gdc + cog|? dH™ (9.9)
S S
Moreover it holds

/|g5c+c5g|2d7-[" = /(g25c]2+62|6g|2—|—2gc<5g, sc) ) dH™
S S
1
= [ (sP16cP + gl + 6 et )

= [ (A6 + g? (15 - o) ) ane
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where in the last step we have used integration by parts. From the previous
Theorem we obtain that

/g2C4Hn§/62|5g’2+g2(64—202|$_Q)dHn
S S

that is
/(c2|59|2 — 2%z 2 YH > 0 (9.10)
S

By approximation inequality (9.10) holds for every g € C*(R"*1\ {0}) such
that

/9202|3:|_2 dH" < 400 (9.11)
S

Since C' is a cone we have that v is homogeneous of degree —1, and hence
c? is homogeneous of degree —2. Hence condition (9.11) becomes

2 2( T —4 39/
/Sg(m)c <‘x’>]m\ dH" < +o0

Since C' is regular in R"*1\ {0} we have that c? is continous in the compact
set K := SNOBy, and hence ||| co(x) < co0. Hence we can rewrite condition
(9.11) as

2
g

Now we consider the function
lz]* e[ <1

g(z) :=
|*t? 2| > 1

We want to determine v and f in order to satisfied condition (9.12), that is
such that

/ |.’E|2a_4d/Hn<—|—OO
SNB1

/ 22O~ A" < o0
S—B1

From the Coarea formula we can write the integrals as

1
H(SN Bl)/ r? = dr < 400
0

+0o0
H (S — By) / P2+~ 4p < 4o
1

So we have to impose that

4 — 4 —
n a+ < "

>
@y 2
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If we choose a and 8 satisfactory the system above, from our choise of g,
inequality (9.10) becomes

l/“ cﬂauxw)ﬁ—zcﬂx2a—2d10%+j/ 215(|2] ) 2—2c2 |22+ -2 aggn > 0
SNB1

S—B;
(9.13)
But

5(JzP)y = D(|z’) — (D(|=|"),v)v = pla[P"*z — (p|lz|’ ">z, v)v
plzlP 3 (x — (z,v)v)
and hence
5(|z[P)? = p?|a*P~2) (|2 ]? — (2v)?) = p?|a|? >

where in the last step we haave used the fact that C' is a cone. Hence (9.13)
becomes

(052 o 2)/ 02|w’2a—2 dH"™ + [(a + ﬁ)Q o 2]/ 02’x‘2(o¢+ﬁ)—2 dH" >0
SNB1 S—B;

So, if we choose a and /3 such that

0
0

AV

a?—2

(a+B)* —2
we obtain that ¢ = 0, and so the whole S is an hyperplane. All the conditions
about o and S can be satisfied if

that is if n = 2, 3,4, 5, 6. 0

So we have proved the following regularity theorem

Theorem 9.3.5. Suppose n < 7, and let E be a minimal set in B,. Then
OE N B, is an analytic hypersurface.

As we will see in the next section the above theorem is the best possible,
since in higer dimensions there exist minimal surfaces with singularity, that
is the set OF \ 0*FE is nonempty. But we can give an upper bound for the
dimension of the singular set, as we will state in the next theorem

Theorem 9.3.6. Suppose E is a minimal set in U C R", and let ¥ :=
(OE\ O*E)NU. Then

H¥(E)=0 foralls>n—8
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9.4 Minimality of the Simons cone

In this section we show that the Simons cone
Cs == {(z,y) e R* x R*| [z]* < |y}

is minimal in R8. This result is fundamental, because it says that Theorem
9.3.5 is the best possible.

To prove this result we will follow a simple thecnique due to De Philippis
and Paolini (see [DPP09)]).

We begin with the definition of sub-minimal sets, and two proposition
that we will use later.

Definition 9.4.1. Let U C R" be an open set. We say that a measurable
set F is a sub-minimal in U if for each open bounded set A C U

P(E, A) < P(F, A)
for each measurable set F' C E such that E\ F € A.

Proposition 9.4.2. Let U be an open set in R™ and E a measurable set. If
both E and E€:=U \ E are sub-minimal in U, then E is minimal in U.

Proof. Let A an open bounded subset of U, and F' be a measurable set such
that FAF € A. We want to show that

P(E, A) < P(F, A)
So, let
F.=ENnFCE
F":=(EUF)=E‘\FCE"
Then
E\F CEAFeA, E°\F'CEAFeA

From the sub-minimality of £ in U we have
P(E,A) < P(F';A)=P(ENF,A)
and from the sub-minimality of E° in U we have

P(E°, A) < P(F", A) = P((F")¢, A) = P(EUF, A)

Hence
P(ENF,A)+ P(EUF,A)>2P(E,A) (9.14)
From Lemma 6.4.1 we obtain
P(ENF,A)+P(EUF,A) < P(E,A)+ P(F,A) (9.15)

Using (9.14) and (9.15) we obtain
P(E,A) < P(F,A)
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Proposition 9.4.3. Let (Ey)x, E C U, where U C R"™ is an open set.
Suppose Ej is sub-minimal in U for each k, that E, C E and Ey, — E.
Then E is sub-minimal in U.

Proof. Let A C U be on open bounded set, F' C E be a measurable set such
that £\ F' € A. Consider the sets F}, := F' N Ej; then

F;:, C Ey
Ex\F,CE\FeA
Since Fj, is sub-minimal in U we have
P(Ey, A) < P(F,,A)=P(ENF;, A) (9.16)

Since E, C Epy UF C FE, from the convergenge E, — E we obtain that
E, UF — FE. Hence, from the semicontinuity

P(E,A) <liminf P(Ey, UF, A) (9.17)

k—o0

From Lemma 6.4.1
P(ExyUF,A) < P(Eg,A)+ P(F,A) — P(E,NE,A)

Passing to the liminf and using (9.16) on the right, and (9.17) on the left
we obtain the result. ]

Now we present a simple method to prove that a set is sub-minimal, the
method of sub-calibration.

Definition 9.4.4. Let E C U be a measurable set such that OE N U is C2.
A wvector field ¢ € CY(U;R™) such that

L §ypny =VE
2. div(§)(x) <0 VYxe ENU
3. 1¢l=1

is called a sub-calibration of E in U.
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Theorem 9.4.5. Let £ be a sub-calibration of E in U; suppose OE NU is
C?. Then E is sub-minimal in U.

Proof. Let A C U be an open bounded set, F' C E be a measurable set such
that £\ F € A. We want to show that

P(E, A) < P(F, A)

Since

P(F, A) == sup { /

div(p) | p € CHARY), g] <1}
FNA

we have to take functions v; € C}(A;R™) such that
(Vj)\E\F

Aj={zcA|lvj(x)=1} 1A
Define &; := v;§. Then

/E div(g)) da - /F div(e))da - /E | divlg) de = /E vl dr <0

Hence

=1, 0<y;<1 ind

/ div(€;) da < / div(¢;) da (9.18)
ENA

FNA
Since OE N A is C?

/ diV(fj) dz = / <£j, VE> dHnil = / Vj d’Hnil > H"’l(aEﬂAj)
EnA OENA O0ENA

Since A; 1 A we have

limn inf / div(é;) de > H'Y(DE N A) = P(E, A)
J ENA

Hence, using (9.18)

P(E,A) < /

divig)do < [ div()de < P(F.A)
ENA

FNA
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Now we can prove that the Simons cone in R"™, n = 2m, defined by
Cs == {(z,y) €R™ xR™ [ |z| < |y[}

is minimal in R™. To do it we reason as follows: we see at Cs as the zero-
sublevel of the function

_ et =yl

f(xv y) = 4
Clearly Cs = {f < 0}. For k\ {0} let

B = {f(x,y)ﬁ-%} Ey, = {f(l’,y)ﬁé}

We have that Fy, C Cs, Cs C Fj and Ey, — Cs, Fi, — Cs. We want to prove
that Ej and F}, are sub-minimal in R", and hence apply Proposition 9.4.3
to obtain that Cs and R™ \ Cs are sub-minimal in R"; finally we conclude
with Proposition 9.4.2.

To prove that Ej, and F} are sub-minimal we consider the vector field

_ Df
$=1by]

defined in © :=R™\ {0}. It holds

Theorem 9.4.6. Let m > 4. Then £ is a sub-calibration of E in 2, and
—& is a sub-calibration of F{ in Q.

Proof. Since OF), and OF}, are C?, we have that v, and vp, are respectively
the outer normal to the level sets { f(z,y) = —1} and {f(z,y) = +}. Clearly

€l =1

€|aE,C =VEy 6|F,,C = VFy

It remains to show that, for m > 4, £ has negative divergence. Since

div(§) = (Jf},)zi + ; <u];y}\>yi

i=1

we compute

- O (22 + [2P) (20 + |yl°) — |t S0 (2302 + dijs o))

> (). = 2 D

=1 =1
2z lyl® + mlz[® + mlz?ly|® — |a®
IDfPP
(m — Dz[* + (m + 2)|2[*|y/°
IDfPP
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For simmetry we also have

(o N =Dy + (m+ 2)lyel®
G

~\Df] DfP

Hence

IDfPAiv(E) = (m—1)zf*+ (m+2)|a2lyl® ~ (m = 1)ly* — (m + 2)lyl*|a)°
= (al* = [yl")((m = Dlal* = (m+ 2|yl + (m = 1]yl*)
= (fal* = [y | Iyl ((m = D2 = (m + 2t + (m— 1)) |

where t := %

[yl

We want show that |Df|3div(¢) has the same sign of |z[* — |y|*; to do
this we prove that the quantity (m—1)t?—(m+2)t-+(m—1) is non-negative:

A=(m+2)?—4(m—1)2=3m4—-m)<0
for m > 4. Since m — 1 > 0 we obtain that
div(¢) <0 in Ey,

and
div(=¢) <0  in Fj;

Hence ¢ and —¢ are the sub-calibrations desired. O

So we obtain the following

Theorem 9.4.7. The Simons cone Cg is minimal in R™ forn = 2m, m > 4.

Proof. From the Theorem above, and Theorem 9.4.5 we obtain that Ej, and
FY are sub-minimal in ). Since if E is measurable

P(E,A)=P(E,A\{0})

we have that Ej and F} are sub-minimal in R". Since Ej, C Cs, F}y C Cs°
and £ — Cs, Fi, — Cs®, from Proposition 9.4.3 we obtain that Cs and Cs®
are sub-minimal in R”. Hence Cs is minimal in R™. ]



Chapter 10

Non-parametric minimal surfaces in
Rn

In Section 5.3 we have proved the existence of minimal surfaces. What we
want to do in this chapter is to study the existence of minimal surface in
a bounded open set €2 that are the graph of some function u defined in 2.
We call this surfaces non-parametric minimal surfaces, and hence call the
others parametric minimal surfaces.

If we have a Lipschihtz function u : 2 — R, from the Area Formula we have
that the area of its graph is given by

A(u; Q) ::/ V' 1+ |Dul|?dx
Q

In Section 10.1 we will study the existence of a minimum for the func-
tional A in the class of the Lipschitz functions on €2 taking a prescribed
value ¢ on 0f), showing that a solution of this problem exists if the mean
curvature of 9 is non-negative (Theorem 10.1.12). Moreover we will give
an example of non existence of the solution in the case of positive curvature
of 9Q (Example 10.1.3).

In Section 10.2 we will study the Dirichlet problem in the BV space.
The idea is the following one: first of all we extend the notion of “area”
of the graph for functions in BV (Definition 10.2.1); then we will give a
weaker version of the problem: instead of minimize the functional .4 among
all functions in BV (2) taking a prescribed value ¢ on 09 (intended as the
trace of the function), we will minimize the functional

Z(v,Q):= /Q Vv 1+ |Dv]? + /89 1 Tr(v) — | dH™

among all the function v € BV(£2). The last term is think as a “penaliza-
tion” for not taking the boundary value ¥. We have to pass to this weaker

191
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formulation because, if we apply the direct method to the functional A ob-
taining a limit function u, we have no way to known which is the boundary
value of u. The important fact is that there is always the existence of a
minimun for the functional Z (Theorem 10.2.5). To prove the regularity of
this minimum we want to use the regularity results for parametric minimal
surfaces, and to do this we have to find some connection between this two
objects. First of all we will prove that the area of a graph in an open set
Q) is the perimeter of its subgraph in 2 x R (Theorem 10.2.7), and hence
we will prove that a function u is a minimum of the area functional in  if
and only if its subgraph locally minimize the perimeter in 2 x R (Theorem
10.2.10). This important result is due to Miranda.

Finally in Section 10.3 we will use Theorem 10.2.10 to extend the notion
of functions that minimize the area of a graph (called quasi-solutions), and
we will study some properties of this kind of functions. This extension
is necessary because in proving the Bernstein problem we have to work
with limits of non-parametric minimal surfaces, and we are not sure that
this limits are thierselves non-parametric minimal surface. This problem is
solved if we use quasi-solutions.

10.1 Classical solutions of the minimal surface equa-
tion

10.1.1 Existences results

In this section we study, in a classical framework, the Dirichlet problem for
the area functional: let u : & — R ba a Lipschitz function, where €2 C R” is
a bounded open set. Then, from the Area Formula, we have that the area
of the graph of u is given by

A(u, ) ;—/ 1+ Du? de
Q

Fix a Lipschitz function i defined on 9€2. We want to minimize the area
functional among all the Lipschitz functions defined in {2 taking the value

1 on 0f).

First of all we prove that the area functional is lower-semicontinuous
with respect to the uniform convergence.

Theorem 10.1.1. Let (u;); C C%Y(Q) converging uniformly on Q to a
Lipschitz function u. Then

1+ Duzdx<liminf/ 14 |Du;|?2dz
| VTFIDP s <timint [ (/14100
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Proof. Since 2 is a bounded set in R™ we have that £™"(€2) < co. Then
[ =51 < flu = ooy ()

Hence u; — u in L'(€2). Moreover, since it is well note that C%1(Q) =
Whee(Q) we have that

/\/1+|Du]2dx—/](Du,1)]dx
Q Q
= sup{ [ ((erpnr). (DUl 1)) do | = (g pnir) € CHRR™), [0 <

= sup{ /Q(sonﬂ +udiv(e)) dz | @ = (¢, onr1) € Co(BR™), |@] <1 }

Hence, if we fix ® = (¢, pp+1) € CLQ;R™1),|®| < 1 we have that

/(¢n+1 +udiv(p))de = lm [ (@p1 +uidiv(p))de
Q

Jj—0 Jo

< liminf/\/l—i—\Dudex
J—00 0

A

O]

Now our idea is to prove the existence of a minimum in the class of
Lipschitz functions using the above semicountinuity result and using, as
compactness theorem, the Ascoli-Arzeld Theorem. This theorem required
as assumption that the minimizing sequence we will use to extract a subse-
quence converging to the minimum, consist of functions that are uniformly
equicontinuous in the CY norm; an easy way to get this hypothesis is to re-
quired that these functions are uniformly bounded in the Lipschitz norm. In
this way we can apply the Ascoli-Arzeld Theorem toghether with the above
semicountinuity result to get the existence of a minimum in a subclass of the
Lipschitz function. Then we will study when this minimum is a minimum
in the whole class of Lipschitz function.

Definition 10.1.2. Let u be a Lipschitz function on . We denote by

|u|Q::sup{W|x#y GQ}<<>O

Now fiz ¢ € C%1(Q); for each k > 0 we define the spaces
Li(Q) = {u € C*(Q) | lula < k}
Lip(Q,¢) :={ue Lg(Q) |u=1v% on o}
L(Q,9) ={uecC(Q)|u=1v ondQ}

g
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We have the following two results of existence

Theorem 10.1.3. Letyp € CY1(9N), and suppose that Li,(Q, 1) is nonempty.
Then the area functional A achives its minimum in L (€, ).

Proof. Let (uj); C Lg(£2,%) be a minimizing sequence. Since the functions
uj are uniformly Lipschitz we can apply the Ascoli-Arzeld Theorem, and
hence find a subsequence converging uniformly on €2 to a continuous function
u. Moreover u € Li(Q,): in fact if we fix € > 0 we can find an integer j
such that for each j > j it holds ||u — uj||co < . Hence, for all z # y € Q
and j > 7,

fu(@) — uly)] < [u(e) — uj(@)] + |u;(@) — u;@)|+ [y (y) —uyl < b+ 2

For the arbitrary of € we obtain that u € Li(£2,%). Finally, from the semi-
countinuity of the functional area we obtain that u minimize the area among
all funcions in L (£2,1)). O

The area functional is strictly convex. In fact if we take u,v € C%1(Q)
and t € (0,1) we have that

Altu+ (1 -t)v,Q) = /Q\/l—HtDu—i—(l—t)Dv|dx

< /\/1+t2]Du2+(1—t)Q\DU\2+2t(1—t)<|Du],Dv]>dx
Q

_ /Q\/l—l—(t|Du\+(1—t)|Dv|)2dm

So we need to prove the inequality:

VIt (ta+ (1 —=6)b)2 <tvV1+a?+ (1—t)V1+b2

where a,b > 0, t € (0,1). If we make the square of the two positive members,
and make a little computation, we obtain (a+b)? > 0, and hence the desired
result.

Hence, if Lk(€,1) is nonempty, there is a unique minimum of the area
funcional. We denote it with u*. Now from the existence of a minimum in
L;(2,%) we want to obtain a minimum in L(£2, ).

Theorem 10.1.4. Let u* be the point of minimum of A in Ly(Q,1)). Sup-
pose [uF|q < k. Then uy also minimize A in L(Q,1)).

Proof. For t € [0,1] and v € L(2,) define

v = uF + t(v — uF)
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Then vt|,, = 1. Moreover we have that, for x # y € Q

vt () — ve(y)|

< |[u*la + t(|lvllo + lu*]o)
|z — |

Since ||u*||q < k if we choose t such that t < k — ||[u*|lq we obtain that
vt € Lk(Q,w) So

AF Q) < Avg, Q) < tA(w, Q) + (1 — t) A(u”, Q)

and hence

AU, Q) < A(v, Q)
O

These two results tell us that, in order to obtain the existence of a
minimum in L(£, 1), we need to estimate the Lispschitz constant of a u*.
First of all we note that for each ¢ € C%1(9Q) there exists a Lipschitz
function u,, € L(2, ). Hence we can apply Theorem 10.1.3. So, in order to
obtain a minimum for the area functional in L(€2,), we only need to get
an estimate of [|uy|/o. Our aim is to find some conditions under which we
can do it.

Notation: we will say that a function u minimizes the area in L(2)
to indent that u € Li(€2) minimize the area among all functions in Lk (2)
having the same boundary value on 0.

First of all we note the following two facts:
o if k <k then Li(Q,¢) C Li(Q2,)

e if u minimize A in Ly((2), then u also minimize the area functional in
L7(Q) for each Q C Q and k < k, if |lullg < k.
Reasoning as follows: if for absurd there exists a function v € Lz (€2)
such that v| - =wu _ and A(v,9Q) < A(u,Q), then the function

) u(x) ,xeﬂ\ﬁ
f'_{ v(z) ,z e

is continuous, and belongs to L (2): take x # y € Q

—ifw,y € O\ Q then | f(z) — f(y)| = |u(x) — u(y)| < ke —y|
— if 2,y € Q then | f(z) — f(y)| = [v(z) —v(y)| < klz—y| < ko —y]
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—if 7 € Q and Yy € Q\ﬁthen, if we denote by z a point of
{z+tly—x)|te0,1]}NoN

and recalling that u and v coincide on dQ and that |z — y| =
|z — z| + |z — y|, we have that

uy) = o)+ (uly) —v(@)) = v(z) + (uly) —u(z)) + (v(z) = v(v))
< w(x) +Ekly— 2|+ klz — 2| <wv(x) + kly — 2

Moreover we have that A(f, Q) < A(u,2). Absurd.

Definition 10.1.5. A function w € Li(Q2) is said to be

e a supersolution for A in Ly(Q) if for allv € Li(Q) such that v > w,
we have A(v,Q) > A(w, Q)

e a subsolution for A in Li(Q) if for all v € Li(Q) such that v < w,
we have A(v,Q) > A(w, Q)

It is clear that if u minimize the area in Ly (€2), then u is both super and
sub solution. It is clear that also the converse is true. An important tool is
the following

Lemma 10.1.6. (Weak maximum principle) Let w be a supersolution

and z a subsolution in Ly (). Suppose that w > z in Q. Then w > z in
Q.

Proof. Suppose the result does not hold. Then the set
K:={ze€Q|wx) <z)}

is nonempty. Let v := max{w, z}. Then v € L;(€2) and v > w; hence, since
w is a supersolution, A(v,2) > A(w, 2); this imply that

Az, K) > Aw, K)

Now, if we take f := min{w, z} we have that f € L;(Q) and f < v; hence,
since v is a subsolution, A(f, Q) > A(v,Q); this imply that

Alw, K) > A(z,K)
Hence we have obtain that

A(w, K) = A(z, K)
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Since z = w on 0K and z > w in K we must have Dz # Dw in a set of
positive measure. Hence

w—+ 2 1 1
A( ; K) < SAGK) + AW, K) = A(w, K)

Absurd because w is a supersolution in Ly (K) and wTH >won K. O

As a consequence we have

Lemma 10.1.7. Let w be a supersolution and z a subsolution in L (2).
Then

sup(z(z) —w(z)) = sup (2(y) — w(y))
e yeof2

Proof. First of all we note that if & € R, then w+ « is again a supersolution.
Now, let & € 0€2; then

z(x) < w(z) + sup [z(y) — w(y)]
yeoN

The term on the right is finite because z — w is a continuous function, and
0Q is a compact set. Then the function

f(x) == w(x) + sup (z(y) — w(y))
yeoN

is a supersolution. Hence, for the previous lemma, we obtain the desired
result. O

Remark 10.1.8. In particular if u and v minimize the area in L (), we
obtain that
sup |u — v| = sup |u — v|
Q o0

In fact, since u and v minimize the area in Li(QY), then they are both super
and sub-solution. So if we apply the previous lemma taking u as super-
solution and v as sub-solution we obtain that

sup(v(z) — u(z)) = sup (v(y) — u(y))
€N yeof2

Moreover if we apply the previous lemma taking v as super-solution and u
as sub-solution we obtain that

sup(u(z) — v(z)) = sup (u(y) —v(y))
€N yeo2

and so we obtain the desired result.
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Hence we obtain an important result due to von Neumann
Lemma 10.1.9. (Reduction to boundary estimate) Suppose u minime

the area in Ly(2). Then

uxr) —u
Hmm:am{ﬂi_J”ernweaQ}

Proof. Let x1 # x2 € Q, T := x5 — x1. Then the function
ur(z) :=u(x + 1)
minimize the area in Lg(£2), where
Qr={zeR" | z2+7€0Q}

We note that Q N Q, # () because it contains z1; hence both u and w,
minimize the area in Q N ),. From the remark above we obtain that there
exists z € (2 N ;) such that

(1) = ug| = lu(z1) — ur(z1)] < fu(z) = ur(2)] = |u(z) —u(z +7)]

Since (2N Q) = (02N Q) U (02, NQ), at leat one of the points z,z + 7
belongs to 0. If we denote by L the supremum of the thesis, we obtain
that

[u(z1) — u(w2)| < Llzy — a2

and hence L < ||ul|q. Since

ngzym{wgziﬁme#yEQ}

we obtain the desired result. O

Now we are in position to prove the existence of the solution of our
minimum problem under some conditions. First we need some definitions

Definition 10.1.10. Let x € 2, and denote with d(x) the distance of x
from 0); for t > 0 we define the sets

Yp={zxeQldx)<t}, Ti={zecQ|dx) =t}

Definition 10.1.11. Let ¢ € C%1(09); an upper barrier vt relative to 1
is a function vt € C%1(3,,) for some tg > 0 such that

) v+|a” = and v™ > sauéﬂb on I'y,

o v is a supersolution in 3y,
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A lower barrier v= relative to v is a function v= € C%(Zy,) for some
to > 0 such that

® v, =Y and v < ianéw on I'y,

e v~ s a subsolution in Xy,
We have the following

Theorem 10.1.12. Let ) € C%1(0Q), and suppose that there exist an upper
barrier vt and a lower barrier v— relative to 1p. Then the area functional A
achieves its minimum in L($,1)).

Proof. Let Q > max{ [[v*|s, ,[[v" s, } and let & > Q. As noted after the
proof of Theorem 10.1.3, there exists a function v € L;(€2) that minimize
the area in Li(2). Our aim is to prove that |lulq < k, and to do this we
have to estimate |u(z) — u(y)| when x €  and y € 9.

First of all we note that u also minimize the area in L (X,), where g > 0
is such that both v+ and v~ are defined in 3;,. Moreover it is clear that for
each z € )

inf < ufz) < s;gw

otherwise it is easy to find! a Lipschitz function with area less than the area
of u. In particular we have that

v (z) <u(z) <vt(x) in Ty,
Hence, for the weak maximum principle, we have that

v (z) <wu(z) <vt(z)  in X
Since v = u = v~ on 99, for each x € Ty, and each y € 9 we have that

v (2) — v (y) <ulx) —uly) <vt(z) — vt (y)

and hence

u(z) — u(y)| < max{ |v"(z) —v (Y], v (z) —v" ()|} < Qlz -yl

!Suppose that the set A:={z € Q| u(z) < iang} is non empty. Then if we define
e ugf P ,in A
u , otherwise

we have that f € Li(Q2) and A(f,Q) < A(u,Q). In a similar way we thread the case
u > sup.
20
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for each € T'y, and each y € 0. Now, if y € 02 and = € () is such that
d(x) > to we have that

W@ﬁ—uwﬂSHMﬂﬁmw—UQLMw—@gw}ScﬁoﬁQm—yl
o0

where we have used the fact that v is a supersolution and v~ is a subsolu-
tion, and hence

supt) — u(y) <supv’ —u(y) =supv’ —u(y) < Qo
19) Ty, Iy,

and, in the same way,
i f < t
U(y) HQ] T/J < (;2 0

In conclusion we have obtained that, for each x € Q and y € 99

lu(z) —u(y)| < Qlr — y|

Now from Lemmma 10.1.9 we obtain that |uljq < @ < k, and hence from
Theorem 10.1.4 we obtain that v minimize the area in L(€2,). O

10.1.2 Construction of barriers

Now our aim is to find some conditions under which the construction of
upper and lower barriers is possible. First of all we note that we can restric
our attection only on the existence of upper barrier, since if v is an upper
barrier relative to —, then —wv is a lower barrier relative to .

We start by findind a characterization of super-solution: let v be a super-
solution for the area functional in an open set ¥; hence for each C°(X)
function 1 > 0 it holds that the function

g(t) = Alv+tn,X) t>0

has a minimum in ¢ = 0, that is ¢’(0) > 0 (since it is defined only for ¢ > 0).
Calculating ¢’(0), and integrating by parts we obtain that

n
Dv
D&——J——)go in % (10.1)
Z.Z_; V14 |Dvl|?
Viceversa, if a function v satisfied inequality (10.1) then, thanks to the
strictly convexity of the area functional, we obtain that g(0) < g(1), that is
v is a super-solution in X.
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It is useful for later to write condition (10.1) in the following way: de-
fine the function F(p) := /1 + |p|?, where p € R™; hence condition (10.1)
becomes (using the formula for the derivation of composition of functions)

n
Z aijDiDjv <0 ;inX
t,j=1

where
(Sij(l + |DU|2) - DZ"UD]'U

(1+|Duf2)3

aij = DZD]F(D’LL) =

We suppose that 99 is of class C?, and hence that the diatance function
d defined by d(x) := d(x,0) is of class C? in some set Xy, (see [Giu94]);
moreover we suppose that 1 € C?(R™). We are searching for upper barrier
of the form

v(x) = ¥(2) + p(d(z))
where ¢[0, R] — R is a C? function such that

e(0)=0, ¢ {t)>1 ¢"(t)<0
©(R) > 2sup |¢|
Q

where R < tg will be determined later.

In this case condition (10.1) becomes
L(v) = aij(Yij + ¢'dij) + ¢"aijdid; <0 (10.2)

where, for simplicity, we write f; instead of D;f. Since A(p) := (as;(2))i;
is the Hessian matrix of the strictly convex function F', we have that A(p)
is semi-definite positive; denoting by A(p) its minimum eigenvalue, and by
A(p) its maximum eigenvalue, we have that they are positive; more precisely

Ap)=(1+1p)72,  Ap)=(1+p*) 2

Now we want to estimate £(v) under the assumption, that we will explain
later,
aijdij < CO(’D'U|2 + 1))\ (103)

Note: in what follows we will write ¢; to denote a constant, and we will
write A and A instead of A(p) and A(p) respectively.

Since a;;d;; > A|Dd|* = X, and that [¢| < ¢; in a neightborhood of ¥y,
we obtain that
L(v) < c1A+ Aeoy' (| Dv] + 1) + ¢
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Moreover
|Dv| < |Dy| +4'|Dd] < cg + 9

|Dv|+1<c4+ 144" < (c24+1)[1+¢] = 31 + ']
that yelds to
A
L) < A"+ e’ (1 +¢) + cry

Using the hypothesis 1/ > 1 we have the estimate

A
=D <14+ W 4 2090 < e’

and hence we get
L) < M¢" + ') (10.4)

We want to explain the geometric meaning of condition (10.3):
aij(Dv)dZ-j = )\[(1 + ’D’U|2)Ad — Uﬂ]jdl‘j] = )\[(1 + ‘DU‘Q)Ad — wﬂ,bjdm]

Since d and 1 are C? functions, in a neighborhood of 92 we can get an
uppper estimate of the last term of the above equation: v;1; < c. Now, if
we suppose that 02 has non-negative mean curvature, that is Ad < 0, we
can estimate

(1+ |Dv>)Ad < (1 — |Dv]*)Ad < —2(1 + |Dv|)Ad < ¢(1 4 |Dvl)

where in the last step we have used the fact that Ad is lower bounded in a
neighborhood of 0f). Putting all together we obtain

CLij(Dv)dij S C(]. + |DUD)\

under the assumption that Ad < 0.

Now that we have a simple estimate for £(v), we can easily prove that
the function

1
P(d) == -log(l+o0d), o>0
c
is an upper barrier relative to . In fact we have

2
/ 4 1" g

YT ltrad) ¥ T 1+ od)p
Hence
o2 o2 0
() < ( c(1+ od)? * cc2(1 + 0d)2>
Moreover
/ g g "
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o(R) = %log(l +oR)

So if we take R sufficiently large, we obtain that ¢’ > 1 and ¢(R) >
2supg |¢].

In conclusion we have proved the following

Theorem 10.1.13. Let Q be an open bounded set of R™ with C? boundary
of non-negative mean curvature, and let 1 be a C? function in R™. Then the
Dirichlet problem for the area functional with boundary datum 1 is uniquely

solvable in CO1(Q).

10.1.3 Non existence of minimal surfaces

In this section we want to prove that the condition on the mean curvature
of 9N is necessary for the solvability od the Dirichlet problem. In fact we
will prove in Theorem 10.1.16 that if in a point of 92 the mean curvature is
negative, then we can find a regular datum ) such that the Dirichlet problem
for the area functional has no solution in C%!'. We will also give a concrete
example of such a situation, that will be useful for some observation we will
do in Section 10.2.

First of all we need a variation of the maximum principle

Lemma 10.1.14. Let Q be a connected open set such that 90Q = 0°QU O,
where O'Q) is an open set, i.e. there exists an open set A such that ANOQ =
0'Q, °Q # 0, 0°QNo'Q = 0. Let u be a minimum for the area functional
in CO1(Q), and let v € CH(Q) N C(Q) be a super-solution such that

1. u<wv on 8°Q

ov
2. liminf inf — > |ulq,  where v is the outer normal to OS).
t—0+ ANl Ov

Then u < v in €.

Proof. First of all we suppose that v < v on 9°€2. For continuity there exists
a tg > 0 such that for each t < ty we have

ov
ke lujg on Ty N A (10.5)
u<w onTy\ A (10.6)

Suppose for absurd that there exists a point g €  such that u(xzg) > v(zo).
Let t < tg such that xg € Q; := Q\ T;. From Lemma 10.1.7 the function
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w := u restrict to {; must achives its positive maximum in a point z1 €
I't N A (for condition (10.6)). Then we have
— h) —
lim inf w(z v) —w(z1)
h—0+ h

> _lulo+ 2% >0
Ctulo 4+
= Q v

where the last inequality follows from condition (10.5). But this is absurd,
since in a point of maximum we would have a non-positive derivate. So we
have prove the result under the assumption that u < v. For the general case
consider the function v, :=v+¢, € > 0, and let € — 0. ]

Remark 10.1.15. In particular the above result holds if

@ = 400 on 010
ov

We have the following non-existence result
Theorem 10.1.16. Let  be a connected bounded open set in R™ of class C?,
and suppose that the mean curvature of 02 is negative in a point xy € Of).

Then there exists a regular function i such that the area functional has no
minimum in CO1(Q).

Proof. Suppose that v minimize the area functional in C%!'. We want to find
a condition that the datum of the Dirichlet problem, i.e. the set €2 and the
function v, must satisfied in order to have a solution. We start by estimate
the solution w in Q \ B, (x¢), for r > 0. For x outside B, (xo) we define the
function

6(x) == d(z, Br(z0)) = [z — zo| — 1
Define the function
v(x) :=A+¢Y(z)) A>0
In this case we obtain that
L(v) =A@ + (¢’ 20 +¢")]

So, if we choose ((8) := —B+/d we obtain that

B N2 /! N2 1
— - = <
£) = A[(= gz + (@) 20+ 0] <A@ 05+ "
Since . )
n— n—
N\) =
g |z — xo| — diam(Q)
we obtain the estimate
_3
Loy <A B2 ton gy

=A 4 l2diam(92)
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So, taking

B2 .— 2diam(92)
Ton—1

we obtain £(v) < 0, and hence v is a super-solution.

Moreover, since

0
afz =400 on dB;(xo)

we can apply Lemma 10.1.14, and choosing

A:= sup ¢+ By/diam(Q)

O\ By (z0)
we obtain the estimate

sup u< sup v=A
N\ Br (o) N\ Br(0)

In particular we obtain the estimate

sup < sup ¢+ By/diam(9) (10.7)

QﬂaBr(Io) 8Q\BT(I0)

Now we want to estimate u in Q N U, (xg). Since Ad > 0 and 01 is of
class C2, there exist €, R > 0 such that

Ad>e in QNUg(x) (10.8)
So we consider the ball Ur(xo); defined a function
v(z) == a — BVd

With the same calculation as above we obtain

£0) < NWPAd+ 9] £ (1= )

where in the last step we have use (10.8). So choosing 5 such that 1—¢5 < 0
we obtain L£(v) < 0, and hence v is a super-solution. Now set

a:= sup u-+ [+/diam(Q)

BUR(I())QQ

and apply Lemma 10.1.14 we obtain

sup < sup = sup u< sup ¢+ (B+S)/diam(Q)

QNURr(z0)  QNURr(z0)  OUr(w0)NQ ONUg(z0)

where we have used estimate (10.7) with » = R. Using the fact that u = v
on Jf) we obtain in particular that

sup Y < sup ¢+ (B+ B)y/diam(Q) (10.9)
I0NUR(z0) O\UR(z0)
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This condition is a necessary coondition on the datum for the existence
of a solution of the Dirichlet problem. So if we take 2 and v such that
condition (10.9) is not satisfied, for example such that

=0 on I\ Ugr(xo)
¥(x0) > (8 + B)y/diam(Q)
we obtain that the Dirichlet problem cannot has solution in C19(Q). O

Example of non existence of minimal surface 10.1.3: now we want
to give an explicit example of  and v such that the Dirichlet problem has
no solution in the space C9.

In R? consider the set
Q:={zcR?|p<|z| <R}
where 0 < p < R, and the function, for M > 0,

b= 0 ,ondUg
"l M ,ondU,

Since the function ¢ and the set €2 are symmetric with respect to the origin,
if there exists a minimum v € C19(€), this minimum must be symmetric
itself; so we can suppose that u = u(|z|) = u(r). We want to derive the
minimal surface equation for such a function u. Since

ou z; ,

or; mu
Hence the minimal surface equation becomes
22: D; ('iju/ ) =0
AV (VA
Making the explicit computation we get

1
U// + *U,[l + (u/)2} =0
T

To integrate this function we observe that it is an Eulero equation, and so

u'(z) = (VEka2—1)"" keR

Hence, integrating and imposing the condition u(R) = 0, we obtain that

_ .1 R+ VR?—¢?
u(z) = clog (—7“+ = )
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where the constant ¢, 0 < ¢ < p, is such that u(p) = M. We have that

R+VR2 -2 R+ /R?—p?
W) < plog (Tp) = Mo(R, p)

Hence we can solve the Dirichlet problem only if M < M.

u(p) = clog (

Moreover if M > My the minimal surface, that always exists for Theo-
rem 5.3.3, is compose by the graph of the function u corresponding to the
limit value My and by the part of the cilynder having has base U, that lies
between My and M.

This example is very important because it tells us that the Dirichlet
problem is not always solvable. This fact will motivate the introduction of a
weaker form of the Dirichlet problem, setted in BV, where we do not impose
the function u to have v as trace on 9€2, but we introduce a penalization to
not take the value ¥ on 0f2.

10.1.4 The a priori estimate for the gradient

Now we present, without proof, two important results concerning the solu-
tions of the minimal surface equation: the a priori estimate of the gradient,
and an existence theorem for the Dirichlet problem with continous data.

We need some notation: we denote with B¥(z¢) a ball in R"*!, and

with S the subgraph of a function u defined in Bg(z¢). moreover we define
SR(:L'o) =5N BR(J}()).

Theorem 10.1.17. Let u be a solution of the minimal surface equation in
Br(xg). Then there exists a constant ¢ > 0 such that

SUP B, (z0) ¥ — u(xo) ) }

sup |Du| < exp { c(l + I

Sry6(zo0)

Theorem above is an important result in the theory of non-parametric
minimal surfaces. As a first consequence we have the following

Theorem 10.1.18. Let Q be a bounded open set in R™ with C? boundary
of mon-negative mean curvature, and let 1 be a continous function on OS).

Then the Dirichlet problem for the minimal surface equation has a solution
u € C2Q)NC(Q).

We will see how the a priori estimate for the gradient will be useful for
the solution of the Bernstein problem.
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10.2 Dirichlet problem in the BV space

In this section we will see how to face the problem of the existence of non-
parametric minimal surfaces using the direct methods in the calculus of
variations in the space BV. This method will allow us to solve the problem
in a more general context: in fact we will deal with L! functions on the
boundary, and we will not need limitations on the curvature of our domain.
We will prove that this weaker form of the Dirichlet problem has always
a solution (Theorem 10.2.5). In Section 10.2.2 we will find an important
connection, due to Miranda (see [Mir64b]), between parametric and non-
parametric minimal surfaces. This connection is useful because it allows us
to get immediately regularity results for non-parametric minimal surfaces
from the regularity results of the parametric one.

10.2.1 Weak formulation of Dirichlet problem

Let €2 be a bounded open set of R" with Lipschitz boundary; our aim is to
apply the direct method to minimize the area functional

A, Q) ;:/ V1T DuP de
Q

among all the functions u taking presribed values ¢ € L'(92) on 9. As
for the parametric case we will use the space BV (1), and we intend the
boundary value 1 as the trace of u on 9€). Now we need to define what is
the area functional for a function u € BV(f2), in a way that extends the
usual definition. The proof of Theorem 10.1.1 gives us an idea of how do it:

Definition 10.2.1. Let u € BV (Q2), where Q is a bounded open set of R™.

We define
/Q V1 +|Dul? := |(Du, £")|(%)

For the Riesz Representation Theorem we obtain that this number is equal
to

SUP{ /Q(<Pn+1 + (u, D)) dz | & = (¢, pny1) € CHOQ R, B < 1}

Remark 10.2.2. We note the following two facts
e if Q is a bounded open set, then

|Du|(Q)§/Q\/1+|Du|2§ Dul(Q) + £(Q) (10.10)

Moreover, from the regularity of the measure |(Du, L™)|, we obtain that
these inequalities hold for each Borel set B C ().
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o ifuc WH(Q), then

/\/1+|Du|2:/\/1+|Du|2dx
Q Q

A theorem of semi-continuity holds

Theorem 10.2.3. Let (uj); C BV(Q) a sequence converging in L}, (Q) to
a function u. Then

/\/1+|Du\2§liminf/\/1+|Duj|2
Q J7eo Ja

Proof. Let @ = (¢, pp+1) € Co(QR™), @] < 1; then

/Q(<pn+1+<u,D<p>)d:v=j£@o[2(¢n+1+<UJ,Dg>)dwSlijrgj)gf/Q\/H\Dug‘lz
0

Now, let (u;); € BV(€) be a minimizing sequence; from Remark 10.2.2
we easily get that the sequence is bounded in the space BV (2); hence for the
compactness theorem (see Theorem 5.3.2) the sequence is relative compact in
LY(Q). Hence there exists a function v € L'(Q) such that u; — u in L'(£);
moreover, from the theorem above, we have that u € BV (Q) and that u
minimize the integral [, /1 + |Df[?. The problem is that we do not known
if u has v as trace on 9€). Moreover, from the example of non-existence of
solution 10.1.3 we cannot exepect that our problem has always a solution.
So we need to relax the condition on the trace, without changing the value
of the minimum. Next proposition suggest us a good weak formulation of
the Dirichlet problem.

Proposition 10.2.4. Let 2 an open bounded subset of R™ with boundary of
class C1, and let ¢ € L'(0S)). Then

inf{ A(u,Q) | u e BV(Q), Tr(u) =1 on 00}
= inf{ A(u,Q) + /89 Tr(u) — | dH" |u € BV(Q)}

Proof. The inequality > is clear; to prove the other one let u € BV (Q)
and fix € > 0. From Theorem 7.3.4 we have that there exists a function
w € WH(Q) such that

e w=u—1 on IN

. /]Dw|dx§(1+e)/ ITr(u) — o] dHn!
Q o0
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So, if we take the function v := w + u we obtain that v € BV(Q) and v = 1
on 0f). Moreover

/\/1+|Dv|2 < / 1+|Du|2+/\Dw|dx
Q Q Q

/ 1+ |Dul2 + (1 +5)/ |Tr(u) — | dH" !
Q o0

IN

Since ¢ is arbitrary we obtain the desired result. O

Hence we can give a weaker formulation of our problem as follows:
let © be a bounded open set with Lipschitz boundary, and let v € L(92);
find a function v € BV () that minimize the integral

I(v, ) ::/Q 1+|Dv|2+/aQ Tr(v) — | dH"!

among all the functions v € BV (Q).

Thuis weak formulation is very good because we have the following ex-
istence result

Theorem 10.2.5. Let Q2 be a bounded open set with Lipschitz boundary,
and let ¢ € LY(09). Then the functional I achives its minimum in BV (2).

Proof. First of all we prove that the functional Z is lower semicontinous with
respect to the L' convergence.

Let B be a ball such that B\ Q has Lipschitz boundary. From Theorem
7.3.4 there exists a function ¢ € WH1(B\ Q) such that Tr(¢y)) = 1 on O

and Tr(¢) =0 in 0B. For v € BV (Q) define the function

" v ,in
Y=< ~ 7
Y ,in B\ Q

Then v¥ € BV (B). Moreover if (u;); C BV(Q) such that u; — u in L*(2),
then u;/) — u¥ in L'(B). Hence, from Theorem 10.2.3 we have that

/\/1+|Duw|2§liminf/\/1+|Du}b|2
B J=oo JB

From this ineqaulity we want to obtain an inequality for the functional Z.
Since Uji o = Us\Q inequality above can be written as

/\/1+]Du¢]2§hminf 1+ | Duf|? (10.11)
Q )= Ja
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Moreover, since 0§ is a Borel set such that £"(9€2) = 0, from Remark 10.2.2,
we have that

/ \/1+ |Du¥| = |Du¢|(8§2) = / |Tr(u) — | dH™ L
o0 o0

Hence inequality (10.11) can be written as

[ VIFIDaP [t gl et <timint ([ 1 Dl [ el ane )
Q o0 J Q o0

So let (u;); be a minimizing sequence for the functional Z; then from
(10.10) we obtain that sup, [ Du;[(£2) < oo; hence we can apply the compact-
ness Theorem 5.3.2 to obtain the existence of a subsequence (uj, )i and a
function u € BV () such that u;, — u in L'(2). From the semi-continuity
of Z with respect to the L' convergence we obtain that the function v min-
imize the functional 7. O

Remark 10.2.6. The above theorem tells us that the weak formulation of
the Dirichlet problem has always a solution, without requirement on the cur-
vature of 0. In particular, if we consider the problem in Example 10.1.3
with datum M > My, we obtain that the minimum of the functional T s
take for the function u corresponding to the limit value My. In particular

we see that if u is the minimum of the functional L it is not necessary that
ut =1 on ON.

Moreover if we consider the following Dirichlet problem
Q:=Ur\ (0U,UU,)
0<e<p<R, and the function

b= 0 ,ondUg
| M ,on0U,UdU;

with M > My, we find that the functional T is minimized by the function

R+ VR?—¢?
o clog<¥) ,in Ur\ B,
u(z) = r+rZ— 2
M ,in U, \ Be

where ¢ is such that u(p) = My. So we see that is foundamental that the
function u belongs to the space BV (QY), instead of belonging to the space
Wt or C%1 because we need to allow the function u to “jump” on a set of
Lebesgue measure 0, in order to get the minimum of the functional Z.
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10.2.2 Connection between parametric and non-parametric
surfaces

Now we have the problem of the regularity of non-parametric minimal sur-
face. To solve it we want to connect parametric minimal surfaces with non
parametric minimal surfaces, and hence using the regularity result of the
previous chapter to get regularity theorems for our present case.

The idea is to prove that if a function v minimize the area integral in €2,
then its subgraph minimize the perimeter in @ := 2 x R.

Theorem 10.2.7. Let u € BV () and let
Ui={(2,t) e QxR |t <u(x)}
Then

l/\ﬂ%—DmL:WUKQxR)

Proof. First of all we note that the formula holds for C! functions, since each
term represents the area of the graph of u. So, let (u;); C BV (2) N C*(Q)
such that

uj — u in L'(Q)

/,/1+|Duj2—>/\/1+|Du|2
Q Q

This can be done using the approximation sequence of the Anzellotti-Giaquinta
Theorem. From the first condition we get

and

Uj—>U

where Uj; is the subgraph of the function u;. Hence

AU|(QxR) < liminf |0U;|(QxR) = 1i /,/1+D 42:/\/1+D 2
|OU |( )_ggg}! 51( ) Jim | Duj| A | Dl

To prove the other inequality we will prove that, for any ® = (1, -+, ont+1) €
CHQ; R with [®] < 1 it holds

|OU (2 x R) > / [uZDigpi + gonH} dz (10.12)
8 =
So let n: R — R be a C°(R) function such that
n(x) =n(-z) Ve eR, n=1in[-1,1], supp(n) C[-2,2]

0<n<1, |n[<1
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Then, for each h € N\ {0} define the function

x
n(%) Ja < h
nn(2) = nx+h-1) ,z<—h
nx—h+1) ,z>h

In particuolar we obtain that
—h h+1
[ m@de= [ @)
—h—1 h

is indipendent from h; hence we denote it by c. Moreover we note that

c+u(z)+h JAf Ju(z)| < h
u(x)
u(@) 2h / dz ,if h
/ () dar = c+2h+ A n(z)dz ,if u(z) >
—o0 u(x)
/ n(x)dx Jif u(z) < —h
—h—1

and that @)
wer 1 Af |u(x)] < h
x)dz = . N
[ = Ly i) >
Now fix ® = (1, ,ns1) € CHQ;R™1) with |®| < 1, and define the
function vy, : 2 x R — R"*! as

Y (@, Tpt1) 1= (2)0p(Tnt1)

Then 7y, € CHQ x R;R™™1) and |;| < 1. Hence

n+1
OU|(Q2 xR) > /div('yh)dwdxnﬂ—/ ZDiwzdwdxn+1
U Ui

= [ [ oua@m ) 4 iiwi(x)} deniy

u(z)

-/ [nhw(x»ww(:ﬂ)+§Dm<w> /

M (Tnt1) dxnﬂ} dz

[e.9]

(10.13)

Observ now that

/ (@) ) pns1 () e =/ 7 (w(z))pnn () dz + / (@) pns () da
Q {lu|<h}

{lu>h}

= [onal@dot [ u(e)) = Dpnia(e) o
Q {lu|>h}
(10.14)
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and

n

/Q (ipm(x) /_U(ﬂc) (1) dt) dz = /{ on [;Di%(gj)(c+u(x)+h) dz
/{|u>h} [ZDZ% <c+2h+/hu(x) 7 (t) dt)] da
of [; D@ [ me dt]
S /Q
oo [g Digi(a) (h s [ dt)] o

oo [Z_Z P </_h_1 m(t)dt = ¢~ u(w) - h>]

From (10.13), (10.14), (10.15) we obtain

> Digi(x)(c+ u(x) + h) | dz

(10.15)

dx

‘8U!(Q><R)Z/ [sOnJrl —i—ZchpZ (¢ +u(z) + h)
u(z)
+ /{u>h} (nh(u($)) - 1 Son-&-l + ZDZQOz (/h T]h(t) dt +h — u(x))] dx

+ /{u<—h} (Mn+1(u(x)) = Dpns1(z) + Z Dipi(x (/

= Rp+ Sp+1T}

np(t)dt — ¢ —u(zx) — h)] dzx

h—1

(10.16)

Since p; € C°(Q) for all i = 1,...,n we have that

Ry = / [@nﬂ + Z Djpi(x ] dx for all h
Q

Now we want to prove that

lim Sy, = hm T, =0

h—o0

If u(x) > h the, since supp(ny) C [-h —1,h + 1] and 0 < n, < 1 we have

that

u(x) u(zx)
/ o (t) dt+h—u(2)| < u(z)—hl+ / o (t) dt| < Ju(@)|+1 < 2u(z)|
h h
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Then there exists a positive constant ¢ = ¢(£2, ®) such that

1S < c/ ()| dz
{u>h}

Since u € L(Q) it follows that limj,_,o S, = 0. A similar argument gives
limy,_,oo Ty, = 0. Hence we have obtained the desired result. ]

Now we want to prove that, given a measurable set F' we can find a
function w whom area is less than the perimeter of F. We will do it in the
following two results.

Lemma 10.2.8. Let F' C @ := Q X R be a measurable set. Suppose that
there exists a T > 0 such that

Qx (—00,—T)C F CQx(—00,T)

For x € Q define the function

w(z) := lim [/k xr(x,t)dt — k:]

k—o00 —k

Then

/Q VIt Dul < [0F|(Q)

Proof. We note that OF N Q C Q x [T, T]. For each k set
k
wi(x) = / xr(x,t)dt — k
—k
for € Q. Then, for k,h > T we obtain that wy = wy, and hence w(z) =
f_TT Xxr(x,t)dt. Hence w is a bounded measurable function, in particular

—T<w(x)<T

Now let ® € CL(Q;R"*!), |®| < 1, and let n : R — R a smooth function
such that

0<n<l1
n(t) =0if [>T +1, nt)=1if[t|<T

We have that -
|-

—00
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for each x € Q, and

o) -T T
/ n(t)xp(e.tydt = / n(t) dt + / el

—00 -T-1 —

= / nt)dt+w(z)+T =w(z) + o
—T—1

where a > 0. Then, if we set y(z,xp11) := ®(z)n(xn41), we have that
v € CHQ R™1) and |y| < 1. Hence

n+1 a
OF|(Q) = /Q XF(xawn—i-l)Z%[n(wn+1)g0i(x)]dxdmn+l

=1

= /Q[(w+oz);g§:+s0n+1}dm

n
> / <90n+1 -HUZDi%‘) dx
Q i=1

Now, taking the supremum over all ®, we obtain the desired result. O

Now we want to remove the assumption that 02 N Q is bounded.

Theorem 10.2.9. Let F' be a measurable set in QQ := Q x R, where Q is a
bounded open set with Lipschitz boundary. Suppose that, for a.e. x € € it
hold

1. lim xp(z,t)=0, lim xp(z,t)=1

t——+o0 t——o0

2. the set Fy := FAQ™, where Q= = {(z,t) € Q | t <0}, is such that
En+1(F0) < o0

Then the function

w(z) := lim [/k xr(x,t)dt — k}

k—o0 —k

belongs to L*(Q) and

/ V1+|Duwl? < |0F|(Q x R)
Q

Proof. Step 1: for each k € N define the function

k
wi(x) = /_kxp(x,t) dt — k
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Then from hypothesis (1) it follows that for almost every x € Q
k(x) := inf {5 >0| xp(z,t) =0,Vt>s,xp(z,t) =1,Vt < —s}

Hence k)
wi(x) = / xr(x,t)dt — k(z) for each k > k(x)
—k(z)
and so the function w is well-defined. Moreover it holds

wi(z) = w(x)

for each x € Q.

Step 2: for each x € Q) define
M, ={teR]|(z,t) e Fp} CR
and consider the function g : 0 — R defined as
g(x) := LY M,) = / XF, (z,t)dt
R
From the Fubini’s Theorem we obtain that g is £™-measurable, and that

/Q\g(x)]dx—/ﬂﬁl(Mx)dm—/Qda:/RXFO(a:,t)dt—E”“(Fo)<oo

Hence g € L'(Q). Moreover

‘/_pr(x,t)dt—kz‘ - ‘/_(;(Xp(m,t)—1)dt+/0kxp(x,t)dt‘

|wi ()]

IA

0 k
/ r (1) — xo (@, )] di + / r (@ t) — xo- (@, 0)] dt
—k 0

k
_ /_k Xk (2, 1) dt < g(x)

That is |wg| < |g| in Q. Hence from the Lebesgue’s dominate convergence
Theorem it follows that wy — w in LY(Q).

Step 3: for k € N consider the set
F, .= FUI[Q x (—o0,—k)] \ [Q x (k,0)]

From the previous lemma it follows that

/Q VIt Dwil? < [0F(Q)
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Hence, takin into account that 2 has Lipschitz boundary, and the definition
of F}., we have that

/Q VIt Dl < 0RIQ)
— ORI x (00, k) NOFL) + | (@ x [k, oc]) N OF )
HOF(Q\ (€ x (—o0, k) U (2 x [k, oc])])
= OF(Q x {~k}) + [0F/(Q x {k})
HOF(Q\ (€ x (~o0, k) U (2 x [k, o0])])

OF|(Q) + / (1— xp)dH™ ' + / i dHn
Qx{—k} Qx{k}

IN

Hence, letting £ — oo, we obtain that

/\/1+|Dw\2 < lim [ /14 |[Dwgl?
Q

k—oco Jo

< lim [|8F!(Q)+/ (1—XF)d”H"‘1+/ XFd,Hn_lj|
k—ro0 Ox{—k} Qx{k}

= [0F|(Q)

where in the first step we have use the fact that wyp — w and then Theorem
10.2.3, and in the last step we have used hypothesis (1). O

Now we can connect parametric and non-parametric surfaces

Theorem 10.2.10. Let u € BV,.(2) be a local minimum of the area. Then
the set
Ui={(z,t) e QxR |t <u(x)}

minimizes locally the perimeter in € x R.

Proof. Let A € Q e I be a Caccioppoli set in ) coinciding with U outside a
compact set K C A x R. We want to apply the previous theorem to the set
F’; hence we need to prove that F satisfied the required hypothesis. First of
all we prove that U satisfied the hypothesis of Theorem 10.2.9:

1. since v € L'(Q) we have that, up to a set of measure 0, |u(z)| < oo
for each = € 2, and hence

tg%XU(xat) :07 tlir—nooXU<m7t):1
for each = € Q.

2. L7 (Up) = [, Ju| dz < oo since u € L*(Q)



10.2. Dirichlet problem in the BV space 219

Now we can pprove that F' satisfied the hypothesis

1. since K is compact there exists a T' > 0 such that K C Q x [T, T];
hence, since F' = U outside K we have that

Jim xp(2,t) = lim xu(z,t) =0
Jim xp(z,t) = lim xu(z,t) =1
for each £z €
2. LMYF) < LK) + £7H(Up) < o

Then we can apply Theorem 10.2.9 obtaining a function w such that

/ V1+|Duwl < |9F|(Q x R)
Q

Since the function w defined coincide with w outside A, we have that

OU|(A x R) = / I+ |Dup < / 1T [Dwp < |0F|(A x R)
A A
So we have obtained the desired result. O

Now that we have connect the non parametric minimal surfaces with
the parametric minimal surfaces, we can use the regularity results of the
previous chapter to get regularity results for our case. We will state the
results without proof.

Theorem 10.2.11. Let u € BVj,.(Q2), where Q is a bounded open set in R™
with Lipschitz boundary, a function that minimize

/ V14 |Dvl?
Q

among all the function v € BVjye(Q) having trace ¢ on OS2, where 1) €
LY(09) is a fived funcion. Then u is Lipschitz continous, and hence analitic,

in Q.
For the boundary regularity it holds

Theorem 10.2.12. Let 2 be a bounded open set in R™ with Lipschitz bound-
ary, and let u be a minimum of the functional

(v, ) ;:/Q 1+\Dv[2+/aQ\Tr(u)—¢|dH”_1

Suppose that 0 has non-negative mean curvature near a point xg, and that
¥ is continous at xg. Then

lim u(x) = ¥(xo)

T—T0
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10.3 Quasi-solutions

Non-parametric minimal surfaces are not so good if we pass to the limit of
a sequence: in fact in we have a sequence of hyperplanes converging to a
vertical hyperplanes. The problem of hyperplanes is that they are not graph,
and hence we can not use none of the results of the previous section, when
we deal with them. But Theorem 10.2.10 gives us a method to extend the
notion of a non-parametric minimal surface, just requiring that the subgraph
minimize the perimeter. This idea lead to the definition of quasi-solutions,
that clearly extend the notion of non-parametric solutions. In this section
we will show two important properties of quasi-solution: they have a good
behaviour when we pass to the limit of a sequence (Proposition 10.3.5),
and if they not take the value +oo then they are locally bounded above
(Proposition 10.3.8).

Definition 10.3.1. Let u :  — [—00,+00] be a measurable function. We
say that u is a quasti-solution of the minimal surface equation in € if its
subgraph locally minimize the primeter in £ x R.

We note, thanks to the results of the previous section, that every non-
parametric minimal surface is a quasi-solution. Moreover a result similar to
Proposition 9.2.8 holds.

Proposition 10.3.2. Let E C Q2 be a measurable set. Define the function

u(z) ::{ +o0 ,z€E

- ,x¢FE
Then u is a quasi-solution in Q if and only if & has least perimeter in €.

Proof. First suppose that E has least perimeter in ). Let V' be a Caccioppoli
set coinciding with U := E xR outside a compact set K C 2 xR. Let A €
and T > 0 such that

K CAp:=Ax (-T,7T)

For —T'<t < T set
Vii={zeQ|(x,t) eV}

We have that V; = F outside A, and hence, from the minimality of E, we
get
|0E[(A) < [0Vi|(A)

Hence, since xy is indipendent from the last coordinate, we have

T T
yaU|(AT):/ dt/ d|9E)| g/ dt/ dlovi| < |0V |(Ap)
_T A -T A
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Then U has least perimeter in 2 X R; since U is the subgraph of u we obtain
that u is a quasi-solution in ).

Now suppose that u is a quasi-solution in €2, and suppose for absurd that
FE has not least perimeter in {2 x R. Then there exists a compact set K C 2,
6 > 0 and a Caccioppoli set F' coinciding with E outside K such that

|0F|(K) < |0E|(K) — 6
We can suppose that K is smooth. For T' > 0 define
FxR |in Kp:=K x [-T,T]
Fr .=
E xR outside K

Hence
0Fr|(K7) = [0Fr|(K x (=T,T)) + [0Fr|(K x {-T} U K x {T'})
= P X RE x (<TT)+ [, = e
Kx{-T}

+/ Xb = X [dH™!
KX{T}‘ Fr rl

T

< JO(F x R)|(K x (—T,T)) + 2L™(K) = / OF|(K) dt + 27 ()
. =T
< / [OE|(K) — 8]dt +2L7(K)
-7
T
_ / 0E|(K) dt — 275 + 2™ (K)
-7
— |0(E x R)|(K x (=T, T)) — 2T6 + 2L"(K)
< |0(E x R)|(Kr) — 275 + 2L7(K)

So, if we take 70 > L™(K) we obtain a contraddition to the minimality of
the subgraph of u (that is £ x R) in 2 x R. O

Definition 10.3.3. Let u be a qusi-solution in ); we define the sets
P={zeQ|ulx)=40}, N:={zecQ|ulxr)=-c0}

Quasi-solutions allow to get existence results for the Dirichlet problem in
unbounded domains of infinite measure or in bounded domains with infinite
data. We are not intersted in it; we will only prove some results useful for
the solution of the Bernstein problem.
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Lemma 10.3.4. Let (ug)r be a sequence of measurable functions in Q, and
let Uy be the subgraph of ug. Suppose Uy — U in Q :=Q x R. Then U is a
subgraph of a measurable function u := Q — [—o0,+0o0], and there exists a
subsequence of (ug)r that converges almost everywhere to w.

Proof. Let x € Q and V C ). Define

VP={teR|(x,t)eV}

1
loc

T
k—o0 K -T k

Hence, possibly passing to a subsequence, we have that

Since xy, — xv in L;,.(Q), for every compact set K C € and every T' > 0

we have that

T
lim Ixvs — xu=|dt =0
k—o00 -T k
for each T' > 0 and almost every x € K, that is U — U? for almost every
x € Q. Since U = (—o0,ui(x)), the set U¥ must be an half line (possibly
0 or R) for almost every x € . So if we define

u(x) :=supU”

we have the desired result. O

Now we state a compactness result for quasi-solutions.

Proposition 10.3.5. Every sequence of quasi-solutions (ug)r in Q has a
subsequence converging almost everywhere to a quasi-solution.

Proof. Let K C QQ := Q) x R be a compact set. We can suppose that K has
smooth boundary. Let Uy be the subgraph of uy; hence from the minimality
of U; in @ we get

|0U;|(K) < [0(U; \ K)|(K) < 1" (9K)

Hence there exists a subsequence of (xv, ), still denoted with (xu, ), and a
function v € L'(K) such that xy, — u in L'(K); moreover we can suppose
that u is the characteristic function of some set in ). Covering ) with
compact sets and using a diagonal procedure we can select a subsequence
(Ug)i, converging to a set U in L}, (Q); from the above lemma we obtain
that U is a subgraph of a measurable function u, and that u; — w almost
everywhere; hence uj, — u in L'(Q). Finally, from Lemma 9.2.1 we obtain

that U is a minimal set in @), and hence u is a quasi-solution. O
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Finally we want to prove two results concerning a quasi-solution v and
the sets P and N. Since if u is a quasi-solution, then also —u is a quasi-
solution and the sets P and NN are interchange, we will only prove the results
for P.

Theorem 10.3.6. Let u be a qusi-solution in 2. Then P has locally least
perimeter in ( == Q x R.

Proof. For j define the functions
uj(z) = u(z) —j

Obviously the functions u; are quasi-solutions in 2. For j — oo the sequence
u; converges almost everywhere to the function

o(x) ::{ +o00 ,xE€P

-0 ,x ¢ P
From the previous proposition we have that v is a quasi-solution, and hence,
from Proposition 10.3.2 we obtain that P minimize the perimeter in Q). [J

Remark 10.3.7. Since P is minimal we have that there exists a constant
¢ > 0 such that for every x € Q and every 0 < R < d(x,00)

L"(PN Bgr(x)) > cR"

This imply that if A C Q is an open set such that L"(P N A) = 0, then
PN A=10. Moreover if P # (), then

L"(P) > co"
where § 1= sup,cp d(z, 0Q).

Proposition 10.3.8. Let u be a quasi-solution in Q and let P = (). Then
u s locally bounded above in 2.

Proof. Suppose the thesis is not true. Then there exists a compact set
K C Q and sequence (x;); C K converging to a point zg € K such that

u(zj) > j
Let 2R < d(z0,09), and suppose that |z; — 29| < R for each j. Let U; be
the subgraph of the funcion u;(z) := u(x) — j, that is a quasi-solution. Then
u(x;) > 0 for each j, and hence the point z; := (z;,0) € U;. Since Uj is a
minimal set in () we have that

,Cn(Uj N BR(Zj)) > ¢cR"!
and hence
L™(Uj N Bag(20)) > cR™! (10.17)

Since U; — P x R, from (10.17) we obtain that £™"(P x R) > 0, and hence
P is not empty. Absurd. O
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Chapter 11

The Bernstein Problem in R"

In this chapter we will solve the Bernstein Problem in the Euclidean case,
showing its validity in dimension n < 7 (Theorem 11.0.15). The fact that
the theorem is false in hygher dimensions pass throught a counterexample
due to De Giorgi, Giusti e Bombieri. Since the calculations under this coun-
terexample are very hard, we will only state that Bernstein Theorem is false
in dimension higher than 7 (Theorem 11.0.16).

In the introduction we proved the Bernstein Theorem in dimension n = 2
with a technique a hoc for this dimension. An idea suitable for all dimensions
was given by Fleming: if we have a minimal set U in R™ and we blow-in it,
what we obtain will be an half-space if we are in dimension n < 8 (because
we have proved that no singular minimal cones exist in these dimensions).
So, using the estimate for minimal sets proved in Section 8.2, we will find out
that also U must be a cone, and hence an half-space (Theorem 11.0.9). We
will apply this idea in Theorem 11.0.15 when U is the subgraph of a function
u. First of all we will prove in Proposition 11.0.12, using the calibration
method, that if u satisfied the minimal surface equation, then its subgraph
is a minimal set in R™ x R. Then we will blow-in the set U, and hence
consider the sets Uj, that are themselves subgraphs of some function ;.
The sets U; converges to some set C, that is itself the subgraph of a suitable
function v, thanks to Proposition 10.3.5. The foundamental fact is that, if
we are in dimension n < 7, the function v cannot assume the value 400 or
—o0, and hence it turns out that the gradient of the function u is bounded
in R™. Finally, using standard results of the theory of elliptic equations of
second order, we will obtain that u is an affine function (Theorem 11.0.13).
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We start by proving the foundamental brick of our idea

Theorem 11.0.9. Let U be a minimal set in R™. Then n > 8 or OU is an
hyperplane.

Proof. For j € N\ {0} define the “blow-in" of U
Uj={zeR"|jzeU}

The first part of the proof is similar to the proof of Theorem 9.2.2. First of

all we prove that U; is a minimal set in R". To prove this fix R > 0, and let

F Caccioppoli set such that FAU; € Bg; hence F1 AU € Bjg, and from
J

the minimality of U in Bj;r we obtain that
OF|(Br) = j'"|0Fy|(Bjr) > ' "|0U|(B;r) = |0U;|(Br)

Now we want to prove that there exists a minimal set C' such that U; — C
in R™. Fix R > 0; since each U; is minimal in Bpg, from the estimate (8.8)
we obtain that

1
|0U;|(BRr) < 5nwan—l

Hence from the Compactness Theorem 5.3.2 we obtain that there exists a
set Cr such that U; — Cr in Br. Moreover from Lemma 9.2.1 we obtain
that Cpr is minimal in Bg. Finally, using a diagonal process we obtain that
there exists a subsequence (r;); and a minimal set C' such that U,, — C
in R™; moreover, also using Lemma 9.2.1 we obtain that for almost every
R > 0 it holds

9U,,|(Br) = |0C|(Br) (1L.1)

Now we want to prove that C is a cone, and we will prove it showing that
the function
= 11700 (B,)

is indipendent from r; hence using (8.5) we obtain that, up to a set of
measure 0, C' is a cone with vertex at the origin. To do this consider the
function

p(r) == r17"|8Urj\(Br)
From (11.1) we have that for a.e. R >0

lim p(r;R) = R'""|0C|(Bg) (11.2)

Jj—00

Fix p < R; then for each r; there exists an integer m,.; such that (rj—l—mTj )p >
jR. Using the mononicity of the function p (see (8.6)) we obtain that

p(rjp) < p(rjR) < p((rj +mye;)p)
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Hence from (11.2) we obtain that for a.e. p < R
p'"0C|(B,) = R'~"|0C|(Br)

It follows that C is a minimal cone in R™.

Now suppose that n < 7; in this case we have proved that all minimal
cones must be half-spaces, and hence C' is an half-space. So we have that
R'™™0C|(BR) = wy_1 for each R > 0. Moreover from (8.9) we have that
wn—1 < R17"|0U|(BR). So we obtain that

wn—1 < (Rrj)'""|0U|(B,,r) = R'"|0U,,|(Br) — R'"|0C|(Bg) = wn—1
(11.3)
Since the function R + R!'""|0U|(Bpg) is a non-decreasing function, and
r; — oo for j — oo, from (11.3) we obtain that

R'""|0U|(BR) = wn-1

for all R > 0, and hence from (8.5) we obtain that U is a cone itself. Hence
U is a minimal cone in R™, and since n < 7 we obtain that U is an half-space,
and hence QU is an hyperplane. O

Now we want to prove that if u satisfied the minimal surface equation
then its subgraph is a minimal set in R™ x R. To do this we need a stronger
version of Theorem 9.4.5.

Definition 11.0.10. Let E C Q be a measurable set with C? boundary. We
say that a vector field ¢ € CL(S;R™) is a calibration for E in §) if

e div({) =0in QNE
o [f=1

e {=vp on OENS)

Lemma 11.0.11 (Calibration method). If a Caccioppoli set E with C?
boundary has a calibration in ), then E is minimal in Q)

Proof. We can repeat the proof of Theorem 9.4.5 to obtain that £ is a sub-
calibration for E and for 2\ E. Then we obtain that E and Q \ E are
sub-minimal in 2, and hence F is minimal in ). ]

Proposition 11.0.12. If a function u : Q — R is a solution of the minimal
surface equation in an open set @ C R", then its subgraph U is a minimal
set in Q :=Q x R.
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Proof. The boundary of the set U is of class C?, since it is the graph of w.
Moreover the vector field

(Du,—1)

1+ [Dul?

is a calibration for U in ). Then from the previous lemma we obtain that
U is minimal in Q. O

§:=

Before going on we note that the minimal surface equation

n
D;u
Di| ———]=0 (11.4)
>0 ()
is an elliptic equation of second order in divergence form. In fact if we define

T(p) = ——2—, peR"

VIt
we have that equation (11.4) can be write as
div(T(Du)) = 0
Since

OT; _ eij(1+1p?)) — pip)
Ip; 1+ pf?

T.

we have that the matrix A := < 3 l) is a symmetric matrix, and hence it
Pj/ ij

is diagonalizable. Denoting with v and A the minimum and the maximum

eigenvalue of A respectively, we have that

n
oT;
vlz|? < —zx; < Alz|?>  for each z € R"
op;~ "
j

ij=1
Finally it is clear that |T'(p)|] < 1, and hence we have obtained that the
minimal surface equation in R™ is an elliptic equation of second order in
divergence form.

Now we want to prove that an entire solution of the minimal surface
equation with bounded gradient is an affine function.

Theorem 11.0.13. Let u be a solution of the minimal surface equation
i R™. Suppose that u has bounded gradient in R™. Then u is an affine
function.



229

Proof. Recalling the calculation at the end of Section 10.1, when we proved
the existence of upper barrier, we have that the function u satisfied the
integral equation

/ > DiF(Du)Dipdr =0 Ve CHR"RY)
"i=1

where F(p) := /14 |p|?>. Now if we take as ¢ the function D1, where
1 < s < nis a fixed index, and 1 € C%(R";R"), we obtain, integrating two
times by parts

0= / > DiF(Du)Djp da = / > Di(D<DiF(Du))i dz
R™ =1 "=t
Since this equation holds for every ¢ € C2?(R"™; R™), we must have that
> Di(DsDiF(Du)) =0

=1

that is the function w := Dsu satisfied the equation
n
ZDi(aij(:U)Djw) =0 (11.5)
i=1

where

_ Eij(l + ’DU‘Q) — DiuDju
(1+[Dul?)?

Since |Dul is bounded in R", and hence the coefficients a;; are bounded,
we obtain a lower bounded for the minimum eigenvalue of the matrix A :=
(aij)ij. Recalling that the function F' is strictly convex, and hence the matrix
A is definite positive, we obtain that there exists v > 0 such that

a;;&i&; > v|E|?

for all £ € R™. So we have obtained that the equation (11.5) is uniformly
elliptic. Since w is bounded, because Du is, we obtain that infw > —oc;
hence the function z := w — inf w satisfied themself equation (11.5). From
the Harnack’s inequality (see [Mos61]) we obtain that there exists a constant
¢ > 0 such that, for all R > 0,

Qi (1‘) = DZD]F(DU)

sup z < cinf 2z
Br

Letting R — oo we get supgn 2 = 0 and hence w is constant. So we obtain
that for each s = 1,...,n Dsu is constant, and hence u is an affine function
as desired. O
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Next technical result says that if a sequence of quasi-solutions converges
to a function that does not assume the value 400, then the quasi-solutions
of the sequence are uniformly locally bounded above.

Lemma 11.0.14. Let Q be an open bounded set in R™, and let (u;); be a
sequence of quasi-solutions in ) converging almost everywhere to a quasi-
solution v. Supposet that

P={zeQ|v(x)=400}=10

Then for every compact set K C ) there exists a constant ¢(K) > 0 such
that
sup sup u;(x) < ¢(K)
Jj zeEK
That is (uj); is uniformly locally bounded above.

Proof. From Proposition 10.3.8 we have that v is locally bounded above in
Q. Let K C 2 be a compact set, and let 2d := d(K,99) (if @ = R we set
d=1). Set

¢(K) := sup v(x)

zeKy
where
Ki={zeR"|dz,K)<d}
We note that ¢(K) < oo because P = (). Then it holds
sup sup uj(z) < ¢(K)
Jj zeK

*

Otherwise there would exists 0 < € < d, a subsequence (uj

of points (x;); C K such that

); and a sequence

zj = (zj,c(K) +¢) € U]
Since U,  has leat perimeter in Q x R we have that
E"(U; N B:(z;)) > a(n)e"

Since, from the definition of the point z;j, K. x (¢(K),c(K) 4 2¢) D B:(zj),
we have that

LMUE N (K x (e(K), e(K) +2¢))) > a(n)e"

Since u; — v almost everywhere, we have that U; — V, where V is the
subgraph of v. Hence

LMV N (K. x (e(K),ce(K) +2¢))) > a(n)e"™ >0

That is
VN(K: x (e(K),e(K)+2e)) £ 0

This is absurd for the definition of ¢(K). O
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Now we have all the results to extend the Bernstein Theorem in higher
dimensions

Theorem 11.0.15. Let v : R® — R be an entire solution of the minimal
surface equation

- D;u
S )
prt 1+ |Dul?
Then n > 8 or the graph of u is an hyperplane.
Proof. Let U be the subgraph of u; define, for each 7,
Uj={zecR"|jzecU}
Then Uj is the subgraph of the function

(@) = ulja)

Moreover we already known that there exists a subsequence U,, — C', where
C is a minimal cone. Then, from Lemma 10.3.4 and Proposition 10.3.5 we
have that C is the subgraph of a quasi-solution v. Let

P:={zeR"|v(z) =400}

N ={zeR"|v(z)=-0}

First suppose that P = (). Since Ur; — U imply uj — v almost every-
where, from the previous lemma we have that the functions u,; are uniformly
bounded above in Bj, and hence

sup () < o(By)r,
CEGBT‘J-

From the a priori estimate of the gradient we have that

sup |Du| < exp { c<1 L o(By) — u(0)> }

S’V‘j/6 Tj
Letting j — oo we obtain
sup |Du| <~

where v > 0 is a constant. Hence we can apply Theorem 11.0.13 to conclude
that v is an affine function. Note that the same conclusion can be obtained
also if we suppose N = {).

Now we prove that if n < 7, then one of P or N must be empty. Other-
wise they are both non-empty, and since v is a quasi-solution, from Theorem
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10.3.6 we get that they are minimal sets in R™. Moreover since C' is a cone,
we have that P and N are cones in R" with vertex at the origin: in fact
if x € P, then v(xz) = +oo and hence, for each t > 0, (x,t) € C; since
{A(z,t) | A > 0} € C we obtain that \x € P for each A > 0, that is P is a
cone. Same argument for .

Now, since n < 7, the regularity result for minimal cones in these di-
mensions, tells use P and N must be half-spaces. So we obtain that

v(z) = 40 ,x€P
| —© ,xe N=R"\P

Hence C is an half-space, and 0C' is a vertical hyperplane. Arguing as in
Theorem 11.0.9 we obtain that U = C. But this is impossible since U is
the graph of the function v : R — R and hence it cannot be a vertical
hyperplane. So both P and N must be empty if n < 7. 0

As noted at the beginning of this chapter, if we denote by Cg the Simons
cone in R®, we have that the function

f@) :={ e

we obtain that f is a quasi-solution in R®. Moreover using the Simons
cone, Bombieri, De Giorgi e Giusti in [BDGG69], can be able to construct a
suitable super and sub-solution of the minimal surface equation that make
possible an estimate of the solution of the Dirichlet problem for the area
functional for a suitable boundary datum that make possible to conclude
that the solution cannot be an hyperplane. So they proved the following
foundamental

Theorem 11.0.16. Let n > 8. Then there exists entire solutions of the
minimal surface equation

n
i ———— ) =
p V' 1+ |Dul?
which are not hyperplane.
This results tells us that in dimension higher than 7, there exists solution
of the minimal surface equation which are not hyperplanes. This result,

together with Theorem 11.0.15 solve the Bernstein Problem in the Euclidean
space.



Chapter 12

The sub-Riemannian Heisenberg group
Hn

The aim of this chapter is to introduce the Heisenberg group H"™ and all the
notions and results we need to state the Bernstein Problem in the Heisen-
berg group. We begin with Section 12.1 where we recall the basic results
on Lie algebras and Lie group; in particular we point out that a Carnot
group G is diffeomorphic to some R"; so we can represent G by the so called
graded coordinates. Then, in Section 12.2 we introduce the (representation
of the) Heisenberg group H" as a Carnot group of step 2 (see Definition
12.2.1). In Section 12.3 we introduce the Carnot-Caratheodory spaces, i.e.
an R™ endowed with a family X of vector fields defined on it. In particular
we define the Carnot-Caratheodory distance d. that arise from the family
X, and we see that (R",d.) is actually a metric space, i.e. d.(z,y) is finite
for each z,y € R", if the Lie algebra generates by the family X has di-
mension n (the so called Chow-Hérmander’s condition, see Definition 12.3.4
and Theorem 12.3.5). In Section 12.4 we see the Heisenberg group H" as
a Carnot-Caratheodory space with the distance d.; we will introduce an
equivalent distance do, that has the property of being explicity, differently
from d.. We have that, despite H” and R?"*! are topologically equivalent
(and hence they have the same topological dimension 2n + 1), they are not
metrically equivalent, and the Hausdorff dimension of H" with respect to
dso 18 2n + 2. Section 12.6 is dedicated to the notion of H-perimeter (see
Definition 12.6.4), defined in the same way as in the Euclidean case. More-
over we can define the inward normal vg to a set E (see Theorem 12.6.5)
and the notion of H-reduced boundary (see Definition 12.6.8). To state the
analogous of Theorem 6.3.2 for H-Caccioppoli sets in H'" we need a suitable
definition of regular surface in H"™; we will give one in Section 12.7 that
seems to be the correct generalization of C'! hypersurfaces in R”, because it
can be prove some important properties concerned H-regular hypersurface,
as for example an Implicit Function Theorem (see Theorem 12.7.8). More-
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over to state the Bernstein Problem in H" we need a notion of graph in H
that takes into account the geometry of our space: the (intrinsic) notion
of Xi-graph of a function w : R?® — R is give in Definition 12.7.7, and a
complete characterization of those function w whose X;-graph turns out to
be an H-regular hypersurface is give in Theorem 12.7.11. This characteriza-
tion makes use of the differential operator W®¢, that seems to be the right
counterpart of the Euclidean gradient. Finally in Section 12.8 we state the
Rectificabilty Theorem for the H-reduced boundary of a H-Caccioppoli set
in H" (see Theorem 12.8.3).

For a more satisfied traetment of all the questions presented in this
chapter, we adrees the reader to [Vit08].

12.1 Carnot groups

The aim of this section is to recall some basic results on Lie groups and Lie
algebras. In particular we state that the set of left invariant vector fields
on a Lie group G (see Definition 12.1.7) endowed with the operation [-,-] :
(X,Y) — [X,Y] := XY — Y X forms a Lie algebra, that turns out, under
some assumptions, to be diffeomorphic to G (see Theorem 12.1.9). Then we
introduce Carnot groups (see Definition 12.1.10) and define dilatations on
them (see Definition 12.1.13). In particular, thans to Theorem 12.1.9, we
see that, given a Carnot group G we can find a group structure on some R™
in a way that G turns out to be isomorphic to this R", and the Lie algebra
of G turns out to be isomorphic to those of R™; so we can represent Carnot
groups in R”. Finally we introduce the notion of homogeneous dimension
on a Carnot group, that turns out to be the Hausdorff dimension of the
group with respect to any homogeneous distance defined on it (see Theorem
12.1.18), and we see that the Lebesgue measure is the Haar measure of (the
representation of) a Carnot group.

12.1.1 Lie groups and Lie algebras

Definition 12.1.1. A Lie group G is a manifold endowed with the struc-
ture of differential group, i.e. a group such that the maps

GxG —» G and G — G
(x,y) — xy r — gz 1

are of class C*°.

Notation: we denote by e the identity of the group G.
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Definition 12.1.2. If G is a Lie group we define and x € G we define the
left translation by x, I, as the C*°-map

yr—=xy

Definition 12.1.3. A wvector space g is a Lie algebra if there is a bilinear
and anti-symmetric map [+, ] : g X g — g which satisfied the Jacobi’s identity

[Xv [Yv ZH + [Y’ [Z’XH + [Zv [X’YH =0

forall X,Y,Z € g.

Remark 12.1.4. We give an important example of Lie algebra. Let M C R™
be a differential manifold, and let T'(TM) be the space of vector fields on
M. We recall that the commutator of two vector fields X,Y € T'(T'M) is
defined as

[X,)Y]:=XY -YX

We recall that we identify vector fields as first order operators. So we can
write [X,Y] in coordinates as

n

XY= D (a;(@)05bi(w) — bj(2)9jai() ),

i=1,j

where we write 0; instead of 8%1-’ and the vector fields X and Y are written
as

X = ial(l’)a“ Y = Zn:bz(x)@
i=1 =1

It is quite easy to prove that the bilinear and anti-symmetric map (X,Y) —
[X,Y] satisfied the Jacobi’s identity. So the space T'(T'M) of vector fields on
M endowed with the product [-,-] is a Lie algebra.

Notation: if a, b are subalgebras of a Lie albegra g, we denote by [a, b]
the vector subspace generated by the elements of

([X,Y]| X €a, YVeb}

Definition 12.1.5. Given a Lie algebra g we define g' :== g and for k > 1,
g+l = [g,gF]. We say that g is nilpotent of step i if g # {0} and
giJrl — {0}



236 Chapter 12. The sub-Riemannian Heisenberg group H"

Definition 12.1.6. We say that a Lie algebra g is stratified if it admits
linear subspaces g1,...,9; such that

g=g1®---Dyg;
or = [g1,0k-1] forallk=2,...k

Now, given a Lie group G we want to associate to it a Lie algebra in a
natural way.

Definition 12.1.7. We say that a vector field X € I'(T'G) is left invariant
if, for each x € G it holds

X(z) = dlp(X(e))
We denote by g the set of left invariant vector fields of T'(TG).

It holds that g is a Lie algebra, endowed with the product [X,Y] :=
XY —Y X. Moreover it is clear that we can canonically identify the algebra
g with the tangent space T,.G via the isomorphism

X +——v

where v € T.G is such that X (x) = dl,(v) for each z € G.
We will say that a Lie group G is nilpotent of step k, or that it is stratified
if its associate Lie algebra is.

The importance of the associate Lie algebra g of a Lie group G is that,
under some assumptions, they are diffeomorphic. To state this result, let
X € g, 2 € G and consider the solution 4X of the Cauchy problem

{%{(t) = X( (@)
% (0) = =

Since left invariant vector fields are complete, the curve %?( is defined for
each time t. We denote by exp(X)(z) := v (1).

Definition 12.1.8. We define the exponential map exp : g — G as fol-
lows
exp(X) = exp(X)(e)

Explain in words exp(X) is a translation of “lenght” 1 along the trajec-
tory of X.

The following result is very important because it states a connection
between the Lie algebra g and the Lie group G.



12.1. Carnot groups 237

Theorem 12.1.9. Let G be a nilpotent, connected and simply connected Lie
group. Then the exponential map exp : g — G is a diffeomorphism.

Now we want to define on the Lie algebra g an opeartion C' : g — ¢
that makes exp a group isomorphism. Suppose the hypothesis of the above
theorem hold. So, given two elements X,Y € g, we define C'(X,Y’) as the
element that satisfied

exp(C(X,Y)) = exp(X) - exp(Y)

We can compute explicity C'(X,Y) thanks to the Baker-Campbell-Hausdorff

formula: let « = (aq,...,q;) a multi-index of non-negative index, and
define
la| =01+ +am,
ol :=oq!. .. ap!

and we will say that m is the lenght of ae. Now, if 8 = (B1,. .., Bm) is another
multi-index of lenght m such that o, + 8, > 1, we define

(X)er (V)P (X)) (Y)Y if B, > 0

Cop(X,)Y) := {
(X)er(Y)Pr .. (X)em—1X Af B =0

where X,Y € g. We recall that the adjoint operator adX : g — g is defined
by (adX)(Y) := [X,Y], and we set (adX)? as the identity map. Finally we
define

. e (_1)m+1 1
CX,Y)=> — > mcaﬁ(x,m (12.1)
m=1 a=(a1...,am)
o;+pi>1Vi

We note that we can write
1
CX,)Y)=X+Y+ i[X,Y] + R3(X,Y)

where R3(X,Y) is a series of commutators of lenght more than 3.
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12.1.2 Carnot groups

Now we have all the elements to define what a Carnot group is

Definition 12.1.10. A Carnot group G is a finite dimensional, connected,
simply connected and stratified Lie group. We say that a Carnot group G
is of step i if the stratification of the Lie algebra g of G is g1,...¢g;. Note
that such a group, since it is finite dimensional, is also nilpotent of step 1.

Remark 12.1.11. For Carnot groups Theorem 12.1.9 holds.

Now we want to define the notion of dilatation in Carnot groups.

Definition 12.1.12. Let G be a stratified Lie group, and let g1,...,¢; a
stratification. Fixr > 0 we define the dilatation i, of the algebra as follows:
if X € gi then §,(X) := r*X, and we extend this map to all the algebra g
by linearity.

The following properties hold for all X,Y € g and r,s > 0
® 0p5 = 0p 00

o 5,(IX,Y]) = [5,X.5,Y]

e ). (C(X,Y)) =C(6:X,6,Y)

Since for carnot groups Theorem 12.1.9 holds, we have that the map
exp : ¢ — G is a diffeomorphism. So we can define on G a one-parameter
group of automorphisms starting from the dilatations of its Lie algebra g.

Definition 12.1.13. Let G be a Carnot group, and let 6, be the dilatation
of r defined on its Lie algebra g. We define the dilatation of r on G, denoted
again with 9, as follows

5r(x) := exp(d,(exp~(x)))
The map d, turns out to be an automorphism of G.

Using the properties of the dilatations defined on g it is easy to prove
that for the dilatations ¢, defined on G the following two properties hold

L4 6’/‘8:67‘055

o or(z-y) = or(x) - 5:(y)

Now we want to find a convenient way to represent Carnot groups.



12.1. Carnot groups 239

Definition 12.1.14. Let G be a Lie algebra, and let X1,..., X, be a basis
of its Lie algebra g. We define the system of exponential coordinates
associate with the basis X1,..., X, as the map

F : R — G

T —> exp (ixﬁ(})
i=1

Definition 12.1.15. Let G be a Carnot group and let g = g1 ® - - D g; be
its statification. Define for each k =1,...,i

my = dimgk

and

and ng := 0. If the basis Xy, ..., X, is such that X, ,+1,... Xy, 15 a basis
for gr we say that the basis X1,...,X, is adapted to the stratification,
and we called the system of coordinates associate with this basis graded
coordinates.

Now we want to complete the identification of G with R™. To do this we
need to put on R” a group law that makes F' a group isomorphism. So let
r=(x1,...,2n),y = (Y1,...,yn) € R", and define

r-y:=z=(z1,...,2) €ER"
if and only if

n n n
Y uXi=C ( > wmXiy Z/in'>
im1 i=1 i=1

In this representation the group identity is the origin, and 27! = —z. So we
have obtain that

Theorem 12.1.16. So (R™,:) is a Lie group isomorphic to G, whose Lie
algebra is isomorphic to g.

Moreover we can read the dilatation in coordinates:

_ 2 3 i i
0r(2) = (TT1y e o Ty T Ty 1y e e oy T gy e e ey T Ty 41y e e ey T )
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12.1.3 Homogeneous dimension and Haar measure

Now we want to introduce a suitable dimension on a Carnot group G.

Definition 12.1.17. Let G be a Carnot group with stratified algebra g =
g1 D DB gr. We define the homogeneous dimension QQ of G as

k
Q=) idimg;
=1

We have the following

Theorem 12.1.18. The homegeneous dimension Q coincide with the Haus-
dorff dimension of the group G with respect to any homogeneous metric p
defined on it.

In particular if p is a metric defined on G we denote by H}" the m-th
dimensional Hausdorff measure associate with p. It hold

H(x-E)=HMNE), HJ6:E)=r'H]E)

for any measurable set £ C G and any x € G and r > 0.

Now suppose to represent a Carnot group G with R" via graded coordi-
nates. Then it holds

Theorem 12.1.19. For any measurable set E C R" and any x € R™ it
holds
LYz E)=L"(FE -x)=L"(E)

that is L™ is both left and right inveriant, and so L™ is the Haar measure of
the group G.
Moreover for each x € R™ and r > 0 it holds

LU () = r2L(Uf () = rOL™(UF(0))
A diffuculty in studying Carnot groups is the following

Theorem 12.1.20. If the Carnot groups G is not abelian, then the metric
(Hausdorff) dimension Q is strictly greater than the topological dimenasion
n.
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12.2 The Heisenberg group H"

In this section we want to present the simplest example of Carnot groups: the
Heisenberg group H"™. We will give the representation in graded coordinates
of it and we calculate the representation of the generators of its Lie algebra.

Definition 12.2.1. The n-th Heisenberg group H" is the 2n+1-dimensional
Carnot group with stratified algebra

h=b1Dho

where
bl = span{Xl, . ,Xn,Yl, e ,Yn}

and
bo = span{T'}

The only non-vanishing commutation relationship among the generators are
(X, Y] = —AT
foralli=1,... n.
Since the Lie algebra h is nilpotent of step 2, the Baker-Campbell-
Hausdorff formula (12.1) become very easy

1
CX,Y) =X +Y + [X,Y]

Then, if X =" o, Xi+> 0 Y +tT and Y =30 2l X+ >0 yiYi+
t'T, we have

n n

n
CX,Y)=X =) (@i+z)Xi+ > (wity)Yi+ > (t+1t +2afy; — 229))T
=1 i=1 i=1

So we can represent the Heisenberg group H" throught graded coordinates
as R?"1 = R™ x R™ x R with group law

T x’ x+ 2
y | x| ¥ |=|y+v
t t/ t+t'+ 202 y) — 2(x,y)
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Figure 12.1: Example of horizontal planes in H! at different points

Finally we want to represent the left invariant vector fields X;,Y;,T.
Since if X is a left invariant vector field it holds

X(g) = dly(X(e))

and X;(0) = 0;, Y;(0) = On4j, T = Oo2n+1, and since

Id, 0 0
dl(zy.0(0) = 0 Id, O
2y —2z 1

where Id,, denotes the n x n identity matrix, we have that
Xj(z,y,t) = dlz 4, (0j) = 0j + 20211

Y}'({L‘, Y, t) = dl(m,y,t)(6n+j) = 8n+j - 21j82n+1
T(.’L‘, Y, t) = dl(m,y,t) (8]) = 8271-1—1

We will always use this representation when we work with the Heisengerg
group H".
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12.3 Carnot-Caratheodory spaces

In this section we introduce the Carnot-Caratheodory spaces, i.e. R"™ en-
dowed with a family X = (Xi,...,X,,) of Lipschitz vector field defined on
it. We introduce the Carnot-Caratheodory distance (see Definition 12.3.3)
and we see that R™ endowed with this distance is actually a metric space
if the family X satisfied the Chow-Hormander’s condition (see Definition
12.3.4 and Theorem 12.3.5).

12.3.1 Definition and properties of d.

Definition 12.3.1. Let (X1,...,X,,) be a family of Lipschitz continuous
vector fields on R™, i.e.

X]'(x):zaij(x)ai, j=1,...,n
i—1

where the functions a;; are Lipschitz. The subspace of T,R"™ = R" generated
by X1(x),..., Xm(x) is called horizontal subspace, and it is denoted by
H_R™. The collection of all horizontal fibres H,R™ forms what we called the
horizontal subboundle HR" of TR".

Notation: if Xi,..., X,, are of class C*°, we denote by L(X71,..., X,)
X

the Lie algebra generates by them, i.e. the subspace generates by Xi,..., X,
and by the vectors given by the iterated operation of [-,-].

Definition 12.3.2. Let v : [0,7] — R™ be a Lipschitz continous curve. We
say that v is a subunit if there exist measurable functions hy, ..., h, such
that for almost every t € [0,T]

() =Y hXi(y(1), YR <1
] i=1

Definition 12.3.3. We define the Carnot-Carathéodory distance d.
between the points x,y € R™ as

de(x,y) :=inf {T >0|3v:[0,7] = R" subunit path s.t. v(0) =z, v(T) = y}

If the above set is empty we set d.(z,y) := +00.
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If the distance d. is finite for every x,y € R™ then d. is a distance,
and hence (R",d.) becomes a metric space, and we called it a Carnot-
Carathéodory space.

The problem is to understand when we can say that d.(z,y) < oo for
each z,y, € R™.

Example: we give an example of non existence of subunit path be-
tween two points: in R? let m = 1 and X; := 9y; then if x = (z1,22) and
y = (y1,y2) are such that xo # yo, then clearly there is no subunit path
from z to y, and hence d.(z,y) = +oo.

A sufficient condition to ensure that there exists always a subunit path
from any pair of points, and hence that d. is a distance, is the so called
Chow-Hormander’s condition

Definition 12.3.4 (Chow-Ho6rmander’s condition). A C* family of
vector fields on R™, Xy, ..., X, is said to satisfied Chow-Hoérmander’s
condition in R" if

dim L(Xi(z)..., Xm(x)) =n
for each x € R™.

We have the following result

Theorem 12.3.5 (Chow-Hormander). Let Xi,...,X,, be a family of
C™> wvector fields on R™ that satisfied Chow-Hormander’s condition on R™.
Then for each pair of points x # y € R™ there exists a subunit path from x
toy.

Note: the CC-space satisfied Chow-Hormander’s condition are called
sub-Riemannian spaces.

Now we want to study the connection between the d. distance and the
usual Euclidean distance. First of all we see that R” with the standard basis
of its tangent is a Carnot-Caratheéodory space

Theorem 12.3.6. In R" consider the vector fields X1 := 01, ..., X := Op.
Then R™ endowed with this vector fields is a Carnot-Carathéodory space, and
i particular

dc(x7y) = |ﬂ§ - y|
for each x,y € R™.
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Moreover we have that

Theorem 12.3.7. Let (R™,d.) be a Carnot-Carathéodory space. Then the
identity map
id: (R",d.) — (R, )

15 continuous.

Remark 12.3.8. It is easy to show that, in general, (R™,d.) is not homeo-
morphic to (R™,|-]). We give an example of vector fields such that d. is not
continuous with respect to | -|: in R? consider the vector fields X1 := 0, and
Xo(x1,x2) := f(x1)02 where f is a C°(R) function that is negative when
x1 > 0 and null otherwise. Hence consider two points

A= (z,ya), B=(x,p)

with x < 0 and yg # yp- It is clear that if we want to joint A and B with a
subunit path, we need to join A to a point B := (x,y,) with x. > 0, then C
to a point D := (xc,yp), and finally D with B. Hence if we let |a — b| — 0,
the d. distance from A and B remains great or equal to 2|z|.

To conclude that a general Carnot-Caratheodory space (R", d.) is home-
omorphic to (R",| - |) a sufficient condition that ensure it is once again
Chow-Hoérmander’s condition.

Theorem 12.3.9. Let Xy,..., X, be a family of C°° wvector fields on R™,
and suppose that the vector space generates by X1,..., X, and by iterated
operation of at most p > 1 commutators has dimension n. Then for each
compact set K there exists a constant ¢(K) > 0 such that

do(,y) < c(K)|z —yl»

for each z,y € K.

In particular we obtain that, if the C'°*° family of vector fields X1,..., X,
satisfied Chow-Hormander’s condition, then (R",d.) and (R",|-|) are topo-
logically equivalent. Moreover if in the previous theorem p = 1, then the
two metric spaces are also metrically equivalent, but if p > 1 they are not.
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12.4 H" as a Carnot-Caratheodory space

Let (H",-) be the n-th Heisenberg group represented in graded coordinates
associated with a basis adapted to the stratification § = b1 @ ho. The strat-
ification assumption ensures that the subspace h; Lie generate the whole
algebra b, and hence the family X = (X1,...X,,,Y3,...,Y,,) satisfied Chow-
Hormander’s condition; then the function d. defined with the family X is
actually a distance on H”. So we can see H" as a Carnot-Caratheodory
space. Moreover the distance d. have good properties with respect to trans-
lations and dilatations

Proposition 12.4.1. For each z,y,z € H* and r > 0 we have
1. de(z -2,z y) =d(x,y)
2. de(orx, 6py) = rde(z,y)

These properties makes d. what we called an homogeneous distance
on the Carnot group (H",-). Moreover we have that

o 1,(US(x)) = US(La(y))
o S\(UL(x)) = US, (5,)
for each x,y € H" and r, A > 0.
The problem of the distance d. is that it is not explicit, and hence it is

difficult to estimate. To avoid this disadvantage we introduce in H" a new
homogeneous distance eqauivalent to d.

Definition 12.4.2. Let p = (z,t),q € H" and define the infinity norm

1
[plloc := max{ [2|gen, [t[2 }
and the associate distance

1

doo(p,q) == [Ip7" - dllo

It turns out that d, is actually an homogeneous distance, that is equiv-
alent to d..

Theorem 12.4.3. Let Q a bounded set in H"™. Then there exist constants
C1,Cy > 0 such that for each x,y €

Cilz —y| < doo(z,y) < Con/|z —y|

Note: the distance ds is not a Riemannian distance.
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Figure 12.3: Example in H! of unit balls with the d,, distance
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Remark 12.4.4. It can be proved (see [Rig04]) that the Heisenberg group
H" endowed with the distance d¢ is not directionally limited. The same is
true for the distance doo.

Another difficulty in studying the Heisenberg group is the following one

Theorem 12.4.5. The topological dimension of H" is 2n+1 while the metric
(Hausdorff) dimension of H" is 2n + 2.

12.5 Pansu Theorem

In this section we want to state the analogous of the Radameacher Theorem
for Lipschitz functions from H" to R, where in the Heisemberg group H" we
consider the distance duo.

Definition 12.5.1. We say that a map L : H" — R is linear
1. L(z-y) = L(x) + L(y) for each x,y € H"
2. for each x € H™ and A > 0 it holds

L(0x(x)) = AL(z)

Remark 12.5.2. We note that a linear map L : H" — R must be of the
form

L(z,y,t) = (a,z)rn + (b, y)rn

for some a,b € R™.

Definition 12.5.3. We say that a function f : H" — R is Pansu differen-
tiable in a point pg € H" if there exists a unique linear function L : H” — R

such that .
tim £ ®) = f(po) = L(pg " - p)
p—po doo (P, Po)

In this case we denote the function L by dyf(po).

=0

Definition 12.5.4. We say that a function f : G — R is Lipschitz con-
tinuous if there exists a constant C' > 0 such that for each x,y € H"™ it
holds

() = f(y)] < Cdoo(2,y)

We denote by Lip(H",R) the space of all Lipschitz continuous functions
from H™ to R.
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The following result holds

Theorem 12.5.5 (Pansu’s Theorem). Let f : H* — R be a Lipschitz
function. Then f is Pansu differentiable in p for £L2"t1-a.e. p € H".

Thanks to the previous result we can define a notion of “vertical plane”
in the Heisenberg group H" as the level set of a linear function. Since from
Remark 12.5.2 we know that a linear map L : H® — R has to be of the form

L(xa Y, t) = <(1, .T)Rn + <b7 y>R”
for some a, b, € R, a “vertical plane” V in H" is a set of the form
V= {(xay7t) € H" ’ <a7$>R" + <b7 y>R” = C}

for some a,b € R™ and ¢ € R. We note that we can see a vertical plane V
as the left translation of the maximal subgroup Vy of H*, V' = P - V[, where
P e V and

Vo ={(z,y,t) e H" | (¢, 1)~ + (b, y)rn = 0}

12.6 H-perimeter in H"

In this section we want to introduce the notion of H-perimeter in the same
way we have done it in the Kuclidean case. First of all we need to define a
notion of divergence that takes into account of the geometry of our space H
(see Definition 12.6.3). Then we can define the H-perimeter in a open set {2
of a measurable set &£ C H" as the variation of its characteristic function in
2 (see Definition 12.6.4); also in this case, thanks to th Riesz Representation
Theorem, we can introduce an horizontal normal vg. Finally we introduce
the notion of H-reduced boundary of an H-Caccioppoli set in the same way
we have done for the Euclidean case. We will underline the problems that
arise when we try to state a structure theorem for the H-reduced boundary
of a H-Caccioppoli set, and that motivate the notions we will introduce in
the following sections.

12.6.1 Differential structure of H"

As usual we will identify the vector fields X1, ..., Xy, Y1,...,Y, as first order
operators.

Definition 12.6.1. We define the horizontal subbundle HH" as the vec-
tor subbundle of TH"™, the tangent boundel of H", generates by the vectors
Xi,..., X, Y1, Y,
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Now, since each fiber of HH™ can be canonically identified with a 2n-
dimensional subspace of R?"*!, we can identify each section ¢ of HH" with
amap ¢ : H* — R?". Moreover, for each point P € H"”, we can endowed its
horizontal fiber HpH" with a scalar product (-,-) p and the associate norm
|-|p, that makes the vector fields X1, ..., X,,Y1,...,Y, orthonormal. Hence
we can identify each section ¢ with the function

@z(@l,...,¢2n):H”—>R2"

such that
n n
e=> @iXi+ Y iV
i=1 i=1

Definition 12.6.2. We denote by C*(H", HH") the space of all C* con-
tinuous section of HH™, where the C* regularity is understood as regularity
between smooth manifolds.

Definition 12.6.3. Let Q2 be an open set of H", and ¢ = (¢1,...,¥2n) €
Cl(H", HH"). We define the horizontal divergence divy(y) as

divi(p) == Z (XiSOi + Yi@nﬂ')
i=1

12.6.2 H-perimeter

In this section we introduce the notions of H-perimeter and of H-reduced
boundary of a measurable set £ C H" in the same way we have done for
the Euclidean case.

Notation: we will use the symbols HY} and S’ to denote the m-

dimensional Hausforff measure in H" with respect to the distance du.

Definition 12.6.4. Let E C H” be a measurable set, and let Q@ C H" be an
open set. We define the H-perimeter of E in Q, |0E|u(Y) as the H-total
variation of its characteristic function in §2, i.e.

OB [1(Q) := sup { /EdiVH(gp) AL | o e CHQ HEY), |plp <1V P € H"}

We say that a set E is a H-Caccioppoli set in Q if |0F|g() < co.
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Using the Riesz Representation Theorem, we can obtain the following

Theorem 12.6.5. Let E be an H-Caccioppoli set in ). Then there exists a
unique |OE|g-measurable section vg : Q@ — HH such that

o |vp(z)|p =1 for |0E|-a.e. P € H"

. / divg(p) dL? = —/ (p,vg)d|0E|lg  for all p € CH(Q; HH")
E Hn

Here the measurability of vy means that its coordinates vy, ..., vy are |OF|mg-
measurable functions. We will call vg the horizontal inward normal to
E.

We have the following representation result

Proposition 12.6.6. Let E C H” be an FEuclidean Lipschiz open bounded
set. Then

n

0Bl = | ((XZ-, )2, + (Yo, u)ﬁn)H%l_@E
=1

where v denotes the Euclidean normal to OF.

Moreover any Euclidean Caccippoli set E in H" = R?"+1 js an H-Caccioppoli
set, and the |0E|g is absolutely continuous with respect to the Fuclidean
surface measure on OF.

Remark 12.6.7. The above result is strict, in the sense that there are H-
Caccioppoli sets that are not Fuclidean Caccioppoli sets (see [Vit08], Exam-
ple 3.8).

We have the following two properties for the H-perimeter: let £ C H"
be a measurable set, €2 an open set of H", x € H" and r > 0; then we have

¢ |0(z - E)lu(z- Q) = |0E[u(2)
o 10(6:)l(6:()) = 271 OE k()

Now we want to define the H-reduced boundary of an H-Caccioppoli set.

Definition 12.6.8. Let E C H" be an H-Caccioppoli set. We define the
H-reduced bounday OpE of E as the set of points P € H" such that

o |OE|g(UL(P)) >0 for allr >0

(] ‘VE(P)|]D =1

=0 Jug(p)
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Problem: can I say that OfF is not empty? We recall that in the
Euclidean case we can conclude that |0E|gyc-a.e. point P € R™ belongs
to the reduced boundary 0*E thanks to the Lebesgue’s point Theorem (see
Theorem 2.7.10) which state that, if ¢ is a Radon measure on R™ and f €
L} (R™; p), then

loc

lim fdu= f(x) foru—a.execR"
r—0 B,«(z)

To prove this result we have used the Differentiation Theorem for Radon
measures in R™ (Theorem 2.7.4) that used the Besicovitch’s covering The-
orem in R™ (Theorem 2.6.6). Since H" is a metric space we would like to
use the results of Chapter 4: but the Radon measure |0F|g is not doubling,
as we can see using Proposition 4, and the space H" is not directionally
limited (see Remark 12.4.4). Nethertheless it has been proved in [Amb01]
the following result

Theorem 12.6.9. Let E be an H-Caccioppoli set. Then

lim vpd|0E|w = vg(P)  for |0E|m — a.e. P € H"

This result allows us to conclude that |0F|g-a.e. point P € H" belongs
to O .

Note: it is still an open problem if the result holds also for generic Radon
measure on H": let u be a Radon measure on H", and let f € L} (H", u);
it is true that

lim fdu=f(P
r—0 Ue(P) ( )

T

for p-a.e. P € H"?

Now we want to state a rectificability theorem for the H-reduced bound-
ary of the same spirit of those of de Giorgi in R™. To do this we need to
define a suitable notion of regular surface in H".



12.7. H-regular surfaces and Implicit Function Theorem 253

12.7 H-regular surfaces and Implicit Function The-
orem

In this section we define a notion of regular surface in H" that seems to be
the correct one.

Definition 12.7.1. Let Q be an open set in H*. We denote by Cf;(Q) the
set of continuous real functions f in  such that the distributional derivate

va = (lea'-'aan7Y1f7'"aYnf)

is represented by a C' section of HH".
We will denote by Cﬁ(Q;HH”) the set of all sections ¢ of HH"™ whose
canonical coordinates ¢; belong to CE(Q) for alli=1,...,2n.

Note: the inclusion C(2) C C#(Q) is strict.

Definition 12.7.2. Let P = (z,y,t) € H" and Py € H". We define
n n
mpy(P) := Z%‘Xz‘ + Zini
i=1 i=1

Then the map Py — mwp,(P) is a smooth section of HH".

Definition 12.7.3. We say that S C H" is a H-regular hypersurface
if for every P € S there exists an open ball US(P) and a function f €
CH(UE(P)) such that

o Vuf #0
e SNULP)={QeUP)| f(Q)=0}

We will also denote by vg(P) the horizontal normal to S at the point P,
i.e. the vector Vi (P)
H
vg(P) i= — ===
[V (P)|

In what follows we will assume, and it is not restrictive, that X1 f # 0.

Note: it can be proved that vg(P) is continuous and does not depend
on the choise of the function f.

Remark 12.7.4. In [KSC04] it has been shown an example of H-regular
hypersurface in S C H' such that S has (Euclidean) Hausdorff dimension
2.5.
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Toghether with the notion of H-regular hypersurface we give a notion of
“tangent hyperplane ” to an H-regular hypersurface.

Definition 12.7.5. Let S C H"™ be an H-regular hypersurface. Define the
tangent group T{jS(P) to S in P as

TES(P) ={Q e H" | (Vu(f olp)(0),m0(Q)) =0}
where f is any function that define S near P.

Note: the above definition does not depend on the choise of the function
f. Moreover one can equivalently define the tangent group to S in P as

TES(P) =={Q e H" | (vp-1.5(0),m0(Q)) =0}
Definition 12.7.6. The tangent plane to S in P is the lateral

TuS(P) := P-T%S(P)

The definition of H-regular hypersurfaces seems to be a good one be-
cause it produced some important results. One of the most important is an
Implicit Function Theorem for H-regular surfaces. In the Euclidean setting
the implicit Function Theorem tells us that we can locally see a C'! regular
surface S as the graph of C! functions defined on hyperplanes. Here the
role of hyperplanes (see Section 12.5) is played by maximal subgroups of
H"™, that are sets of the type

V, = {Q cH" | < zn: (wiXi+wn+i}/i),7ro(Q)> :o}
1

1=

for some w € R?". Note that for an H-regular hypersurface we have that

TZS(P) =V, . (- In what follows we will focus our attenction on in-
H P LQ( )

trinsic graph over the hyperplane

Vii=Vyp,..00={QeH"|z1=0}

We want to identify V; with R?". To do this we define the map i as follows:
ifn=1
L R2=R, xR, =V

(777 T) '_> (07 /r]’ T)
and for n >1

L @ R =R, x R* 2 xR, =V

V=12, Vn V2505020
(7771/)7—) — (O)V27"'7Vn77771/n+27"'71/2n77_)

Moreover we use the notation, if s € R, sej := exp(sX;1) = (s,0,...,0).
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Figure 12.4: Intrinsic graph

Definition 12.7.7. Let w be an open subset of R*™, and let ¢ be a real
function defined on it. The intrinsic Xi-graph of ¢ is the map

d: w — H"™
A = (A)-¢(A)ey

In coordinates we have that, if n > 1,

@(77,1/,7') = (¢(777V77')7V2>-~-7Vn>7771/n+27---aT+277¢(77>V77'))

and if n =1
®(n,v,7) = (¢, v, 7)1, 7 + 2nP(n, v, T))

One could also interpret the notion of intrinsic Xj-graph in this way:
start from the point «(A) € Vi C H" and follow the flux of the field X
(which is a sort of “normal direction” to V7) for a time ¢(A), then the point
one reaches is exactly ®(A). Observe that this is exactly what happens for
Euclidean graphs: one starts from a point of the hyperplane and follows the
flux of the normal for a length given by the function itself, thus reaching the

graph.
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Then we have the following important result (see [FSSCO1])

Theorem 12.7.8 (Implicit Function Theorem). Let ) be an open set
inH", 0 € Q, and let f € C(Q) be such that X1f(0) > 0 and f(0) = 0. Let

E:={PecQ|f(P)<0} and S:={PecQ|f(P)=0}

Then there exist §,h > 0 such that if we put I = [-6,8] x [-§,d]*"2
[—6%,6%] c Rz, ., J :={(s5,0,...,0) € H" | s € [=h,h]} and U := ¢ J we
have that

E has finite H — perimeter in U

OENU=5SNU

vg(P) =vs(P) forallPe SNU

Moreover there exists a unique function ¢ : I — [—h, h] such that SNU =
O(I) where ® : I — H" is the ® is the Xy graph of ¢ in I, and the H-
perimeter has the integral representation

|VEf|
1 Xuf

|0E|u(U) = ((4)) AL (A)

Finally the H-perimeter measure |0E|g coincides with c(n)Sgo_ll_S,
where the constant c(n) depends only on n.

Note: it can be shown that it is not restrictive to consider only Xji-
graphs, because similar results can be obtained if we consired X;-graphs
with ¢ > 2 or Y;-graphs.

Now we want to answer this question: given a function ¢ : w — R, where
w is an open set of R?", set S := ®(w). There is a characterization of all
the functions ¢ for whom S is a H-regular hypersurface? This problem has
been solved in [ASCV06].

Definition 12.7.9. Given a function ¢ : w — R, where w is an open set of
R?", we define the family of first order operators

~ o 0 ~ 0 0
Xicb—(f 22, n¢:=8y¢+ N
_ o6  ~ 00
06 042
Wfﬂgf) - on 2877
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and

()?qu, o X WO 16, Vi6, .,?nqﬁ) ifn>2
W dfn=1

all intended in distributional sense.

Remark 12.7.10. The operator W®¢ is the projection of the gradient Vi
on TR?" = R?",

We have the following result: in particular we are interested in the sec-
ond part of the theorem.

Note: for the notion of W?-differentiability we adress the reader to
[ASCV06].

Theorem 12.7.11. Let w C R?" be an open set and let ¢ : w — R be a
continuous function. Let ® the Xi-graph of ¢ and define S := ®(w). Then
the following two conditions are equivalent

e S is an H-regular hypersurface and vi(P) < 0 for all P € S, where
vs(P) = (Wi(P),...,v¥(P)) is the horizzonatal normal to S in P

o the distribution W?¢ is represented by a continuous function and there
exists a family (¢:)e>0 C C*(w) such that, for any open set w' € w we
have

¢ — ¢ and W ¢, — W
uniformly on &'

Moreover for all P € S we have

B 1 Woe
VI WGP T+ W92

c(n)SL1(S) = / \/ 1+ |[Wee2dL?

w

vs(P) = ( )@'(P)

and

where L*™ denotes the Lebesgue measure on R?™ and c(n) is as in Theorem
12.7.8.

Thanks to this result we can say that W%¢ seems to be the right coun-
terpart of the Euclidean gradient for C'! surfaces.
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12.8 Rectifiability in H"

In this section we state the results for the rectifiability of the H-reduced
boundary, that are analogous of those for the Euclidean case. All the results
in this section has been obtained in [FSSCO1].

First of a all a blow-up Theorem holds: let E be an H-Caccioppoli set
in an open set 2, and define, for » > 0 and Fy € O F

Eppy i=01(Ip1E) = {P € H" | By -5,(P) € E}

and for v € Hpp» define the half-spaces Sii (v) and Sg (v) “ortoghonal” to
v as

Sg(v) :=={P ecH" | (np,(P),v) >0}
Syw) :={PecH"|(rp,(P),v) <0}
Then it holds

Theorem 12.8.1. Let E be an H-Caccioppoli set and let Py € O E. Then
}1_1)% XET,PO = XS];E(VE(PO)) in Llloc(Hn)
Moreover
lim [0E|u(Ug(Po)) = [958 (ve (Po)) |(UR(Po)) = 2wan—1 R

for any R > 0.

Definition 12.8.2. We say that a set I' C H" is H-rectificable if

o0
rcNuUm
1=0

where Hgo_l(N) = 0 and each K; is a compact subset of an H-reqular hy-
persurface S;.

Then we have

Theorem 12.8.3. If E C H" is an H-Caccioppoli set then its H-reduced
boundary is H-rectificable. More precisely it is possible to find a decomposi-
tion
[e.e]
O0sE=NU|JK;
i=0
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such that HOQO_I(N) = 0 and each K; is a compact subset of an H-regular
hypersurface S; with the property that

vp(P)=vs(P) for each P € K;

Finally one has

2wy,
0E |y = —LsQ 1L g3 B
Wn+1

Corollary 12.8.4. If E C H" is an H-Caccioppoli set in a open ) then

2wapn—
/ divg(ip) A2t = — 21
E

Won+1

/ (vp, 9) dSE
OE

for all the sections ¢ € C}(Q; HH").
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Chapter 13

The Bernstein Problem in H"

In this chapter we want to present the Bernstein Problem in the Heisen-
berg group H”. We have to find a counterpart of the Euclidean objects
involved in the Euclidean Bernstein Problem. The notion of intrinsic ver-
tical planes aries from the Pansu’s Theorem, while the notion of subgraph
in the Heisenberg group can be defined in two different ways: t-subgraphs,
and Xi-subgraphs. We will present the Bernstein Problem with the notion
of Xi-subgraphs. First of all in Section 13.1 we derive the minimal surface
equation for Xi-graphs; then in Section 13.2 we will give two counterparts
in H" of the classical Bernstein Problem: we stress the fact that in the Eu-
clidean case if u : R® — R is an entire C? solution of the minimal surface
equation

div (Du) —
VIt IDuf

then its subgraph is a minimizer for the perimeter in R”. In the Heisenberg
group H" an unexpected phenomena arises: there are examples of solutions
of the minimal surface equation for X;-graphs (13.4) whose X;-subgraph is
not a minimizer for the H-perimeter in H". This fact motivate us to give
two formulations of the Bernstein Problem in the Heisenberg group (see
Section 13.2). Moreover in Section 13.3 we prove a calibration method in the
Heisenberg group that allows us to prove the minimality for the H-perimeter
of some important classes of Xi-subgraphs. Finally in Section 13.4 we state
the important result obtained in [BASCV07] and we give counterexample
of the validity of the Bernstein Problem in H" in dimension n > 5. We
remember that the Bernstein Problem in the Heisenberg group is still open
in the cases n = 2, 3, 4.
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13.1 Minimal surface equation for X;-graphs

In this section we want to derive the minimal surface equation for X;-graphs.
Consider a C! function ¢ : w — R, where w is an open subset of R?", and
let

Ey :={t(A)-(5,0,...,0) | Acw, s<o(A)}

be the Xi-subgraph of ¢, and let
Cy:=t(w)-{(s,0,...,0) e H" | s € R}
be the cylinder of base ¢(w) along X;. Thanks to Theorem 12.7.11 we know

that
0B fs1(Cx,) (w) = / 1+ Weglzacer

w
Now suppose that Ey is a minimizer fot the H-perimeter in Cx, (w); so if we
fix ¥ € C(w) and set ¢s := ¢ + sy, we have that, if we also assume that
w is compact (and it is not restrictive),

E¢AE¢S S CXl (w)

and hence the sets Fj, are competitors with Ey for the H-perimeter. So if
we define the function

9(s) = |0E,,|(Cx, (w /\/Wdﬁ% (13.1)

we obtain that it must holds ¢’(0) = 0, since Ey is an H-minimizer. Now we
want to compute explicitely ¢’(0). In the following we will write X; :=Y;_,

for j =n+1,...,2n. Let us recall that, in order to integrate by parts, we
have B B B B
X;j=-X; Vv2<j<2n, T'=-T (13.2)

while B

(W) = —We o+ 4T, Ve (13.3)
In fact

[ wangac / (— 1620 gac
( +4f ¢+4f¢> )dﬁQ"

—f( . W;f’ﬂg + 4gg‘f) ac?

I
T—

Hence we have
W 6 = Yio+ Vi — 4(¢+ s0)(T¢ + sTy)
= Wfﬂﬁb - 5(W7?+1)*¢ —4s™yTy
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So we can rewrite (13.1) as

on }

g(s) = / 1+ Y (Xjo+sX0)2(We o—s(Wey ) p—4s2yTy)? | dL™
i ji:?&-l
2n
and hence, writing > ; for Z , we obtain
jEnt1
so- | 5y Xiu X+ Wikiaon (- W)y = 8sTw)
w VI [W6,2

in particular
s~ | 5, Xio X5t — Wit 105 (W9

V14w

Finally, integrating the previous equation by parts using (13.2) and (13.3),

d£2n

we obtain

/ (% W19 .
g(O):/w _%:Xj(\/%)_wg—&—l(\/ﬁm)]wdﬁz

for each ¢ € C*°. Hence the Euler equation for the area functional in H" is

é We¢

=0
V14 |Wee?

13.2 Formulations of the Bernstein Problem in H"
for intrinsic graphs

on w (13.4)

Now we want give some formulations of the Bernstein problem in the Heisen-
berg group H". To do this we recall the classical formulation of the Bernstein
Problem in the Euclidean setting

The Bernstein Problem in R” - version I: are there entire C? solu-
tions u : R*™1 — R of the minimal surface equation

D
div R 0
1+ |Dul?

which do not parametrize hyperplanes?



264 Chapter 13. The Bernstein Problem in H™

This formulation, thanks to Proposition 11.0.12, is equivalent to the
following

The Bernstein Problem in R” - version II: let u : R"™! — R be
such that the subgraph U of u is a minimal set in R™. It is true that U is
an hyperplane?

In the Heisenberg group H" the notion of hyperplanes (maximal sub-
groups of R™) are replaced by the notion of vertical planes, i.e. sets V € H™
such that

V =A{(z,y,t) e H" | {(a, z)gn + (b, y)rn = ¢}

for some a,b, € R™ and ¢ € R. We recall that the notion of subgraph of a
function ¢ : R?” — R can be replace with the notion of t-subgraph

By = {(z,y.t) € H" [t < $(z,9)}

or with the notion of X7-subgraph

By = {(z,y,1) € Cx, (W) | 21 < ¢ 0.7 ((z,,1) - (—w1e1))}

Here we want to consider the notion of Xi-subgraphs in H". First of all we
note that the functions ¢ : R?* — R of the form

o, v, 1) i=c+ {(n,v), w)gen—1 (13.5)

for some w € R?» ! and ¢ € Rif n > 2, and

(1, 7) == c+nuw

with w € R if n = 1, parametrize exactly the vertical planes in H". It is clear
that such a functions satisfied the minimal surface equation for X;-graphs
(13.4) in H"™. Moreover we will also prove in Section 13.3 that vertical planes
are minimizers for the H-perimeter.

So with this notions of hyperplanes and subgraphs we can give this two
counterpart in H" of the two formulations of the Bernstein Problem in R":

(B1) - Bernstein Problem in H" - version I: are there entire C?
solutions of the minimal surface equation (13.4) wich do not parametrize
vertical planes?

(B2) - Bernstein Problem in H" - version II: let ¢ : R?® — R be
such that its Xi-subgraph Ej is a minimizer for the H-perimeter in H". It
is true that 0L is a vertical plane?
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A main difference from the Euclidean case is that this two formulations
are not equivalent! In fact there exists a C? functions ¢ : R? — R that
is a solution of the minimal surface equation (13.4), but such that whose
subgraph Ey is not a minimizer for the H-perimeter in H! and it is not a
vertical plane. Such a function provided a positive answer to Problem (B1).
The function ¢ is defined as, for a > 0,

anT

¢(na T) = _1 n 20”72

and has been obtained in [DGNO08], where we adress the reader for the proof
of the non-minimality of the subgraph of ¢. Here we prove that ¢ is a
solution of the minimal surface equation (13.4). Since we are in H' the
operator W®¢ just become

o,._ 9 , 00
W2¢'_87' 4¢87’

and hence the minimal surface equation (13.4) becomes

¢
W§<W2¢ ) =0

1+ (W2

T
1+ 2an?

Since

Wy =—

we obtain that

Wy¢ —ar
¢ 2 _ e
W, ( P 2) =W, <\/(1+20ﬂ}2)2+a272>
1+ [Wo'el
damt —a(1 + 2anT7)?
1+ 2an? ((1+2an2)? + azTQ)%

4a’nT 9
(14 2am?) + a272)} (e

=0

and hence ¢ satisfied the minimal surface equation (13.4). This counterex-
ample tells us that the area functional for Xi-graphs is not convex. More-
over OFy is not a vertical plane; in fact

Ey = {6(n,7),n,7+2mp(n,7) € H | (n,7) € R*}

_ ant T 1 2>}
= — H R
{< 1—|—20<172’77’1—|—2a7]2€ [ (m.7) €

= {(z,y,t) e H' |2 = —ayt}

which is clearly not a vertical plane.
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13.3 Calibration method for the H-perimeter

In this section we want to prove an useful tool we will use to prove the
H-minimality of some sets. We will use the following

Lemma 13.3.1. Let G = (R",-) be a Carnot group, and et o € C>*°(R") be
such that 0 < ¢ <1, [z, 0dL™ =1, supp(o) C B1(0) and o(x™1) = o(z) for
all z € R™. Let us denote

0=(x) = %p(d1(z)), z€R"

(e % f)(x) = /n 0=(y)f(y~ ' )AL (y) = / oc(x -y~ ) fy) AL ()
Then

o if fe LP(R"), 1 <p< oo then ge x f € C®°(R"™) and g- x f — [ in
LP(R™) ase — 0

e supp(o- x f) C B:(0) - supp(f)
o X;(0-%¢) = 0-x Xj¢ for all ¢ € C°(R™) and all j =1,...,m

. fRn(Qs x flgdL™ = fRn(gE*g)fdﬁn for every f € L®°(R") and g €
Li(R")

o if f e LoRY) NCY%Q) for a suitable open set 2 C R™, then o-* f — f
uniformly on compact subsets of 2 as e — 0

The result, obtained in [BASCV07], is the following

Theorem 13.3.2. Let E and ) be respectively a measurable and an open
set in H", and define vy : Q@ — HH" the horizontal normal to E in Q. Let
us assume

e I has locally finite H-perimeter in )
e divg(vg) = 0 in Q in distributional sense

e there exists an open set Q C Q such that |0E[g(Q\ Q) =0 and vg is
continous in S

Then E is a minimizer for the H-perimeter in Q.
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Proof. Step 1: let (0:). be a family of mollifiers such as in Lemma 13.3.1,
and denote by 7 : H* — HH" as v = vgp in Q, 7 = 0 in H" \ Q. Let us
denote

ve(x) := (0e % V) (x) = ((0e xV1)(2), .. ., (02 * V2n)(2))

Fix an open set Q' € €; we want to prove that
/ edivy(v.) AL =0 (13.6)
Q

for every ¢ € C°(Y) and every 0 < e <
Fix ¢ € CX(Y); since from Lemma 13.3.1 we have that ¢, 1= p. x ¢ €
C°(92) and the operators X are self-adjoint, where we write X; := Y;_,
for j=n+1,...,2n, we have that

d(Q ,R™"\Q)
-5 -

2n
[ divatvoedett = = [ 3w Xpp) act
Q Qi
2n
- —/Z(y, 0- % (X)) dL
Qi

2n
Q =1

where in the last step we have take into account that divg(r) = 0 in distri-
butional sense. Hence from (13.6) we obtain that

divig(v:) =0  in Q (13.7)

for every open set ' €  provided 0 < e < w.

Now let (4)n be a sequence such that Q, € Q, Qpy1 € Qp and
Unz; @ = Q. From what we have just proved we can find for each h a g,
such that (13.7) holds. Moreover from Lemma 13.3.1 we obtain that v., —
v uniformly on compact subsets of 2, and hence, since |0E|u(Q2\ Q) = 0,
we obtain that v., (z) = vg(z) for |0E|g-a.e. x € Q.

Step 2: now we want to prove that F is a minimizer for the H-perimeter
in Q. Fix an open set ' @ Q and a measurable set F' C H" such that
EAF € . Let Q" any open set such that EAF € Q" € €. Let h and
1 € CL(Y) be such that
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Ve{v=1}e? e (13.8)
Hence for every h > h it holds

| vens ) 0Bl = [ vy, ve) dloF (13.9)
Q Q

In fact from (13.8) and divg(ve,) = 0 in Q we have

/ (v, vi) dO ] — / (v, v} d|OF s
Q Q

- _/ (xe—xr)dive(re,) et = _/ (xE—xr)divi(ve,) dctl — o
Q/

1

where we have also take into account that £ = F in '\ Q”. Hence from
(13.9) we obtain

OF|u () > /Q (e, vp) dOF |

= ‘/<1/1V5h,VE> d|8E’H
Q

Since |vg,| = 1 and v, (z) — vg(x) for |0E|g-a-e x € Q, letting h — oo
from the Lebesgue’s convergence Theorem we obtain that

OFa() > [ v doBl > PEI(@)
Q/
Now letting Q” 1 Q' we obtain the desired result. O

Thanks to this theorem we can prove that the vertical planes are mini-
mizer for the H-perimeter in H"™. In fact let V' be a vertical plane in H"™ and
let ¢ : R - R

¢<777 v T) =ct <(777 V)? w>R2”*1

with w € R?"~! be a function that parametrize it (similar formula in the
case n = 1). Since ¢ is of class C'* from Theorem 12.7.11 and Theorem 12.7.8
we obtain that the inward normal to the Xi-subgraph Ey of ¢ is constant,
and hence, using Theorem 13.3.2, we obtain that Fj is a minimizer for the
H-perimeter in H™.
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13.4 Solutions to the Bernstein Problem in H"

In this section we want to state the nowaday results for the two formulations
of the Bernstein Problems in H” we have gave in Section 13.2.

13.4.1 The Bernstein Problem in H'

For the Bernstein Problem (B2) in H' we have the following result, obtained
in [BASCV07]

Theorem 13.4.1. Let ¢ : R?> = R be a C? function, and let E,S C H' be
respectively the X1-graph and the Xi-subgraph of ¢. Let us suppose that E
18 a minimizer for the H-perimeter in H™. Then S is a vertical plane, i.e.
¢(nT) = wn + ¢ for all (n,7) € R? for some constants w,c € R.

The assumption that ¢ is a C? function is crucial for the above result, be-
cause we can find a counterexample to the result is we drop that assumption.
In fact it holds

Theorem 13.4.2. Let 6 : R> — R be the function defined by
0(y,t) :== —sgn(t)V/|t|
Then the subgraph Ey is a minimizer for the H-perimeter in H' and
OFg = {(z,y,2zy — z|z|) € H' | 2,y € R}

is not a vertical plane.

Proof. (sketch) Our aim is to apply Theorem 13.3.2 to obtain that Ey is a
minimizer for the H-perimeter in H'. First of all we note that the intrinsic
subgraph of 0 is

By = {u(y.t)-se1r € H' | (y,1) € B, s < 6(y, 1)}

{(s,y,t +2sy) e H' | (y,t) € R?, s < —sgn(t)\/|t}
= {(z,y,t) eH' | z < O(y,t - 2zy)}

Now, since the function g(7) : R — R defined by g(7) := sgn(7)/|7] is a
strictly decreasing function and has as inverse the function g~!(z) := z|z|,
applying g~! to both member of x < (y,t — 2xy) and, for the decreasing,
reverse the inequality sign, we obtain that

Eg={(z,y,t) e H" | f(z,y,t) <0}
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Figure 13.1: The X;-graph of the function 6

where f(z,y,t) := t — 2zxy + z|x|. Hence Ey can also be seen as the t-
subgraph of the function f, and it is clearly not a vertical plane. Since
S := OEy is (Euclidean) C'!-regular, for a result obtained in [FSSCO1], we
have that F has locally finite Euclidean and H-perimeters. Hence condition
(7) of Theorem 13.3.2 is satisfied.

Now let Sp:= S\ {(0,y,t) € H' | t € R}; since f € CLI(H!) and
Xif(z,y,t) =20z|, Yif(z,y,t) =—dz

from Theorem 12.7.8 we obtain that Sy is an H-regular hypersurface and

_ oy —_vuf _ (L _ =2
VEG =Vs, = |va‘ (x7y7t) - (\/ga |£L'| \/5>

If we set Q := H'\V; = H'\{(z,y,t) € H' | z = 0}, and K := {(0,4,0) | y €
R} we have

9Egls(Q\ Q) = [9Bgla(K) < S5 (K) < H(K) = 0
where we have used the fact that
0Eg|ln < S, see [FSSCO01]

and
S3 < 12, see [FSSCO3]
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Hence we have proved that vg € C°(Q) and [0E|x(Q\ Q) = 0.

Finally we want to prove that divg(vg,) = 0 in H' in distributional
sense. In fact for each ¢ € CL(H!') it holds

1 2 x
X1+ Xop) dL? = —— o+2 d£3+/ = (py—2wpy) AL =0
/R?)( 1X19+12X20) NG RS(SO yer) N |x|(80y ©t)
because both integrals vanish.

Hence applying Theorem 13.3.2 we obtain that Ey is a minimizer for the
perimeter in H'. ]

For the Bernstein Problem (B1) we have already seen in Section 13.2
that there exists a function ¢ : R? — R that satisfied the minimal surface
equation for Xij-subgraph in He! (13.4) and that does not parametrize a
vertical plane.

13.4.2 The Bernstein Problem in H" for n > 2

Let ¢ : R?® — R be a function that does not depends on the variable 7, that
is

¢(77, VaT) = ¢(n7 V)

for some 1) : R?"~1 — R. For such a function ¢ we have that

)?jqﬁ:gg; forj=2,....n
= o .
Y,¢—8Vn+j forj=2,...,n
and o0
Wr?ﬂ@b:%

Hence the minimal surface equation (13.4) rewrites as the classical minimal
surface equation for

Vi
iv (W) (13.10)

So, thanks to the result of the Euclidean case, we know that if 2n 4+ 1 > 9,
that is n > 5, there exists functions ¢ : R?»~! — R that are solutions
of the minimal surface equation (13.10) but that are not affine functions,
i.e. the related function ¢(n,v,7) = ¥(n,v) cannot be written as (13.5),
and hence such that ¥ does not parametrize a vertical plane. Moreover,
using Theorem 13.3.2, we can also prove that the Xj-subgraphs of such
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a functions are minimizer for the H-perimeter in H'. So fix a function
¥ : R?"~1 — R that satisfied (13.10) that is not affine, and define the related
function ¢(n,v7) := ¢ (n,v). Consider the smooth section v : H" — HH"
given by

_ [ 1 Wo¢
l/(.CL‘,y,t) T ( \/1+|W¢¢|2a\/1+|W¢¢‘2>(7Ia%0)

B 1 Vi (. )
VIFIVOP VIR

where we put 7 := y; and v := (z2,...,Zn,Y2,...,Yn).Hence [v(P)|p =1
for all P € H'; moreover, thanks to Theorem 12.7.11, v coincides with the
horizzonatal normal to the Xi-graph of ¢. Finally it holds

2n
divg(v) = ZXjuj =0
j=1

where we have used the fact the v; is indipendend from z; and that v
satisfied (13.10). Hence v is a calibration for the Xj-graph of ¢ and hence
from Theorem 13.3.2 we obtain that the X;-graph of ¢ is a minimizer for
the H-perimeter in H". This give an example of a function ¢ : R?® — R
solution of the minimal surface equation for X;-graphs (13.4) that does not
parametrize a vertical plane, and such that 0Fj is a minimizer for the H-
perimeter in H".

The Bernstein Problem in the Heisenberg group H" remains still open
in the cases n = 2,3, 4.



Bibliography

[AJ65]

[Amb97]

[Amb01]

[ASCV06]

[BASCV07]

[BDGG69]

[Ber17]

[CDGYA4]

[CHMY05]

F.J. Almgrend Jr. The theory of varifolds - a variational
calculus in the large for the k-dimensional are integrand.
Mimeographed notes, Priceton, (1965).

L. Ambrosio. Corso introduttivo alla Teoria Geometrica della
Misura ed alle Superfici Minime. Scuola Normale Superiore di
Pisa, (1997).

L. Ambrosio. Some fine properties of sets of finite perimeter in
Ahlfors regular metric measure spaces. Adv. in Math., 159:51—
67, 2001.

L. Ambrosio, F. Serra Cassano, and D. Vittone. Intrinsic
regular hypersurfaces in Heisenberg groups. J. Geom. Ann.,
16(2):187-232, (2006).

V. Barone Adesi, F. Serra Cassano, and D. Vittone. The Bern-
stein problem for intrinsic graphs in Heisenberg groups and
calibrations. Calc. Var. PDEs, 30:17-49, (2007).

E. Bombieri, E. De Giorgi, and E. Giusti. Minimal cones and
the Bernstein problem. Inv. Math., 7:243-268, (1969).

S. Bernstein. Sur un théoreme de geometrie et son application
aux equations aux derivees partielles du type elliptique. Comm.
Soc. Math. de Kharkov, (2) 15:38-45, (1915-1917).

L. Capogna, D. Danielli, and N. Garofalo. The geometric
Sobolev embedding for vector fields and the isoperimetric in-
equality. Comm. Anal. Geom., 12:203-215, 1994.

J.H. Cheng, J.F. Hwang, A. Malchiodi, and P. Yang. Minimal
surfaces in pseudohermitian geometry and the Bernstein prob-
lem in the Heisenberg group. Ann. Sc. Norm. Pisa CI. Sci.,
1:129-177, (2005).

273



274

Bibliography

[DG54]

[DG55]

[DG61a]

[DG61D)]

[DG65]

IDGN]

[DGNO7]

[DGNO]

[DGNPa

[DGNPb]

[DPP09]

[EG92]

[Fle62]

E. De Giorgi. Su una teoria generale della misura (r — 1)-
dimensionale in uno spazio ad r dimensioni. Ann. Mat. Pura
Appl., (4) 36:191-213, (1954).

E. De Giorgi. Nuovi teremi relativi alle misure (r — 1)-
dimensionali in uno spazio ad r dimensioni. Ricerche Mat.,
4:95-113, (1955).

E. De Giorgi. Complementi alla teoria della misura (n — 1)-
dimensionale in uno spazio n-dimensionale. Technical report,
Sem. Mat. Scuola Norm. Sup. Pisa, (1960-1961).

E. De Giorgi. Frontiere orientate di misura minima. Sem.
Mat. Scuola Norm. Sup. Pisa, (1960-1961). Editrice Tecnico
Scientifica, Pisa, 1961.

E. De Giorgi. Una estensione del teorema di Bernstein. Ann.
Scuola Norm. Sup. Pisa, (3) 19:79-85, (1965).

D. Danielli, N. Garofalo, and D.M. Nhieu. Minimal surfaces in
Carnot groups. Prepeint 2004.

D. Danielli, N. Garofalo, and D.M. Nhieu. Sub-Riemannian
calculus on hypersurfaces in Carnot groups. Adv. Math., 215,
no. 1:292-378, 2007.

D. Danielli, N. Garofalo, and D.M. Nhieu. A notable family of
entire intrinsic minimal graphs in the Heisenberg group which
are not perimeter minimizing. Amer. J. Math., 130 (2):317-339,
2008.

D. Danielli, N. Garofalo, D.M. Nhieu, and S.D Pauls. Instabil-
ity of graphical strips and a positive answer to the Bernstein
problem in the Heisenberg group H'. Preprint, 2006.

D. Danielli, N. Garofalo, D.M. Nhieu, and S.D. Pauls. Stable
C? complete embedded non-characteristic minimal surfaces in
the Heisenberg group are vertical planes. Preprint, 2008.

G. De Philippis and E. Paolini. A short proof of the minimality
of Simons cone. Rend. Univ. Padova, (231):233-241, (2009).

L. Evans and R.F. Gariepy. Measure Theory and fine properties
of functions. CRC Press, (1992).

W.H. Fleming. On the oriented Plateau problem. Rend. Circ.
Mat. Palermo, (2) 11:19-90, (1962).



Bibliography 275

[FSSC96]  B. Franchi, R. Serapioni, and F. Serra Cassano. Meyers-Serrin
Type Theorems and Relaxation of Variational Integral Depend-
ing Vector Fields. Houston J. Math., 22(4):859-889, (1996).

[FSSCO01]  B. Franchi, R. Serapioni, and F. Serra Cassano. Rectifiability
and perimeter in the Heisenberg group. Math. Ann., 321:479—
531, (2001).

[FSSC03]  B. Franchi, R. Serapioni, and F. Serra Cassano. On the struc-
ture of finite perimeter sets in step 2 Carnot groups. J. Geom.
An., 13:421-466, (2003).

[FSSCO07]  B. Franchi, R. Serapioni, and F. Serra Cassano. Regular Sub-
manifolds, Graphs and Area Formula in Heisenberg Groups.
Adv. Math., 211:157-203, (2007).

[Giu84] E. Giusti. Minimal Surfaces and Functions of Bounded Varia-
tion. Birkrauser, (1984).

[Giu94] E. Giusti. Metodi diretti nel calcolo delle variazioni. Unione
Matematica Italiana, (1994).

[GN96] N. Garofalo and D.M. Nhieu. Isoperimetric and Sobolev in-
equalities for Carnot-Caratheodory spaces and the existence of
minimal surfaces. Comm. Pure Appl. Math., 49, no. 10:1081—
1144, 1996.

[GP] N. Garofalo and S. Pauls. The Bernstein problem in the Heisen-
berg group. Preprint 2005, arXiv:math/0209065v2.

[KSC04] B. Kirchheim and F. Serra Cassano. Rectifiability and
parametrization of intrinsic regular surfaces in the Heisenberg
group. Ann. Sc. Norm. Sup. Pisa Cl. Sci., (5) 3, n0.4:871-896,
(2004).

[Mir64a] M. Miranda. Sul minimo dell’integrale del gradiente di una
funzione. Ann. Scuola Norm. Sup. Pisa, (3) 19:627-665, (1964).

ir . Miranda. Superfici cartesiane generalizzate ed insiemi di

Mir64b M. Miranda. S fici tesi li d insiemi di
perimetro finito sui prodotti cartesiani. Ann. Scuola Norm.
Sup. Pisa, 18:515-542, (1964).

[Mir06] M. Miranda. Superfici Minime e il Problema di Plateau. Tech-
nical report, Universita di Lecce, (2006).

[Mos61] J. Moser. On Harnack’s theorem for elliptic differential equa-
tions. Comm. Pure Appl. Math., 14:577-591, (1961).



276

Bibliography

[Nit67]

[Pang9)

[Pau04]

[Rig04]

[RROS]

[RSCVOS]

[Sim68]

[Vit08]

J.C.C. Nitsche. Elementary proof of the Bernstein’s theorem
on minimal surfaces. Ann. of Math., 66:543-544, (1967).

P. Pansu.  Metriques de Carnot-Caratheodory et quasi-
isometries des espaces symmetriques de rang un. Ann. of Math.,
129, no.1:1-60, (1989).

S.D. Pauls. Minimal surfaces in the Heisenberg groups. Geom.
Dedicata, 104:201-231, 2004.

S. Rigot. Counter example to the Besichovitch covering prop-
erty for some Carnot groups equipped with their Carnot-
Carateodory metric. Math. Zeitschrift, 248:827-848, 2004.

M. Ritoré and C. Rosales. Area-stationary surfaces in the
Heisenberg group H'. Adv. Math., 219(2):633-671, 2008.

Monti R., F. Serra Cassano, and D. Vittone. A negative answer
to the Bernstein Problem for intrinsic graphs in the Heisenberg
group. Bollettino U.M.I, (9) 1:709-727, (2008).

J. Simons. Minimal varieties in riemannian manifolds. Ann. of

Math., (2) 88:62-105, (1968).

D. Vittone. Submanifolds in Carnot groups. PhD thesis, Scuola
Normale Superiore di Pisa, (2008).



	Introduction
	Notation
	The Bernstein Problem in R2
	Introduction to Measure Theory
	Outer measures and properties
	Measures
	Measurable functions
	Integrals and limit theorems
	Vector valued measures
	Covering theorems
	Vitali's covering Theorem
	Besicovitch's covering theorem

	Differentiation of Radon measures in Rn
	Riesz Representation Theorem
	Weak convergence and compactness of Radon measures

	Hausdorff measures
	Hausdorff measures in metric spaces
	Definition and properties
	Densities

	Hausdorff measures in Rn
	Basic properties
	Isodiametric inequality and Ln=Hn
	Densities


	Differentiation of Radon measures in metric spaces
	Differentiation in homogeneous spaces
	Differentiation in metric spaces

	Sets of finite perimeter and BV functions in Rn
	Definitions and properties
	Approximation
	Existence of minimal surfaces
	Isoperimetric Inequalities

	The Reduced boundary in Rn
	Definition and properties
	Blow-up
	Regularity of the reduced boundary
	Some applications

	Traces and extensions in Rn
	The cartesian case
	The general case
	Some applications

	Some inequalities for minimizing perimeter sets in Rn
	Technical results
	Estimates for minimal sets

	Regularity of minimal surfaces in Rn
	Partial regularity of minimal surfaces
	Minimal Cones
	First and second variation of the area
	First variation of the area
	Second variation of the area
	Simons Theorem

	Minimality of the Simons cone

	Non-parametric minimal surfaces in Rn
	Classical solutions of the minimal surface equation
	Existences results
	Construction of barriers
	Non existence of minimal surfaces
	The a priori estimate for the gradient

	Dirichlet problem in the BV space
	Weak formulation of Dirichlet problem
	Connection between parametric and non-parametric surfaces

	Quasi-solutions

	The Bernstein Problem in Rn
	The sub-Riemannian Heisenberg group Hn
	Carnot groups
	Lie groups and Lie algebras
	Carnot groups
	Homogeneous dimension and Haar measure

	The Heisenberg group Hn
	Carnot-Carathèodory spaces 
	Definition and properties of dc

	Hn as a Carnot-Carathèodory space
	Pansu Theorem
	H-perimeter in Hn
	Differential structure of Hn
	H-perimeter

	H-regular surfaces and Implicit Function Theorem
	Rectifiability in Hn

	The Bernstein Problem in Hn
	Minimal surface equation for X1-graphs
	Formulations of the Bernstein Problem in Hn for intrinsic graphs
	Calibration method for the H-perimeter
	Solutions to the Bernstein Problem in Hn
	The Bernstein Problem in H1
	The Bernstein Problem in Hn for n2


	Bibliography

