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Abstract

The consistency of a nonlocal anisotropic Ginzburg-Landau type functional for data classification
and clustering is studied. The Ginzburg-Landau objective functional combines a double well
potential, that favours indicator valued function, and the p-Laplacian, that enforces regularity. Under
appropriate scaling between the two terms minimisers exhibit a phase transition on the order of
ε = εn where n is the number of data points. We study the large data asymptotics, i.e. as n→∞,
in the regime where εn → 0. The mathematical tool used to address this question is Γ-convergence.
In particular, it is proved that the discrete model converges to a weighted anisotropic perimeter.

1 Introduction

The analysis of big data is one of the most important challenges we currently face. A typical problem
concerns partitioning the data based on some notion of similarity. When the method makes use of a
(usually small) subset of the data for which there are labels then this is known as a classification problem.
When the method only uses geometric features, i.e. there are are no a-priori known labels, then this is
known as a clustering problem. We refer to both problems as labelling problems.

A popular method to to represent the geometry of a given data set is construct a graph embedded
in an ambient space Rd, Typically the labelling task is fulfilled via a minimization procedure. In the
machine learning community, successfully implemented approaches considered minimizing graph cuts
and total variation (see, for instance, [4, 10, 13–16, 37, 45, 46, 48, 49]).

Of capital importance for evaluating a labelling method is whether it is consistent of not; namely it
is desirable that the minimization procedure approaches some limit minimization procedure when the
number of elements of the data set goes to infinity. Indeed, practitioners want to know if the labelling
obtained by applying a specific minimization algorithm is an approximation of a limit (minimizing)
object. For a consistent methodology properties of the large data limit will be evident when a large,
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but finite, number of data points is being considered. In particular, this can also be used to justify, a
posteriori, the use of a certain procedure in order to obtain some desired features of the classification.
Furthermore, understanding the large data limits can open up new algorithms.

This paper is part of an ongoing project aimed at justifying analytically the consistency of several
models for soft labelling used by practitioners. Here we consider a generalization of the approach
introduced by Bertozzi and Flenner in [7] (see also [17], for an introduction on this topic see [54]),
where a Ginzburg-Landau (or Modica-Mortola, see [38, 39]) type functional is used as the underlining
energy to minimize in the context of the soft classification problem. Our goal is to prove the consistency
of the model.

In future works we will consider other kind of approaches to the two phases soft labelling problems,
for instance the Ginzburg-Landau functional we consider is based on the p-Laplacian, one can also
consider the normalised p-Laplacian or the random walk Laplacian (see [40, 45]). One can also cosider
models for multi-phase labelling (see [29]) and convergence of the associated gradient flows.

The paper is organized as follows: in the following subsection we define the discrete model, and in
Subsection 1.2 we define the continuum limiting problem. The main results are given in Section 1.3
with the proofs presented in Sections 4 and 5. Section 2 contains some prelimimary material we include
for the convenience of the reader. Finally, Section 3 is devoted to the proofs of some technical results
that are of interest in their own right, and are later used in the proofs in Section 3.

1.1 Finite Data Model

In the graph representation of a data set, vertexes are points Xn := {xi}ni=1 ⊂ Rd connected with
weighted edges {Wij}ni,j=1, where each Wij ≥ 0 is meant to represent particular similarities between
the vertexes xi and xj , and in some sense represent the geometry. The larger Wij is the more similar the
points xi and xj are and "the closer they are on the graph".

Let us consider the problem of partitioning a set of data in two classes. A partition of the set of
points Xn is a map u : Xn → {−1, 1}, where −1 and 1 represent the two classes. This is referred to as
hard labelling, since u can only assume a finite number of values. From the computational point of view
it is preferable to work with functions whose values range in the whole interval [−1, 1], i.e., labellings
u : Xn → [−1, 1], thus allowing for a soft labelling. Labels that are close to 1, or to −1, are supposed to
be in the same class. The model used to obtain the binary classification should then force the labelling
to be either 1 or −1 when the number of data points is large.

In order to scale the weights on the edges of the graph we define Wij through a kernel η : Rd → R.
More precisely, we define the graph weights byWij = ηε(xi−xj) = 1

εd
η((xi−xj)/ε) where ε controls

the scale of interactions on the graph; in particular choosing ε large implies the graph is dense, and
choosing ε small implies the graph is disconnected. Later assumptions, see Remark 1.4, imply that we
scale ε = εn such that the graph is eventually connected (with probability one).

We now introduce the discrete functional we are going to study.

Definition 1.1. For p ≥ 1 and n ∈ N define the functional G(p)
n : L1(Xn)→ [0,∞) by

G(p)
n (u) :=

1

εnn2

n∑
i,j=1

Wij |u(xi)− u(xj)|p +
1

εnn

n∑
i=1

V (u(xi)) ,

where

Wij := ηεn(xi − xj) :=
1

εdn
η

(
xi − xj
εn

)
. (1)
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The first term in Gn plays the role of penalising oscillations, intuitively one wants a labelling solution
such that if xi and xj are close on the graph then the labels are also close. The first term, when p = 2,
can also be written as 1

εnn
〈u, Lu〉µn where L is the graph Laplacian. The second term penalises soft

labellings. In particular we assume that V (t) = 0 if and only if t ∈ {±1} and V (t) > 0 for all t 6= ±1.
Hence any soft labelling is given a penalty of 1

εnn

∑n
i=1 V (u(xi)), as εn → 0 this penality blows up

unless u takes the values ±1 almost everywhere.
The function η plays the role of a mollifier, and that explains the definition of ηεn . Moreover, to

justify the scaling 1
εn

we reason as follows: since η has support contained in a ball, we get

|u(xi)− u(xj)|p ∼ εpn|∇u|p .

So that, dividing by εn will give us the typical form of the singular perturbation used in the gradient
theory of phase transitions (see [38]), namely∫

X

1

εn
V (u) + εp−1

n |∇u|p .

The consistency of the model is studied by using Γ-convergence (see Section 2.4), a very important
tool introduced by De Giorgi in the 70’s to understand the limiting behavior of a sequence of functionals
(see [21]). This kind of variational convergence gives, almost immediately, convergence of minimizers.

1.2 Infinite Data Model

In order to define the limiting functional, we first introduce some notation.

Definition 1.2. Let ν ∈ Rd. Define ν⊥ := {z ∈ Rd : z · ν = 0}. Moreover, for x ∈ Rd, set

C(x, ν) :=
{
C ⊂ ν⊥ : C is a (d− 1)-dimensional cube centred at x

}
.

For C ∈ C(x, ν), we denote by v1, . . . , vd−1 its principal directions (where each vi is a unit vector
normal to the ith face of C), and we say that a function u : Rd → R is C-periodic if u(y + rvi) = u(y)
for all y ∈ Rd, all r ∈ N and all i = 1, . . . , d− 1.

Finally, we consider the following space of functions:

U(C, ν) :=

{
u : Rd → [−1, 1] : u is C-periodic, lim

y·ν→∞
u(y) = 1, and lim

y·ν→−∞
u(y) = −1

}
.

We now define the limiting (continuum) model.

Definition 1.3. Let p ≥ 1. Define the functional G(p)
∞ : L1(X)→ [0,∞] by

G(p)
∞ (u) :=


∫
∂∗{u=1}

σ(p)(x, νu(x))ρ(x) dHd−1(x) if u ∈ BV (X; {±1}) ,

+∞ else ,
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where

σ(p)(x, ν) := inf

{
1

Hd−1(C)
G(p)(u, ρ(x), TC) : C ∈ C(x, ν) , u ∈ U(C, ν)

}
,

and, for C ∈ C(x, ν), we set TC := {z + tν : z ∈ C, t ∈ R}. Finally, for λ ∈ R and A ⊂ Rd define

G(p)(u, λ,A) := λ

∫
A

∫
Rd
η(h)|u(z + h)− u(z)|p dhdz +

∫
A
V (u(z)) dz .

Notice that, while the discrete functional G(p)
n is nonlocal, the functional G(p)

∞ is a local one. The
minimization problem defining σ(p) is called the cell problem and it is common in phase transitions
problems (see related works in Subsection 1.4). Although not explicit, we have at least information on
the form of the limiting functional: an anisotropic weighted perimeter. This shows that minimizers of
G(p)
∞ are sets E ⊂ X whose boundary ∂E (or, to be precise, reduced boundary ∂∗E) will likely be in

the region where ρ is small and orthogonal to directions ν for which σ(p)(ν) is as small as possible.

Finally, we want to point out that one of the main issues we have to deal with is that, for each n ∈ N,
the data set Xn is a discrete set, while in the limit the data is given by a probability measure µ on the
set X , hence why we call G∞ the continuum model. Thus, we will need to compare functions (the
labeling) defined on different sets. To do so we will implement the strategy introduced by García-Trillos
and Slepčev in [33], that consists in extending a function u : Xn → R to a function v : X → R in
an optimal piecewise constant way. Optimal here is meant in the sense of optimal transportation. In
particular, a sequence of maps {un}∞n=1 with un ∈ L1(Xn), is said to converge in the TL1 topology to
a map u ∈ L1(X) if there exists a sequence {Tn}∞n=1 ⊂ L1(X;Xn) converging to the identity map in
L1(X) and with

µ(T−1
n (B)) =

1

n
# {xi ∈ B : i = 1, 2, . . . , n}

for every Borel set B ⊂ X , such that un ◦ Tn → u in L1(X). We review the TL1 topology in more
detail in Section 2.2.

1.3 Main Results

This section is devoted to the precise statements of the main results of this paper.
Let X ⊂ Rd be a bounded, connected and open set with Lipschitz boundary. Fix µ ∈ P(X) and

assume the following.

(A1) µ� Ld, has a continuous density ρ : X → [c1, c2] for some 0 < c1 ≤ c2 <∞.

We extend ρ to a function defined in the whole space Rd by setting ρ(x) := 0 for x ∈ Rd \X . For
all n ∈ N, consider a point cloud Xn = {xi}ni=1 ⊂ X and let µn be the associated empirical measure
(see Definition 2.1). Let {εn}∞n=1 be a positive sequence converging to zero and such that the following
rate of convergence holds:

(A2)
dist∞(µn, µ)

εn
→ 0 , where dist∞(µn, µ) is the∞-Wasserstein distance between the measures

µn and µ, see Definition 2.3.
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Remark 1.4. When xi
iid∼ µ then (with probability one), hypothesis (A2) is implied by εn � δn, where

δn is defined in Theorem 2.10. Notice that for d ≥ 3 this lower bound on εn that ensures the graph with
vertices xn and edges weighted by Wij (see (1)) is eventually connected (see [42, Theorem 13.2]). The
lower bound can potentially be improved when xi are not independent. For example if {xi}ni=1 form a
regular graph then µn converges to the uniform measure and the lower bound is given by εn � n−

1
d .

The double well potential V : Rd → R satisfies the following.

(B1) V is continuous.

(B2) V −1{0} = {±1} and V ≥ 0.

(B3) There exists τ > 0, RV > 1 such that for all |s| ≥ RV that V (s) ≥ τ |s|.

The assumptions on V imply that in the limit there are only two phases ±1. Assumption (B3) is
used to establish compactness, in particular it is used to show that minimisers can be bounded in L∞

by 1.
Recall that the graph weights are defined by Wij = ηεn(xi − xj). We assume that η : Rd → [0,∞)

is a measurable functions satisfying the following.

(C1) η ≥ 0, η(0) > 0 and η is continuous at x = 0.

(C2) η is an even function, i.e. η(−x) = η(x).

(C3) η has support in B(0, Rη), for some Rη > 0.

(C4) For all δ > 0 there exists cδ, αδ such that if |x − z| ≤ δ then η(x) ≥ cδη(αδz), furthermore
cδ → 1, αδ → 1 as δ → 0.

Remark 1.5. Note that (C3) and (C4) imply that ‖η‖L∞ <∞ and, in particular,
∫
Rd η(x)|x| dx <∞.

Indeed, given δ > 0, it is possible to cover B(0, Rη) with a finite family B̃δ(x1), . . . , B̃δ(xr) of sets of
the form

B̃δ(xi) := {αδz : |z − xi| < δ } .

Hypothesis (C2) is justified by the fact that η plays the role of an interaction potential. Finally,
hypothesis (C4) is a version of continuity of η we need in order to perform our technical computations.
We note that (C4) is general enough to include η(x) = χA where A ⊂ Rd is open, bounded, convex and
0 ∈ A, see [52, Proposition 2.2].

The main result of the paper is the following theorem.

Theorem 1.6. Let p ≥ 1 and assume (A1-2), (B1-3) and (C1-4) are in force. Then, the following holds:

• (compactness) let un ∈ L1(µn) satisfy supn∈N G
(p)
n (un) <∞, then un is relatively compact in

TL1 and each cluster point u has G(p)
∞ (u) <∞;

• (Γ-convergence) Γ- limn→∞(TL1)G(p)
n = G(p)

∞ .
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Since the proof of Theorem 1.6 is quite long, we briefly sketch here the main idea behind the
Γ-convergence result. We approximately follow the method of [33] where the authors considered the
continuum limit of total variation on point clouds. We will show the convergence of the discrete nonlocal
functional G(p)

n to the continuum local one G(p)
∞ via an intermediate nonlocal continuum functional F (p)

εn

(defined in (3)). In particular, we will prove that:

(i) the functionals F (p)
εn Γ-converge in L1(X) to G(p)

∞ , see Section 3, where we implement a strategy
similar to the one of [1], where the authors considered the functional F (p)

εn with ρ ≡ 1 and p = 2,

(ii) it is possible to bound from below G(p)
n with F (p)

ε′n
(see (46)), where limn→∞

ε′n
εn

= 1, from which
the liminf inequality follows,

(iii) if u ∈ BV (X;±1) and we set un := u
¬
Xn, we get that un → u in TL1(X) and, up to an

error term (negligible in the limit), we can get an upper bound of G(p)
n (un) with F (p)

ε′n
(u), where

limn→∞
ε′n
εn

= 1. This will give us the limsup inequality.

Similarly, the compactness property follows by comparing G(p)
n with the intermediary functional F (p)

εn .
As an application of the Theorem 1.6, we consider the functional G(p)

n with a data fidelity term.

Definition 1.7. Let kn : Xn×R→ R and k∞ : X×R→ R. Define the functionalsKn : L1(Xn)→ R
and K∞ : L1(X)→ R by

Kn(u) :=
1

n

n∑
i=1

kn(xi, u(xi)) ,

and
K∞(u) :=

∫
X
k∞(x, u(x))ρ(x) dx ,

respectively.

We make the following assumptions on kn, k∞:

(D1) kn ≥ 0, k∞ ≥ 0.

(D2) There exist β > 0 and q ≥ 1 such that kn(x, u) ≤ β(1 + |u|q), for all n ∈ N and almost all
x ∈ Xn.

(D3) For almost every x ∈ X the following holds: let un → u be a converging real valued sequence
and xn → x, then

lim
n→∞

kn (xn, un) = k∞(x, u) .

Remark 1.8. For example, we can use this form of Kn,K∞ to include a data fidelity term in a specific
subset of X . Let B ⊂ X be an open set with Vol(B) > 0 and Vol(∂B) = 0. Let λn ≥ 0 with
λn → λ as n → ∞. Let yn ∈ L1(Xn) and y∞ ∈ L1(X) with supn∈N ‖yn‖L∞ < ∞ and such that
yn(xin)→ y∞(x) for almost every x ∈ X and any sequence xin → x. Define

kn(x, u) :=

{
λn|yn(x)− u|q in B ∩Xn ,
0 on Xn \B ,
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k∞(x, u) :=

{
λn|y∞(x)− u|q in B ,
0 on X \B .

Then kn and k∞ satisfy hypothesis (D1-3). Indeed, (D1) follows directly from the definition of the
fidelity terms, while (D3) holds thanks to the continuity and the fact that Vol(∂B) = 0. Finally, in order
to prove (D2) we simply notice that

kn(x, u) = λn|yn(x)− u|q ≤ sup
n∈N

λn2q−1
(
‖yn‖qL∞ + |u|q

)
≤ β(1 + |u|q) .

for some β > 0.

We now consider the minimisation problem

minimise G(p)
n (u) +Kn(u) over u ∈ L1(Xn) .

Corollary 1.9. In addition to Assumptions (A1-3), (B1-2), (C1-4), (D1-3), assume that for the same
q ≥ 1 as in Assumption (D2) there exists τ,RV > 0 such that for all |s| ≥ RV that V (s) ≥ τ |s|q. Then
any sequence of almost minimizers of G(p)

n +Kn is compact in TL1. And furthermore, any cluster point
of almost minimizers is a minimizer of G(p)

∞ +K∞ in L1(X).

We prove the corollary in Section 5.

Finally, we would like to comment on the hypothesis ρ ≥ c1 > 0. If we drop it, we can still get the
following result:

Corollary 1.10. Let p ≥ 1 and assume (A2), (B1-3) and (C1-4) are in force and that ρ ∈ [0, c2], for
some c2 <∞. Set X+ := {x ∈ X : ρ(x) > 0} and define the functional G̃(p)

∞ : L1(X)→ [0,+∞] as

G̃(p)
∞ (u) :=


∫
∂∗{u=1}

σ(p)(x, νu(x))ρ(x) dHd−1(x) if u ∈ BVloc(X+; {±1}) ,

+∞ else ,

where BVloc(X+; {±1}) denotes the space of functions u ∈ L1(X;±1) such that u ∈ BV (K;±1) for
any compact set K ⊂ X+. Then, the following holds:

• (compactness) for any compact set K ⊂ X0 we have that any sequence {un}∞n=1 ⊂ L1(K;µn)

satisfying supn∈N G
(p)
n (un) < ∞ is relatively compact in TL1 and each cluster point u has

G̃(p)
∞ (u) <∞;

• (Γ-convergence) Γ- limn→∞(TL1)G(p)
n = G̃(p)

∞ .

1.4 Related Works

The functional G(p)
n in the case p = 1 has been considered by the second author and Theil in [52], where

a similar Γ-convergence result has been proved. The difference is that, in the case p = 1, the limit
energy density function σ(1) can be given explicitly, via an integral. In [53] van Gennip and Bertozzi
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studied the Ginzburg-Landau functional on 4-regular graphs for p = 2 proving limits for ε → 0 and
n→∞ (both simultaneously and independently).

The TLp topology, as introduced by García Trillos and Slepčev [33], provides a notion of conver-
gence upon which the Γ-convergence framework can be applied. This method has now been applied in
many works, see, for instance, [20, 23, 30, 31, 33–35, 46, 52]. Further studies on this topology can be
found in [33, 34, 50, 51].

The literature on phase transitions problems is quite extensive. Here we just recall some of the main
results, starting from the pioneering work [39] of Modica and Mortola and of Mortola [38], (see also
Sternberg [47]) where the scalar isotropic case has been studied. The vectorial case has been considered
by Kohn and Sternberg in [36], Fonseca and Tartar in [27] and Baldo [5]. A study of the anisotropic case
has been carried out by Bouchitté [8] and Owen [41] in the scalar case, and by Barroso and Fonseca [6]
and Fonseca and Popovici [26] in the vectorial case.

Nonlocal approximations of local functionals of the perimeter type go back to the work [1] of Alberti
and Bellettini (see also [2]). Several variants and extensions have been considered since then (see, for
instance, Savin and Valdinoci [44] and Esedoḡlu and Otto [24]). In particular, nonlocal functionals
have been used by Brezis, Bourgain and Mironescu in [9] to characterized Sobolev spaces (see also the
work [43] of Ponce)

Approximations of (anisotropic) perimeter functionals via energies defined in the discrete setting
have been carried out by Braides and Yip in [12] and by Chambolle, Giacomini and Lussardi in [18].

2 Background

2.1 Notation

In the following χE will denote the characteristic function of a set E ⊂ Rd, while Vol(E) = Ld(E) will
denote its d-dimensional Lebesgue measure andHd−1(E) its (d− 1)-Hausdorff measure. Moreover,
with B(x, r) we will denote the ball centered at x ∈ Rd with radius r > 0 and we set Sd−1 := ∂B(0, 1).
The identity map will be denoted by Id.

Given an open set X ⊂ Rd, we define the space

P(X) := { Radon measures µ on Xwith µ(X) = 1 } .

Given a set of data points {xi}ni=1 we define the empirical measure as follows.

Definition 2.1. For all n ∈ N letXn := {xi}ni=1 be a set of n random variables. We define the empirical
measure µn as

µn :=
1

n

n∑
i=1

δxi ,

where δx denotes the Dirac delta centered at x.

We state our results in terms of a general sequence of empirical measures µn that converge weak∗

to some µ ∈ P(X). An important special case is when xi are independent and identically distributed
(which we abbreviate to iid) from µ.

Remark 2.2. When xi
iid∼ µ then µn converges, with probability one, to µ weakly∗ in the sense of

measures, see for example [22, Theorem 11.4.1], (and we write µn
w*

⇀µ), i.e.∫
X
ϕdµn →

∫
X
ϕdµ
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as n→∞, for all ϕ ∈ Cc(X).

We write Lp(X,µ;Y ) for he space of Lp integrable, with respect to µ, functions from X to Y . We
will often suppress the Y dependence and just write Lp(X,µ). Moreover, if µ = Ld then we will often
write Lp(X) = Lp(X,µ). If µ = µn is the empirical measure we also write Lp(Xn) = Lp(X,µn).

2.2 Transportation theory

In this section we collect the fundamental material needed in order to explain how to compare functions
defined in different spaces, namely a function w ∈ L1(X,µ) and a function u ∈ L1(Xn, µn), where
X ⊂ Rd is an open set and Xn ⊂ X is a finite set of points. This is fundamental in stating our
Γ-convergence result (Theorem 1.6). The TLp space was introduced in [33] and consists of comparing
w and a piecewise constant extension of the function u in Lp. In particular, we take a map T : X → Xn

and we consider the function v : X → R defined as v := u ◦ T . In order that this defines a metric one
needs to impose conditions on T , the natural conditions are that T "matches the measure µ with µn"
and is optimal in the sense that matching moves as little mass as possible (see Theorem 2.10). This will
be done by using the optimal transport distance that we recall now (see also [55] for background on
optimal transport and [33, 51] for a further description of the TLp space).

Definition 2.3. Let X ⊂ Rd be an open set and let µ, λ ∈ P(X). We define the set of couplings Γ(µ, λ)
between µ and λ as

Γ(µ, λ) := {π ∈ P(X ×X) : π(A×X) = µ(A), π(X ×A) = λ(A), for all A ⊂ X } .

For p ∈ [1,+∞], we define the p-Wasserstein distance between µ and λ as follows:

• when 1 ≤ p <∞,

distp(µ, λ) := inf

{(∫
X×X

|x− y|pdπ(x, y)

) 1
p

: π ∈ Γ(µ, λ)

}
,

• when p =∞,

dist∞(µ, λ) := inf { esssupπ { |x− y| : (x, y) ∈ X ×X } : π ∈ Γ(µ, λ) } ,

where esssupπ denotes the essential supremum with respect to the measure π.

Remark 2.4. The infimum problems in the above definition are known as the Kantorovich optimal
transport problem and the distance is commonly called the pth Wasserstein distance or sometimes the
earth movers distance. It is possible to see (see [55]) that the infimum is actually achieved. Moreover, the
metric distp is equivalent to the weak∗ convergence of probability measures P(X) (plus convergence of
pth moments).

We now consider the case we are interested in: take µ ∈ P(X) with µ = ρLd (where Ld is the
d-dimensional Lebesgue measure on Rd) and assume the density ρ is such that 0 < c1 ≤ ρ ≤ c2 <∞.
Then it is possible to see that the Kantorovich minimization problem is equivalent to the Monge optimal
transport problem (see [28]). In particular, for p ∈ [1,+∞) it holds that

distp(µ, λ) = min
{
‖Id− T‖Lp(X,µ) : T : X → X Borel, T#µ = λ

}
,
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where
‖Id− T‖pLp(X,µ) :=

∫
X
|x− T (x)|pρ(x) dx

and we define the push forward measure T#µ ∈ P(X) as T#µ(A) := µ
(
T−1(A)

)
for all A ⊂ X . In

the case p = +∞ we get

dist∞(µ, λ) = inf
{
‖Id− T‖L∞(X,µ) : T : X → X Borel, T#µ = λ

}
.

A map T is called a transport map between µ and λ if T#µ = λ.
Throughout the paper we will assume the empirical measures µn converges weakly∗ to µ (see

Remark 2.2 for iid samples) so by Remark 2.4 there exists a sequence of Borel maps {Tn}∞n=1 with
Tn : X → Xn and (Tn)#µ = µn such that

lim
n→∞

‖Id− Tn‖pLp(X,µ) = 0 .

Such a sequence of functions {Tn}∞n=1 will be called stagnating. We are now in position to define the
notion of convergence for sequences un ∈ Lp(Xn) to a continuum limit u ∈ Lp(X,µ).

Definition 2.5. Let un ∈ Lp(Xn), w ∈ Lp(X,µ) where Xn = {xi}ni=1 and assume that the empirical

measure µn converges weak∗ to µ. We say that un → w in TLp(X), and we write un
TLp

−→w, if there
exists a sequence of stagnating transport maps {Tn}∞n=1 between µ and µn such that

‖vn − w‖Lp(X,µ) → 0 , (2)

as n→∞, where vn := un ◦ Tn.

Remark 2.6. It is easy to see that if (2) holds for one sequence of stagnating maps, then it holds for all
sequences of stagnating maps [33, Proposition 3.12]. Moreover, since ρ is bounded above and below it
holds

‖vn − Id‖Lp(X,µ) → 0 ⇔ ‖vn − Id‖Lp(X) → 0 .

We have introduced TLp convergence un
TLp

−→u by defining transport maps Tn : X → Xn which
"optimally partition" the space X after which we define a piecewise constant extension of un to the
whole of X . This constructionist approach is how we use TLp convergence in our proofs. However,
this description hides the metric properties of TLp. We briefly mention here the metric structure which
characterises the convergence given in Definition 2.5. We define the TLp(X) space as the space of
couplings (u, µ) where µ ∈ P(X) has finite pth moment and u ∈ Lp(µ). We define the distance
dTLp : TLp(X)× TLp(X)→ [0,+∞) for p ∈ [1,+∞) by

dTLp((u, µ), (v, λ)) := min
π∈Γ(µ,ν)

(∫
X2

|x− y|p + |u(x)− v(y)|p dπ(x, y)

) 1
p

= inf
T#µ=λ

(∫
X
|x− T (x)|p + |u(x)− v(T (x))|p dµ(x)

) 1
p

,

or for p = +∞ by

dTL∞((u, µ), (v, λ)) := inf
π∈Γ(µ,ν)

(
ess inf

π
{|x− y|+ |u(x)− v(y)| : (x, y) ∈ X ×X}

)
10



= inf
T#µ=λ

(
ess inf

µ
{|x− T (x)|+ |u(x)− v(T (x))| : x ∈ X}

)
.

Proposition 2.7. The distance dTLp is a metric and furthermore, dTLp((un, µn), (u, µ)) → 0 if and

only if µn
w*

⇀µ and there exists a sequence of stagnating transport maps {Tn}∞n=1 between µ and µn
such that ‖un ◦ Tn − u‖Lp(X,µ) → 0.

The proof is given in [33, Remark 3.4 and Proposition 3.12]. Note that Definition 2.5 characterises
TLp convergence.

In order to be able to write the discrete functional we will need the following result.

Lemma 2.8. Let λ ∈ P(X) and let T : X → X be a Borel map. Then, for any u ∈ L1(X,λ) it holds∫
X
udT#λ =

∫
X
u ◦ T dλ .

Proof. Let s : X → R be a simple function. Write

s =
k∑
i=1

aiχUi .

Then ∫
X
sdT#λ =

k∑
i=1

aiT#λ(Ui) =
k∑
i=1

aiλ
(
T−1(Ui)

)
=

∫
X
s ◦ T dλ .

The result then follows directly from the definition of integral.

Remark 2.9. Applying the above result to the empirical measures µn = 1
n

∑n
i=1 δxi and u ∈ L1(Xn)

we get
1

n

n∑
i=1

u(xi) =

∫
X
vn(x) dµ(x) ,

where vn := u ◦ Tn for any Tn such that (Tn)#µ = µn.

In [32] the authors, García Trillos and Slepčev, obtain the following rate of convergence for a
sequence of stagnating maps. This is of crucial importance for applying the results of this paper to the
iid setting.

Theorem 2.10. Let X ⊂ Rd be a bounded, connected and open set with Lipschitz boundary. Let
µ ∈ P(X) of the form µ = ρLd with 0 < c1 ≤ ρ ≤ c2 <∞. Let {xi}∞i=1 be a sequence of independent
and identically distributed random variables distributed on X according to the measure µ, and let µn
be the associated empirical measure. Then, there exists a constant C > 0 such that, with probability
one, there exists a sequence {Tn}∞n=1 of maps Tn : X → X with (Tn)#µ = µn and

lim sup
n→∞

‖Tn − Id‖L∞(X)

δn
≤ C ,

where

δn :=



√
log logn

n if d = 1 ,

(logn)
3
4√

n
if d = 2 ,(

logn
n

) 1
d if d ≥ 3 .

11



Remark 2.11. The proof for d = 1 is simpler and follows from the law of iterated logarithms. Notice
that the connectedness of X is essential in order to get the above result.

By the above theorem our main result, Theorem 1.6, holds with probability one when xi
iid∼ µ and

the graph weights are scaled by εn with εn � δn.

2.3 Sets of finite perimeter

In this section we recall the definition and the basic facts about sets of finite perimeter. We refer the
reader to [3] for more details.

Definition 2.12. Let E ⊂ Rd with Vol(E) < ∞ and let X ⊂ Rd be an open set. We say that E has
finite perimeter in X if

|DχE |(X) := sup

{∫
E

divϕdx : ϕ ∈ C1
c (X;Rd) , ‖ϕ‖L∞ ≤ 1

}
<∞ .

Remark 2.13. If E ⊂ Rd is a set of finite perimeter in X it is possible to define a finite vector valued
Radon measure DχE on A such that ∫

Rd
ϕdDχE =

∫
E

divϕdx

for all ϕ ∈ C1
c (X;Rd).

Definition 2.14. Let X ⊂ Rd be an open set and let u ∈ L1(X;±1) with ‖u‖L1(X) <∞. We say that
u is of bounded variation in X , and we write u ∈ BV (X;±1), if {u = 1} := {x ∈ X : u(x) = 1}
has finite perimeter in X .

Definition 2.15. Let E ⊂ Rd be a set of finite perimeter in the open set X ⊂ Rd. We define ∂∗E, the
reduced boundary of E, as the set of points x ∈ Rd for which the limit

νE(x) := − lim
r→0

DχE(x+ rQ)

|DχE |(x+ rQ)

exists and is such that |νE(x)| = 1. Here Q denotes the unit cube of Rd centered at the origin with sides
parallel to the coordinate axes. The vector νE(x) is called the measure theoretic exterior normal to E at
x.

We now recall the structure theorem for sets of finite perimeter due to De Giorgi, see [3, Theorem
3.59] for a proof of the following theorem.

Theorem 2.16. Let E ⊂ Rd be a set with finite perimeter in the open set X ⊂ Rd. Then

(i) for all x ∈ ∂∗E the set Er := E−x
r converges locally in L1(Rd) as r → 0 to the halfspace

orthogonal to νE(x) and not containing νE(x),

(ii) DχE = νEHd−1 ¬ ∂∗E,

12



(iii) the reduced boundary ∂∗E isHd−1-rectifiable, i.e., there exist Lipschitz functions fi : Rd−1 → Rd
such that

∂∗E =

∞⋃
i=1

fi(Ki) ,

where each Ki ⊂ Rd−1 is a compact set.

Remark 2.17. Using the above result it is possible to prove that (see [25])

νE(x) = − lim
r→0

DχE(x+ rQ)

rd−1

for all x ∈ ∂∗E, where Q is a unit cube centred at 0 with sides parallel to the co-ordinate axis.

The construction of the recovery sequences in Section 3.4 and Section 4.3 will be done for a special
class of functions, that we introduce now.

Definition 2.18. We say that a function u ∈ L1(X;±1) is polyhedral if u = χE−χX\E , where E ⊂ X
is a set whose boundary is a Lipschitz manifold contained in the union of finitely many affine hyperplanes.
In particular, u ∈ BV (X,±1).

Using the result [3, Theorem 3.42] and the fact that it is possible to approximate every smooth
surface with polyhedral sets, it is possible to obtain the following density result.

Theorem 2.19. Let u ∈ BV (X; {±1}). Then there exists a sequence {un}∞n=1 ⊂ BV (X; {±1})
of polyhedral functions such that un → u in L1(X) and |Dun|(X) → |Du|(X). In particular

Dun
w∗
⇀ Du.

Finally, we recall a result due to Reshetnvyak in the form we will need in this paper (for a proof of
the general case see, for instance, [3, Theorem 2.38]).

Theorem 2.20. Let {En}∞n=1 be a sequence of sets of finite perimeter in the open set X ⊂ Rd such

that DχEn
w∗
⇀ DχE and |DχEn |(X) → |DχE |(X), where E is a set of finite perimeter in X . Let

f : X × Sd−1 → [0,∞) be an upper semi-continuous function. Then

lim sup
n→∞

∫
∂∗En∩X

f (x, νEn(x)) dHd−1(x) ≤
∫
∂∗E∩X

f (x, νE(x)) dHd−1(x) .

2.4 Γ-convergence

We recall the basic notions and properties of Γ-convergence (in metric spaces) we will use in the paper
(for a reference, see [11, 19]).

Definition 2.21. Let (A,d) be a metric space. We say that Fn : A → [−∞,+∞] Γ-converges to

F : A→ [−∞,+∞], and we write Fn
Γ-(d)−→ F or F = Γ- lim(d)n→∞Fn, if the following hold true:

(i) for every x ∈ A and every xn → x we have

F (x) ≤ lim inf
n→∞

Fn(xn) ;
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(ii) for every x ∈ A there exists {xn}∞n=1 ⊂ A (the so called recovery sequence) with x → x such
that

lim sup
n→∞

Fn(xn) ≤ F (x) .

The notion of Γ-convergence has been designed in order for the following convergence of minimisers
and minima result to hold.

Theorem 2.22. Let (A, d) be a metric space and let Fn
Γ−(d)−→ F , where Fn and F are as in the above

definition. Let {εn}∞n=1 with εn → 0+ as n→∞ and let xn ∈ A be a εn-minimizers for Fn, that is

Fn(xn) ≤ max

{
inf
A
Fn +

1

εn
, − 1

εn

}
.

Then every cluster point of {xn}∞n=1 is a minimizer of F .

Remark 2.23. The condition defining an ε-minimizer takes into account the fact that the infimum of the
functional can be −∞.

In the context of this paper we apply Theorem 2.22 in order to prove Corollary 1.9. In particular, we
show that G(p)

n +Kn Γ-converges to G∞ +K∞ and satisfies a compactness property. We note that in
general

Γ- lim
n→∞

(d)(Fn +Gn) 6= Γ- lim
n→∞

(d)Fn + Γ- lim
n→∞

(d)Gn.

However, with a suitable strong notion of convergence of Gn → G we can infer the additivity of
Γ-limits.

Proposition 2.24. Let (A, d) be a metric space and let Fn
Γ-(d)−→ F . Assume Gn(un) → G(u) and

G(u) > −∞ for any sequence un → u with supn∈N Fn(un) < +∞ and F (u) < +∞ then

Γ- lim
n→∞

(d)(Fn +Gn) = Γ- lim
n→∞

(d)Fn + Γ- lim
n→∞

(d)Gn.

The assumption in the above proposition is similar to the notion of continuous convergence, see [19,
Definition 4.7 and Proposition 6.20]. In our context continuous convergence is not quite the right
concept, indeed we define the fidelity term Kn on TLp by

Kn(u, ν) =

{
1
n

∑n
i=1Kn(xi, u(xi)) if ν = µn

+∞ else.
.

Hence Kn does not continuous converge to K∞ (defined on TLp analogously), however we show, in
Section 5, that Kn does satisfy the assumptions in Proposition 2.24.

3 Convergence of the Non-Local Continuum Model

We first introduce the intermediary functional F (p)
ε that is a non-local continuum approximation of the

discrete functional G(p)
n .
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Definition 3.1. Let p ≥ 1, ε > 0, sε > 0, and let A ⊂ X be an open and bounded set. Define the
functional F (p)

ε (·, A) : L1(X)→ [0,∞] by

F (p)
ε (u,A) =

sε
ε

∫
A×A

ηε(x− z)|u(x)− u(z)|pρ(x)ρ(z) dx dz +
1

ε

∫
A
V (u(x))ρ(x) dx . (3)

When A = X , we will simply write F (p)
ε (u).

This section is devoted to proving the following result.

Theorem 3.2. Let p ≥ 1, and assume sε → 1 as ε→ 0. Under conditions (A1), (B1-3) and (C1-3) the
following holds:

• (Compactness) Let εn → 0+ and un ∈ L1(X,µ) satisfy supn∈NF
(p)
εn (un) < ∞, then un is

relatively compact in L1(X,µ) and each cluster point u has G(p)
∞ (u) <∞;

• (Γ-convergence) Γ- limε→0(L1)F (p)
ε = G(p)

∞ and furthermore, if u ∈ L1(X,µ) is a polyhedral
function then lim supε→0F

(p)
ε (u) = G(p)

∞ (u).

The result of Theorem 3.2 is a generalization of a result by Alberti and Bellettini (see [1]) that we
are going to recall for the reader’s convenience. First, we introduce notation for the special case when
p = 2 and ρ = 1 on X .

Definition 3.3. Let ε > 0, and define the functionals Eε, E0 : L1(X)→ [0,∞] by

Eε(u) :=
1

ε

∫
X

∫
X
ηε(x− z)|u(x)− u(z)|2 dx dz +

1

ε

∫
X
V (u(x)) dx

E0(u) :=


∫
∂∗{u=1}

σ̂(νu(x)) dHd−1(x) if u ∈ BV (X, {±1}) ,

+∞ else ,

respectively, where

σ̂(ν) := min

{
E(f ; ν) | f : R→ R, lim

t→∞
f(t) = 1, lim

t→−∞
f(t) = −1

}
E(f ; ν) :=

∫ ∞
−∞

∫
Rd
η(h)|f(t+ hν)− f(t)|2 dhdt+

∫ ∞
−∞

V (f(t)) dt

and hν := h · ν.

Remark 3.4. We make the following observations.

1. The fact that there exists a minimizer of σ̂(ν) follows from [2, Theorem 2.4].

2. The minimum in σ̂(ν) can be taken over non-decreasing functions with tf(t) ≥ 0 for all t ∈ R.
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3. If η is isotropic, i.e., η(h) = η(|h|), then E(f ; ν) is independent of ν and therefore σ(ν) is a
constant and the functional E0 is a multiple of the perimeterHd−1(∂∗{u = 1}).

The following theorem is a combination of two results, [1, Theorem 1.4] and [2, Theorem 3.3].

Theorem 3.5. Assume that X ⊂ Rd is open, V satisfies conditions (B1-3), and η satisfies conditions
(C2-3). Then the following holds:

• (Compactness) Any sequence εn → 0+ and {un} ⊂ L1(X) with supn∈N Eεn(un) < ∞ is
relatively compact in L1(X), furthermore any cluster point u satisfies E0(u) <∞;

• (Γ-convergence) Γ- limε→0(L1)Eε = E0.

The proof of Theorem 3.2 is based on the proof of [1, Theorem 1.4], where we have to deal with the
fact that, in our case, we are considering a generic exponent p ≥ 1, and that we have a density ρ. The
compactness proof is in Section 3.1 and the Γ-convergence in Sections 3.3-3.4.

3.1 Compactness

The aim of this section is to show that any sequence {un}∞n=1 ⊂ L1(X,µ) with supn∈NF
(p)
εn (un) <∞

is relatively compact in L1(X,µ) and that G(p)
∞ (u) <∞ for any cluster point u ∈ L1(X,µ). This will

prove the first part of Theorem 3.2.
The strategy of the proof is to apply the Alberti and Bellettini compactness result in Theorem 3.5.

When p = 2 this follows from the upper and lower bounds on ρ that imply an ‘equivalence’ between
Eεn and F (2)

εn . When p 6= 2 we approximate un with a sequence vn satisfying vn(x) ∈ {±1} then since
|vn(x)− vn(z)|2 = 22−p|vn(x)− vn(y)|p we can easily find an equivalence between Eεn and F (p)

εn . We
start with the preliminary result that shows E∞(u) <∞ =⇒ G(p)

∞ (u) <∞.

Proposition 3.6. Let X ⊂ Rd be open and bounded, and let u ∈ L1(X; {±1}). Under assumptions
(A1), (B1-2), (C1,3) we have∫

∂∗{u=1}
σ̂(νu(x)) dHd−1(x) < +∞ ⇔ Hd−1(∂∗{u = 1}) < +∞

⇒
∫
∂∗{u=1}

σ(p)(x, νu(x))ρ(x) dHd−1(x) < +∞.

Remark 3.7. The above proposition implies that

E0(u) < +∞ ⇔ u ∈ BV (X; {±1}) ⇔ G(p)
∞ (u) < +∞

since by definition of G(p)
∞ if G(p)

∞ (u) < +∞ then u ∈ BV (X; {±1}).

Remark 3.8. The missing implication,∫
∂∗{u=1}

σ(p)(x, νu(x))ρ(x) dHd−1(x) < +∞ =⇒ Hd−1(∂∗{u = 1}) < +∞ ,
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is also true. However the natural way to prove this is to first show that the minimisation problem in
σ(p)(x, ν) (for any x ∈ X and ν ∈ Sd−1) can be be reduced to a minimisation problem over functions
f : R→ R similar to σ̂(ν) (but with an additional x dependence). This is non-trivial and would take
considerable space. Since we only use the proposition to imply that if E0(u) < +∞ then G(p)

∞ (u) < +∞
then extending the result is not needed. We refer to [2, Section 3] where the authors carry out analogous
computations for ρ ≡ 1 and p = 2.

Proof of Proposition 3.6. Step 1. We show

Hd−1(∂∗{u = 1}) < +∞ =⇒
∫
∂∗{u=1}

σ̂(νu(x)) dHd−1(x) < +∞.

Choose f̂(t) = +1 if t ≥ 0 and f(t) = −1 if t < 0. Then,

E(f̂ ; ν) =

∫ ∞
−∞

∫
Rd
η(h)|f̂(t+ hν)− f̂(t)|2 dhdt =

∫
Rd
η(h)|hν | dh ≤ Rη

∫
Rd
η(h) =: C

where C ∈ (0,∞), hν = h · ν and Rη is given by assumption (C3). Note that C is independent of ν. So,∫
∂∗{u=1}

σ̂(νu(x)) dHd−1(x) ≤
∫
∂∗{u=1}

E(f̂ ; νu(x)) dHd−1(x) ≤ CHd−1(∂∗{u = 1}).

Step 2. We show∫
∂∗{u=1}

σ̂(νu(x)) dHd−1(x) < +∞ =⇒ Hd−1(∂∗{u = 1}) < +∞.

Using assumption (C1) it is possible to find a > 0 and c > 0 satisfying η(h) ≥ c for all |h| ≤ a. Let
f̂ : R→ R such that

f̂ is non-decreasing, lim
t→∞

f̂(t) = − lim
t→−∞

f̂(t) = 1, f̂(t)t ≥ 0 for t ∈ R . (4)

If f̂(a2 ) ≤ 1
2 then f̂(t) ∈ [0, 1

2) for t ∈ [0, a2 ] and

E(f̂ ; ν) ≥ a

2
inf

t∈[0, 1
2

]
V (t) =: ã1 > 0. (5)

Otherwise, if f̂
(
a
2

)
> 1

2 then for h ≥ a
2∫

R
|f̂(t+ h)− f̂(t)|2 dt ≥

∫ 0

a
2
−h
|f̂(t+ h)− f̂(t)|2 dt ≥

h− a
2

4
.

Similarly, if h ≤ −a
2 we have ∫

R
|f̂(t+ h)− f̂(t)|2 dt ≥

a
2 − h

4
.

So, for all |h| ≥ a
2 it holds ∫

R
|f̂(t+ h)− f̂(t)|2 dt ≥

|h− a
2 |

4
.
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Therefore

E(f̂ ; ν) ≥
∫
Rd
η(h)

∫
R
|f̂(t+ hν)− f̂(t)|2 dtdh

≥ 1

4

∫
{h∈Rd : |hν |≥ 3a

4
}
η(h)

∣∣∣hν − a

2

∣∣∣ dh

≥ ac

16

∫
{h∈Rd : |hν |≥ 3a

4
}
χB(0,a) dh

=: ã2 > 0 . (6)

Set ã := min{ã1, ã2} > 0. Using (5) and (6) we have, for any f : R → R satisfying (4), that
E(f̂ ; ν) ≥ ã. We get

ãHd−1(∂∗{u = 1}) ≤
∫
∂∗{u=1}

σ̂(νu(x)) dHd−1(x) = E0(u) <∞ .

Step 3. We show

Hd−1(∂∗{u = 1}) < +∞ =⇒
∫
∂∗{u=1}

σ(p)(x, νu(x))ρ(x) dHd−1(x) < +∞.

Following the same argument as in the first part of the proof we let f̂(t) = 1 for t ≥ 0 and f̂(t) = −1
for t < 0. Fix ν ∈ Sd−1 and let fν(x) = f̂(x · ν). For any x̄ ∈ X and C ∈ C(x̄, ν) we clearly have
fν ∈ U(C, ν). So,

1

Hd−1(C)
G(p)(fν , ρ(x̄), TC) = ρ(x̄)

∫ ∞
−∞

∫
Rd
η(h)|f̂(t+ hν)− f̂(t)|p dhdt

≤ 2pc2

∫
Rd
η(h)|hν | dh

≤ c̃

where c̃ ∈ (0,∞) can be chosen to be independent of ν and in the last step we used assumption (C3).
Then,∫

∂∗{u=1}
σ(p)(x, νu(x))ρ(x) dHd−1(x) ≤

∫
∂∗{u=1}

1

Hd−1(C)
G(p)(fν , ρ(x̄), TC)ρ(x̄) dHd−1(x̄)

≤ c2c̃Hd−1(∂∗{u = 1}).

This concludes the proof.

By the above proposition it is enough to show that any sequence {un}∞n=1 ⊂ L1(X,µ) satisfying
supn∈NFεn(un) < +∞ is relatively compact and any cluster point u satisfies E0(u) <∞. We do this
by a direct comparison with Eεn .

Proof of Theorem 3.2 (Compactness). Assume εn → 0+, sn := sεn → 1 and supn∈NFεn(un) < +∞.
Let

vn(x) := sign(un) :=

{
+1 if un(x) ≥ 0
−1 if un(x) < 0.

We claim that
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(1) ‖un − vn‖L1 → 0,

(2) supn∈NF
(p)
εn (vn) < +∞.

Step 1. Let us first prove (1). Fix δ > 0 and let

K(δ)
n = {x ∈ X : |un(x)| ≥ 1 + δ}
L(δ)
n = {x ∈ X : |un(x)| ≤ 1− δ} .

Note that for x ∈ X \ (K
(δ)
n ∪ L(δ)

n ) we have |vn(x)− un(x)| ≤ δ. Now,∫
X
|un(x)− vn(x)|dx ≤ δVol(X) +

∫
K

(δ)
n

|un(x)− vn(x)| dx+

∫
L
(δ)
n

|un(x)− vn(x)|dx

≤ δVol(X) +

∫
K

(δ)
n

|un(x)| dx+ Vol(K(δ)
n ) + 2Vol(L(δ)

n ).

Since V is continuous and zero only at ±1 then there exists γδ > 0 such that V (t) ≥ γδ for all
t ∈ (−∞,−1− δ) ∪ (−1 + δ, 1− δ) ∪ (1 + δ,+∞). Hence V (un(x)) ≥ γδ for all x ∈ K(δ)

n ∪ L(δ)
n .

This implies,

Vol(K(δ)
n ) ≤ 1

γδ

∫
K

(δ)
n

V (un(x)) dx ≤ εn
c1γδ
F (p)
εn (un).

By the same calculation Vol(L
(δ)
n ) ≤ εn

c1γδ
F (p)
εn (un). Furthermore,∫

K
(δ)
n

|un(x)|dx =

∫
K

(δ)
n ∩{|un(x)|≤RV }

|un(x)| dx+

∫
{|un(x)|>RV }

|un(x)| dx

≤ RV Vol(K(δ)
n ) +

1

τ

∫
{|un(x)|>RV }

V (un(x)) dx

≤
(
RV
γδ

+
1

τ

)
εnF (p)

εn (un)

c1
.

So, limn→∞ ‖un − vn‖L1 ≤ δVol(X). Since this is true for all δ > 0 then we have limn→∞ ‖un −
vn‖L1 = 0 which proves claim (1).

Step 2. In order to prove (2) we reason as follows. If |un(x)| ≥ 1
2 then sign(un(x)) 6= sign(un(y))

implies |un(x)− un(y)| ≥ 1
2 . Now since,

|vn(x)− vn(y)| =
{

0 if sign(un(x)) = sign(un(y))
2 if sign(un(x)) 6= sign(un(y))

then |vn(x)− vn(y)| ≤ 4|un(x)− un(y)| when |un(x)| ≥ 1
2 .

Let Mn = {x ∈ X : |un(x)| ≤ 1
2}. We have,

F (p)
εn (vn) =

sn
εn

∫
Mn×X

ηεn(x− z)|vn(x)− vn(z)|pρ(x)ρ(z) dx dz

+
sn
εn

∫
Mc
n×X

ηεn(x− z)|vn(x)− vn(y)|pρ(x)ρ(y) dx dz
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≤ 2pc2
2sn
εn

∫
Mn×X

ηεn(x− z) dx dz

+
4psn
εn

∫
Mc
n×X

ηεn(x− z)|un(x)− un(z)|pρ(x)ρ(z) dx dz

≤ 2pc2
2sn
εn

∫
Rd
η(w) dwVol(Mn) + 4pF (p)

εn (un)

where V (t) ≥ γ > 0 for all t ∈ [1
2 ,

1
2 ]. Now,

1

εn
Vol(Mn) ≤ 1

γεn

∫
{|un(x)|≤ 1

2
}
V (un(x)) dx ≤ 1

γc1
F (p)
εn (un).

Hence supn∈NF
(p)
εn (vn) < +∞.

Step 3. We conclude the proof by noticing that, since vn ∈ L1(X; {±1}) we have F (p)
εn (vn) =

2p−2snEεn(vn). So vn is relatively compact inL1 by Theorem 3.5 and by Proposition 3.6 G(p)
∞ (u) < +∞

for any cluster point u of {vn}∞n=1.

3.2 Preliminary results

Here we prove some technical results needed in the proof of the Γ-convergence result stated in Theorem
3.2. We start by proving some continuity properties of the function σ(p).

Lemma 3.9. Under assumptions (A1) and (C3) the followings hold:

(i) the function (x, ν) 7→ σ(p)(x, ν) is upper semi-continuous on X × Sd−1,

(ii) for every ν ∈ Sd−1, the function x 7→ σ(p)(x, ν) is continuous on X .

Proof. Proof of (i). Fix x̄ ∈ X and ν ∈ Sd−1 and let {xn}∞n=1 ⊂ X and {νn}∞n=1 ⊂ Sd−1 such that
xn → x̄ and νn → ν as n → ∞. Let Rn be a rotation such that Rnν = νn. Fix t > 0 and let
D ∈ C(x̄, ν) and w ∈ U(D, ν) be such that

1

Hd−1(D)
G(p) (w, ρ(x̄), TD) ≤ σ(p)(x̄, ν) + t .

Notice that without loss of generality we can assume |w| ≤ 1. For n ∈ N define Cn ∈ C(xn, νn) and
un ∈ U(Cn, νn) by

Cn := Rn(D − x̄) + xn ,

un(x) := w(R−1
n (x− xn) + x̄) ,

respectively. Then

σ(p)(xn, νn) ≤ 1

Hd−1(Cn)
G(p)(un, ρ(xn), TCn)

≤ 1

Hd−1(D)
G(p)(w, ρ(x̄), TD) + δn

≤ σ(p)(x̄, ν) + t+ δn ,
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where
δn :=

1

Hd−1(D)

∣∣∣G(p)(un, ρ(xn), TCn)−G(p)(w, ρ(x̄), TD)
∣∣∣ .

We claim that δn → 0 as n → ∞. Since t > 0 is arbitrary, this will prove the upper semi-continuity.
Notice that, for every h ∈ BRη(0), the following inequality holds∫

TD

|w(z + h)− w(z)|p dz ≤ 2pHd−1(D)Rpη . (7)

Indeed, setting

v(z) :=

{
+1 if z · ν ≥ 0 ,
−1 if z · ν < 0 ,

we get ∫
TD

|w(z + h)− w(z)|p dz ≤
∫
TDn

|v(z + h)− v(z)|p dz

= 2pHd−1(D)|h · ν|p

≤ 2pHd−1(D)Rpη .

where in the first inequality we used the convexity of the function s 7→ |s|p. Fix ε > 0. Using the
continuity of ρ, for n sufficiently large we have that |ρ(xn)− ρ(x̄)| < ε. Thus, using (7), we get

δn =
1

Hd−1(D)

∣∣∣∣∣ρ(xn)

∫
TD

∫
Rd
η(Rnh) |w(z + h)− w(z)|p dhdz

− ρ(x̄)

∫
TD

∫
Rd
η(h) |w(z + h)− w(z)|p dhdz

∣∣∣∣∣
≤ |ρ(xn)− ρ(x̄)|

Hd−1(D)

∫
Rd
η(h)

∫
TD

|w(z + h)− w(z)|p dz dh

+
ρ(xn)

Hd−1(D)

∫
Rd
|η(Rnh)− η(h)|

∫
TD

|w(z + h)− w(z)|p dz dh

≤ 2pRpη

(
εRdηωd‖η‖L∞ + c2

∫
Rd
|η(Rnh)− η(h)| dh

)
where ωd denotes the volume of the unit ball in Rd. In order to show that the second term in the
parenthesis vanishes, we use an argument similar to the one for proving that translations are continuous
in Lp. For every s > 0 let η̃s : R → [0,∞) be a continuous function with support in B2Rη such that
‖η − η̃s‖L1(Rd) < s. Then, for every r > 0 there exists n̄ ∈ N such that |η̃s(Rnh)− η̃s(h)| < r for all
h ∈ Rd and all n ≥ n̄. So that, for n ≥ n̄∫

Rd
|η(Rnh)− η(h)| dh ≤ ‖η − η̃s‖L1(Rd) +

∫
Rd
|η̃s(Rnh)− η̃s(h)| dh ≤ s+ rVol(B2Rη) .

Since r and s are arbitrary, we conclude that
∫
Rd |η(Rnh)− η(h)| dh→ 0 as n→∞ and, in turn, that

δn → 0 as n→∞.

Proof of (ii). Fix ν ∈ Sd−1, x̄ ∈ X and let xn → x̄.
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Step 1. We claim that σ(p)(x̄, ν) ≤ lim infn→∞ σ
(p)(xn, ν). Without loss of generality, let us

assume that
lim inf
n→∞

σ(p)(xn, ν) = lim
n→∞

σ(p)(xn, ν) <∞ . (8)

For every n ∈ N let Cn ∈ C(xn, ν) and un ∈ U(Cn, ν) be such that

1

Hd−1(Cn)
G(p)(un, ρ(xn), TCn) ≤ σ(p)(xn, ν) +

1

n
. (9)

Set λn := x̄− xn and define

C̃n := Cn + λn , ũn(x) := un(x− λn).

So, C̃n ∈ C(x̄, ν) and ũn ∈ U(C̃n, ν). Using (9), we get

σ(p)(x̄, ν) ≤ 1

Hd−1(C̃n)
G(p)(ũn, ρ(x̄), T

C̃n
)

≤ G(p)(un, ρ(xn), TCn)

Hd−1(Cn)
+

1

Hd−1(Cn)

∣∣∣G(p)(ũn, ρ(x̄), T
C̃n

)−G(p)(un, ρ(xn), TCn)
∣∣∣

≤ σ(p)(xn, ν) +
1

n
+

1

Hd−1(Cn)

∣∣∣G(p)(ũn, ρ(x̄), T
C̃n

)−G(p)(un, ρ(xn), TCn)
∣∣∣ (10)

To estimate the last term, we reason as follows. First of all, we notice that∫
TCn

V (un(z)) dz =

∫
T
C̃n

V (ũn(z)) dz . (11)

Fix ε > 0. Using the continuity of ρ, there exists n̄ ∈ N, such that |ρ(xn) − ρ(x̄)| < ε for all n ≥ n̄.
From (11) we get that

1

Hd−1(Cn)

∣∣∣G(p)(ũn, ρ(x̄), T
C̃n

)−G(p)(un, ρ(xn), TCn)
∣∣∣

≤ 1

Hd−1(Cn)
|ρ(xn)− ρ(x̄)|

∫
TCn

∫
Rd
η(h) |un(z + h)− un(z)|p dhdz

≤ ε

Hd−1(Cn)

∫
TCn

∫
Rd
η(h) |un(z + h)− un(z)|p dhdz

≤ ε2pRd+p
η ωd‖η‖L∞ ,

where in the last step we used (7). Using the arbitrariness of ε, together with (8) and (9), we conclude
that

1

Hd−1(Cn)

∣∣∣G(p)(ũn, ρ(x̄), T
C̃n

)−G(p)(un, ρ(xn), TCn)
∣∣∣→ 0 ,

as n→∞. Thus, by taking the liminf in (10), we conclude that

σ(p)(x̄, ν) ≤ lim inf
n→∞

σ(p)(xn, ν) .

Step 2. With a similar argument, it is possible to prove that σ(p)(x̄, ν) ≥ lim supn→∞ σ
(p)(xn, ν).

This concludes the proof of the continuity of the map x 7→ σ(p)(x, ν).
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Remark 3.10. Notice that the above result did not require the existence of a solution for the infimum
problem defining σ(p).

We notice that the main feature of the Γ-convergence of F (p)
εn to G(p)

∞ is that we recover, in the limit,
a local functional starting from nonlocal ones. To be more precise, let A,B ⊂ X be disjoint sets. Then,
it holds that

F (p)
εn (u,A ∪B) = F (p)

εn (u,A) + F (p)
εn (u,B) + 2Λ̃εn(u,A,B) (12)

where we define the nonlocal deficit

Λ̃ε(u,A,B) :=
sε
ε

∫
A

∫
B
ηε(x− z)|u(x)− u(z)|pρ(x)ρ(z) dx dz . (13)

On the other hand, for the limiting functional we have

G(p)
∞ (u,A ∪B) = G(p)

∞ (u,A) + G(p)
∞ (u,B) , (14)

where, for u ∈ BV (X;±1), we set

G(p)
∞ (u,A) :=

∫
∂∗{u=1}∩A

σ(p)(x, νu(x))ρ(x) dHd−1(x) .

Identity (12) states that the functionals F (p)
εn are nonlocal, while (14) is the locality property of the

limiting functional G(p)
∞ . Thus, we expect the nonlocal deficit to disappear in the limit, i.e., that if

uεn → u in L1(X), then
Λ̃εn(uεn , A,B)→ 0 , (15)

as n→∞. For technical reasons we also need the nonlocal deficit’s without weighting by ρ or sε:

Λε(u,A,B) :=
1

ε

∫
A

∫
B
ηε(x− z)|u(x)− u(z)|p dx dz .

By continuity of ρ if A and B are sets in X that are close to x̄ then Λ̃ε(u,A,B) ≈ sερ2(x̄)Λε(u,A,B).
In [1] the authors prove that the limit of the nonlocal deficit is determined by the behavior of uεn close
to the boundaries of A and B and, in turn, that (15) holds in certain cases of interest. Here we only state
the main technical result of [1] in a version we need in the paper, addressing the interested reader to the
paper by Alberti and Bellettini for the details.

Proposition 3.11. Let vn → v in L1(X) with |vn| ≤ 1. Then, for all x̄ ∈ Rd and for all ν ∈ Sd−1 the
following holds: given C ∈ C(x̄, ν) consider the strip TC and any cube Q ⊂ Rd whose intersection
with ν⊥ is C. Then, for a.e. t > 0:

(i) Λεn(vn, tTC ,Rd \ tTC)→ 0 as n→∞,

(ii) Λεn(vn, tQ, tTC \ tQ)→ 0 as n→∞.

Remark 3.12. The boundness assumption on the sequence {vn}∞n=1 allows one to obtain the proof of the
above result directly from [1, Proposition 2.5 and Theorem 2.8]. In particular in [1] the authors prove
the result for p = 1 and ρ ≡ 1, using the L∞ bound on vn one can easily bound the more general case
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considered here by the L1 case. With similar computations it is also possible to obtain the same result
without the L∞ bound.

Finally, notice that when A,B ∈ Rd are disjoint sets with d(A,B) > 0, using the fact that the
function η has support in the ball B(0, Rη) (see (C3)), it is easy to prove that there exists n̄ ∈ N such
that for all n ≥ n̄ it holds

Λεn(vn, A,B) = 0 .

For technical reasons we need to introduce a scaled version of the functional G(p).

Definition 3.13. For ε > 0, p ≥ 1, u : Rd → R, λ ∈ R, and A ⊂ Rd, we define

G(p)
ε (u, λ,A) :=

λ

ε

∫
A

∫
Rd
ηε(h)|u(z + h)− u(z)|p dhdz +

1

ε

∫
A
V (u(z)) dz .

Let r > 0 and x ∈ X . For a set A ⊂ Rd, we define x+ rA := {x+ ry : y ∈ A}. Moreover, for a
function u : Rd → R, we set

Rx,ru(y) := u(x+ ry) . (16)

Using a change of variable, it is easy to see that the following scaling property holds true:

G(p)
ε (u, λ, x+ rA) = rd−1G

(p)
ε/r(Rx,ru, λ,A) . (17)

3.3 The Liminf Inequality

This section is devoted at proving the following: let uεn → u in L1, then

G(p)
∞ (u) ≤ lim inf

n→∞
F (p)
εn (uεn) . (18)

We will follow the proof of [1, Theorem 1.4], with some modifications due to the presence of the density
ρ.

Proof of Theorem 3.2 (Liminf). Let εn → 0+ and uεn → u in L1(X,µ). Assume without loss of
generality that

lim inf
n→∞

F (p)
εn (uεn) = lim

n→∞
F (p)
εn (uεn) <∞ . (19)

Step 1. By compactness (see Section 3.1) it holds u = χA for some set A ⊂ X of finite perimeter in
X . In order to prove (18) we use the strategy introduced by Fonseca and Müller in [25]. Write

F (p)
εn (uεn) =

∫
X
gεn(x)dx (20)

and set dλεn := gεndLd ¬X , so that

|λεn |(X) = F (p)
εn (uεn) . (21)

Using (19), (20), (21) , up to a subsequence (not relabeled) it holds λεn
∗
⇀ λ for some finite Radon

measure λ on X . Then
|λ|(X) ≤ lim inf

n→∞
|λεn |(X) . (22)
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In view of (21) and (22), the liminf inequality (18) is implied by the following claim: for Hd−1-a.e.
x̄ ∈ ∂∗{u = 1} it holds

σ(p)(x̄, ν(x̄))ρ(x̄) ≤ dλ

dθ
(x̄) ,

where θ := Hd−1 ¬ ∂∗{u = 1}. In order to prove the claim we reason as follows. For Hd−1-a.e.
x̄ ∈ ∂∗{u = 1} it is possible to find the density of λ with respect to θ via (recall Remark 2.17)

dλ

dθ
(x̄) = lim

r→0

λ(x̄+ rQ)

rd−1
, (23)

where Q is a unit cube centered at the origin and having ν(x̄), the measure theoretic exterior normal to
A at x̄, as one of its axes. Let x̄ ∈ ∂∗{u = 1}. Theorem 2.16 implies that

Rx̄,ru→ vx̄ (24)

in L1
loc(RN ) as r → 0, where

vx̄(x) :=

{
−1 x · ν(x̄) ≥ 0 ,
1 x · ν(x̄) < 0 .

Let x̄ ∈ ∂∗{u = 1} be a point for which (23) and (24) hold. Without loss of generality, we can assume
that

dλ

dθ
(x̄) <∞ . (25)

Since uεn → u in L1 and λεn
∗
⇀ λ, it is possible to find a (not relabeled) subsequence {εn}∞n=1 and a

sequence {rn}∞n=1 with rn → 0+ and εn
rn
→ 0+, such that

dλ

dθ
(x̄) = lim

n→∞

λεn(x̄+ rnQ)

rd−1
n

(26)

and
Rx̄,rnuεn → vx̄ .

Using the fact that X is open, we can assume that x̄+ rnQ ⊂ X for all n ∈ N. Thus

λεn(x̄+ rnQ)

rd−1
n

≥ F
(p)
εn (uεn , x̄+ rnQ)

rd−1
n

. (27)

Step 2. We claim that

δn :=
|F (p)
εn (uεn , x̄+ rnQ)− ρ(x̄)F̃ (p)

εn (uεn , ρ(x̄), x̄+ rnQ)|
rd−1
n

→ 0 , (28)

as n→∞, where

F̃ (p)
ε (u, ξ, A) :=

ξsε
ε

∫
A

∫
A
ηε(x− z)|u(x)− u(z)|p dx dz +

1

ε

∫
A
V (u(x)) dx ,

for ε > 0, A ⊂ X , u : A→ R and ξ ∈ R. Indeed, fix t > 0. Thanks to hypothesis (A1) the function ρ
is continuous in X . Then, it is possible to find n̄ ∈ N such that for all n ≥ n̄ and all y ∈ x̄ + rnQ it
holds

|ρ(y)− ρ(x̄)| < t .
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Thus,

δn ≤
t

rd−1
n εn

∫
x̄+rnQ

V (uεn(x)) dx+
tsεnρ(x̄)

rd−1
n εn

∫
x̄+rnQ

∫
x̄+rnQ

ηεn(x− z)|uεn(x)− uεn(z)|p dx dz

+
tsεn

rd−1
n εn

∫
x̄+rnQ

∫
x̄+rnQ

ηεn(x− z)|uεn(x)− uεn(z)|pρ(z) dx dz

≤ t

rd−1
n εnc1

∫
x̄+rnQ

V (uεn(x))ρ(x) dx

+
tsεn(c1 + c2)

rd−1
n εnc2

1

∫
x̄+rnQ

∫
x̄+rnQ

ηεn(x− z)|uεn(x)− uεn(z)|pρ(z)ρ(x) dx dz

≤ t(c1 + c2)

c2
1

λεn(x̄+ rnQ)

rd−1
n

,

where in the last step we used (27). By (25) and (26) limn→∞ δn ≤ Ct for some constant C < ∞.
Since t > 0 is arbitrary, this proves the claim.

Step 3. Observe that for any λ ≥ 0, ε > 0, r > 0 and v ∈ L1 we have

min

{
1,
sε
s ε
r

}
F̃ (p)
ε
r

(Rx̄,rv, λ,Q) ≤ 1

rd−1
F̃ (p)
ε (v, λ, x̄+ rQ) ≤ max

{
1,
sε
s ε
r

}
F̃ (p)
ε
r

(Rx̄,rv, λ,Q).

Let C = Q ∩ ν(x̄)⊥ ∈ C(x̄, ν(x̄)). Define the function wn : Rd → R as the periodic extension of the
function that is Rx̄,rn uεn in Q and vx̄ in TC \Q. Set ε′n := εn

rn
and s′n = min

{
1, sεnsε′n

}
. Using (27) and

(28) together with the scaling identity (17) we get

λεn(x̄+ rnQ)

rd−1
n

≥ ρ(x̄)
F̃ (p)
εn (uεn , ρ(x̄), x̄+ rnQ)

rd−1
n

− δn

≥ s′nρ(x̄)F̃ (p)
ε′n

(Rx̄,rn uεn , ρ(x̄), Q)− δn

= s′nρ(x̄)F̃ (p)
ε′n

(wn, ρ(x̄), Q)− δn

≥ s′nρ(x̄)G
(p)
ε′n

(wn, ρ(x̄), TC)− δn

− s′nρ(x̄)
∣∣∣ F̃ (p)

ε′n
(wn, ρ(x̄), Q)−G(p)

ε′n
(wn, ρ(x̄), TC)

∣∣∣
= s′nρ(x̄)

(
εn
rn

)d−1

G(p)

(
R0,ε′nwn, ρ(x̄),

rn
εn
TC

)
− δn

− s′nρ(x̄)
∣∣∣ F̃ (p)

ε′n
(wn, ρ(x̄), Q)−G(p)

ε′n
(wn, ρ(x̄), TC)

∣∣∣ . (29)

We would like to say that ∣∣∣ F̃ (p)
ε′n

(wn, ρ(x̄), Q)−G(p)
ε′n

(wn, ρ(x̄), TC)
∣∣∣→ 0

as n→∞. Unfortunately, this might not be true. In order to overcome this difficulty, take t ∈ (0, 1).
Notice that we can bound∣∣∣F̃ (p)

ε′n
(wn, ρ(x̄), tQ)−G(p)

ε′n
(wn, ρ(x̄), tTC)

∣∣∣ ≤ 2ρ(x̄)Λε′n(wn, tQ, tTC \ tQ)
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+ ρ(x̄)Λε′n(wn, tTC ,Rd \ tTC) + ρ(x̄)Λε′n(wn, tTC \ tQ, tTC \ tQ)

+
rnρ(x̄)

εn
|1− sε′n |

∫
tQ

∫
tQ
η εn
rn

(y − z)|wn(y)− wn(z)|p dy dz . (30)

Now,

rnρ(x̄)

εn

∫
tQ

∫
tQ
ηε′n(y − z)|wn(y)− wn(z)|p dy dz ≤ G(p)

ε′n
(wn, ρ(x̄), TC) (31)

=

(
εn
rn

)d−1

G(p)

(
R0,ε′nwn, ρ(x̄),

rn
εn
TC

)
.

Moreover, using Proposition 3.11 we get that for a.e. t ∈ (0, 1) it holds

Λε′n(wn, tQ, tTC \ tQ)→ 0 , Λε′n(wn, tTC ,Rd \ tTC)→ 0 (32)

as n→∞. Finally, using Remark 3.12 and the fact that wn is constant on TC \Q it is easy to see that

lim
t→1

lim
n→∞

Λε′n(wn, tTC \ tQ, tTC \ tQ) = 0 . (33)

Hence, from (28), (29), (30), (31), (32) and (33) and recalling that s′n → 1 we get

lim
n→∞

λεn(x̄+ rnQ)

rd−1
n

≥ ρ(x̄)σ(p)(x̄, ν(x̄))

as required

3.4 The Limsup Inequality

This section is devoted at proving the following: let u ∈ BV (X, {±1}), then it is possible to find
{uεn}∞n=1 ⊂ L1(X) with uεn → u in L1(X,µ) such that

lim sup
n→∞

F (p)
εn (uεn) ≤ G(p)

∞ (u) . (34)

Without loss of generality, we can assume G(p)
∞ (u) < ∞, namely u ∈ BV (X;±1). The proof will

follow the lines of the argument used to prove [1, Theorem 5.2].

Proof of Theorem 3.2 (limsup). We first prove the result for polyhedral functions then, via a diagonali-
sation argument, generalise to arbitrary functions in BV (X;±1). We fix the sequence εn → 0+ now.

Step 1. Polyhedral functions. Assume u ∈ BV (X, {±1}) is a polyhedral function (see Definition
2.18). Then we claim that there exists a sequence {uεn}∞n=1 with |uεn | ≤ 1, converging uniformly to
u on every compact set K ⊂ X \ ∂∗{u = 1}, and in particular uεn → u in L1(X,µ), such that (34)
holds.

Let us denote by E the polyhedral set {u = 1} and by E1, . . . , Ek its faces. It is possible to cover
∂E ∩X with a finite family of sets Ā1, . . . , Āk, where each Ai is an open set satisfying the following
properties:

(i) ∂Ai can be written as the union of two Lipschitz graphs over the face Ei,
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Figure 1: The polyhedral set E (shaded) and the sets Ai (dotted lines).

(ii) every point in the relative interior of Ei belongs to Ai,

(iii) Hd−1
(
Āi ∩

⋃
j 6=iEj

)
= 0,

(iv) Ai ∩Aj = ∅ if i 6= j.

Set

A0 := {u = 1} \
k⋃
i=1

Āi , Ak+1 := X \
k⋃
i=0

Āi .

We then define uεn in each Ai separately. Set uεn(x) := 1 for x ∈ A0 and uεn(x) := −1 for
x ∈ Ak+1. Now fix i ∈ {1, . . . , k} and n ∈ N. In order to define uεn in Ai, we reason as follows.
Denote by ν the normal of the hyperplane containing Ei. Without loss of generality, we can assume
ν = ed and Ei ⊂ {xd = 0}. A point x ∈ Rd will be denoted as

x = (x′, xd) , x′ ∈ Rd−1 , xd ∈ R .

Fix ξ > 0. Using the continuity of σ (see Lemma 3.9) and of ρ in X (see (A1)) it is possible to find a
finite family of d− 1 dimensional disjoint cubes {Qj}

Mξ

j=1, for some Mξ ∈ N, of side rξ > 0 lying in the

hyperplane containing Ei, having Ei ⊆ ∪
Mξ

j=1Qj , Ei ∩Qj 6= ∅, and satisfying the following properties:

denoting by {xj}
Mξ

j=1 their centers (or, in the case the center of a cube Qj is not contained in Ei, a point
of Qj ∩ Ei) we have∣∣∣∣∣∣

∫
Ei

σ(p)(x, ν)ρ(x) dHd−1(x)− rd−1
ξ

Mξ∑
j=1

σ(p)(xj , ν)ρ(xj)

∣∣∣∣∣∣ < η . (35)

It is possible to find, for every j = 1, . . .Mξ, Cj ∈ C(xj , ν) and wj ∈ U(Cj , ν) such that

1

Hd−1(Cj)
G(p)(wj , ρ(xj), TCj ) < σ(p)(xj , ν) +

ξ

ρ(xj)Mξr
d−1
ξ

. (36)
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We can assume |wj | ≤ 1. For every j = 1, . . . ,Mξ, let Lj ∈ N be such that

1

Hd−1(Cj)

∣∣∣G(p)(wj , ρ(xj), TCj )−G(p)(w̃j , ρ(xj), TCj )
∣∣∣ < ξ

ρ(xj)Mξr
d−1
ξ

, (37)

where

w̃j(x) :=


wj(x) if |xd| < Lj ,
+1 if xd > Lj ,
−1 if xd < −Lj .

(38)

For every j = 1, . . . ,Mξ cover Qj with copies of εnCj . Denote them by {Q(n)
j,s }

k
(n)
j

s=1 and by {y(n)
j,s }

k
(n)
j

s=1

their centers. Notice that it might be necessary to consider the intersection of some cubes with Qj , and
that

k
(n)
j =

1

εd−1
n

rd−1
ξ

(
Hd−1(Cj)

)−1
. (39)

Define the function v(n)
j : Rd → [−1,+1] as the periodic extension of

v
(n)
j (x) :=

k
(n)
j∑
s=1

w̃nj

(
x− (xj + y

(n)
j )

εn

)
χ
Q

(n)
j,s

(x′) . (40)

We are now in position to define the function uεn in Ai: for x ∈ Ai define

uεn(x) :=

Mξ∑
j=1

χ
Q

(n)
j

(x′)v
(n)
j (x) .

Using (38) and (40) we have that uεn → u as n→∞ uniformly on compact sets K ⊂ X \ ∂∗{u = 1}.
We now prove the validity of inequality (34). We claim that:

(i) Λ̃εn(uεn , Ai, Aj)→ 0 as n→∞ for all i 6= j, where Λ̃ is defined by (13);

(ii) lim supn→∞F
(p)
εn (uεn , Ai) ≤ G

(p)
∞ (u,Ai) for all i = 0, . . . , k + 1.

If the above claims hold true, then we can conclude as follows: we have

lim sup
n→∞

F (p)
εn (uεn) ≤

k+1∑
i=0

lim sup
n→∞

F (p)
εn (uεn , Ai) + 2

k+1∑
i<j=0

lim sup
n→∞

Λ̃εn(uεn , Ai, Aj)

≤
k+1∑
i=0

G(p)
∞ (u,Ai)

= G(p)
∞ (u) .

We start by proving claim (ii). It is easy to see that it holds true for i = 0, k + 1. Fix i ∈ {1, . . . , k}.
Noticing that

Ai ⊂
M⋃
j=1

k
(n)
j⋃
s=1

T
Q

(n)
j,s

,
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we get

F (p)
εn (uεn , Ai) ≤ F (p)

εn

uεn , Mξ⋃
j=1

k
(n)
j⋃
s=1

T
Q

(n)
j,s


≤

Mξ∑
j=1

k
(n)
j∑
s=1

[
sεn
εn

∫
T
Q
(n)
j,s

∫
Rd
ηεn(x− z)|uεn(x)− uεn(z)|pρ(x)ρ(z) dx dz

+
1

εn

∫
T
Q
(n)
j,s

V (uεn(x))ρ(x) dx

]
. (41)

Here, for every j and s we are using the whole cube Q(n)
j,s , not only its intersection with Qj .

Note that,

A(n)
j,s :=

{
(x, z) ∈ Rd × T

Q
(n)
j,s

: ηεn(x− z)|uεn(x)− uεn(z)|p 6= 0

}
⊆ B(xj ,

√
2drξ)×

(
T
Q

(n)
j,s

∩ {|zd| ≤ εn(Lj +Rη)}
)

for εn sufficiently small (compared to rξ). Hence there exists δξ > 0 such that for all (x, z) ∈ A(n)
j,s we

have |ρ(x)− ρ(xj)| ≤ δξ and |ρ(z)− ρ(xj)| ≤ δξ where δξ → 0 as ξ → 0+. This implies

sεnρ(x)ρ(z) ≤ |sεn − 1|ρ(x)ρ(z) + ρ(x)ρ(z)

≤ |sεn − 1|c2
2 + ρ(xj)ρ(z) + δξc2

≤ |sεn − 1|c2
2 + ρ2(xj) + 2δξc2 .

Hence,

sεn
εn

∫
T
Q
(n)
j,s

∫
Rd
ηεn(x− z)|uεn(x)− uεn(z)|pρ(x)ρ(z) dx dz

≤
(
|sεn − 1|c2

2 + 2δξc2 + ρ2(xj)
) 1

εn

∫
T
Q
(n)
j,s

∫
Rd
ηεn(x− z)|uεn(x)− uεn(z)|p dx dz .

Similarly,
1

εn

∫
T
Q
(n)
j,s

V (uεn(x))ρ(x) dx ≤ (ρ(xj) + δξ)
1

εn

∫
T
Q
(n)
j,s

V (uεn(x)) dx .

Let γξ,n = 1 +
2δξ
c2

+ |sεn − 1| and notice that

lim
ξ→0

lim
n→∞

γξ,n = 1

(there is a subtle dependence that requires εn be small compared to rξ which means it is necessary to
first take the limits in this order). Then

sεn
εn

∫
T
Q
(n)
j,s

∫
Rd
ηεn(x− z)|uεn(x)− uεn(z)|pρ(x)ρ(z) dx dz +

1

εn

∫
T
Q
(n)
j,s

V (uεn(x))ρ(x) dx
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≤ γξ,nρ(xj)

ρ(xj)

εn

∫
T
Q
(n)
j,s

∫
Rd
ηεn(x− z)|uεn(x)− uεn(z)|p dx dz +

1

εn

∫
T
Q
(n)
j,s

V (uεn(x)) dx


≤ γξ,nρ(xj)G

(p)
εn (uεn , ρ(xj), TQ(n)

j,s

) .

Hence„ using (35), (36), (37), (39) and (41), we get

F (p)
εn (uεn , Ai) ≤ γξ,n

Mξ∑
j=1

k
(n)
j∑
s=1

ρ(xj)G
(p)
εn (uεn , ρ(xj), TQ(n)

j,s

)

= γξ,n

Mξ∑
j=1

k
(n)
j∑
s=1

ρ(xj)ε
d−1
n G

(p)
1 (w̃j , ρ(xj), TCj )

= γξ,n

Mξ∑
j=1

rd−1
ξ ρ(xj)

Hd−1(Cj)
G

(p)
1 (w̃j , ρ(xj), TCj )

≤ γξ,n

rd−1
ξ

Mξ∑
j=1

ρ(xj)σ
(p)(xj , ν) + 2ξ


≤ γξ,n

(∫
Ei

σ(p)(x, ν)ρ(x) dHd−1(x) + 3ξ

)
.

Taking limsup as n → ∞ and ξ → 0 implies (ii). Note that uεn is not the recovery sequence, rather
each uεn depended on ξ (through Lj). Hence, if we make the ξ dependence explicit, we showed
lim supn→∞F

(p)
εn (u

(ξ)
εn , Ai) ≤ lim supn→∞ γξ,nG

(p)
∞ (u,Ai). By a diagonalisation argument we can

find a sequence ξn → 0 such that lim supn→∞F
(p)
εn (u

(ξn)
εn , Ai) ≤ G(p)

∞ (u,Ai).

We are thus left to prove claim (i). Analogously to Remark 3.12, Λ̃εn(uεn , Ai, Aj)→ 0 as n→∞
for all i, j for which d(Ai, Aj) > 0. Let us now consider indexes i 6= j for which d(Ai, Aj) = 0. Write

Λ̃εn(uεn , Ai, Aj) =
1

εn

∫
Rd

∫
Aεnh

η(h)|uεn(z + εnh)− uεn(z)|pρ(z + εnh)ρ(z) dz dh

=
1

εn

∫
B(0,Rη)

∫
Ãεnh

η(h)|uεn(z + εnh)− uεn(z)|pρ(z + εnh)ρ(z) dz dh , (42)

where Aεnh := {z ∈ Ai : z + εnh ∈ Aj} and,

Ãεnh := {z ∈ Ai : z + εnh ∈ Aj , |zd| ≤ εn max{max
k

L
(i)
k ,maxL

(j)
k +Rη} . (43)

where we denote the dependence ofAi andAj on the constantsLk from (38). Since Vol(Ãεnh) = O(ε2
n),

from (42) and (43) we get
Λ̃εn(uεn , Ai, Aj)→ 0 ,

as n→∞.

Step 2. The general case. Let u ∈ BV (X;±1). Using Theorem 2.19 it is possible to find a sequence

{vn}∞n=1 of polyhedral function such that vn → u in L1 (which, in turn, implies that Dvn
w∗
⇀ Du) and
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|Dvn|(X)→ |Du|(X). Using Step 1 and a diagonalisation argument we get that there exists a sequence
{un}∞n=1 with un → u in L1(X) such that

F (p)
εn (un) ≤ G(p)

∞ (vn) +
1

n
.

Then, Theorem 2.20 together with Lemma 3.9 gives us that

lim sup
n→∞

G(p)
∞ (vn) = G(p)

∞ (u) .

This concludes the proof.

4 Convergence of the Graphical Model

In this Section we prove Theorem 1.6. In particular, in Section 4.1 we prove the compactness part of
Theorem 1.6 and in Sections 4.2-4.3 we prove the Γ-convergence result.

4.1 Compactness

Proof of Theorem 1.6 (Compactness). Step 1. We first show that there exist cn, αn > 0 with αn, cn → 1
as n→∞, such that

η

(
Tn(x)− Tn(z)

εn

)
≥ cnη

(
αn(x− z)

εn

)
. (44)

Let δn := 2‖Tn−Id‖L∞
εn

. By Assumption (C4) we can find αn, cn such that, for all a, b ∈ Rd with
|a− b| ≤ δn, we have

η(a) ≥ cnη(αnb) . (45)

Since by assumption (A2) we have that δn → 0 then αn, cn can be chosen such that αn → 1, cn → 1.
Now if we let a := Tn(x)−Tn(z)

εn
and b := x−z

εn
we have

|a− b| = |Tn(x)− Tn(z) + z − x|
εn

≤ 2‖Tn − Id‖L∞
εn

= δn

and therefore, by (45), we get η
(
Tn(x)−Tn(z)

εn

)
≥ cnη

(
αn(x−z)

εn

)
as required.

Step 2. Let vn := un ◦ Tn. Using Lemma 2.8 and (44) we have that

G(p)
n (un) =

1

εd+1
n

∫
X

∫
X
η

(
Tn(x)− Tn(z)

εn

)
|vn(x)− vn(z)|pρ(x)ρ(z) dx dz

+
1

εn

∫
X
V (vn(x))ρ(x) dx

≥ cn

εd+1
n

∫
X

∫
X
η

(
αn(x− z)

εn

)
|vn(x)− vn(z)|pρ(x)ρ(z) dx dz

+
1

εn

∫
X
V (vn(x))ρ(x) dx

=
cn

αd+1
n (ε′n)d+1

∫
X

∫
X
η

(
x− z
ε′n

)
|vn(x)− vn(z)|pρ(x)ρ(z) dx dz
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+
1

εn

∫
X
V (vn(x))ρ(x) dx

=
ε′n
εn
F (p)
ε′n

(vn) (46)

where ε′n := εn
αn

and F (p)
ε is defined by (3) with sn := cnεn

αd+1
n ε′n

(in (3) s depended on ε not on n, since

we have fixed the sequence εn then clearly we could write n in terms of ε′n, however this would make
the notation cumbersome).

Step 3. Since limn→∞
ε′n
εn

= 1, we can infer that F (p)
ε′n

(vn) is bounded and hence by Theorem 3.2 the
sequence {vn}∞n=1 is relatively compact in L1. Therefore the sequence {un}∞n=1 is relatively compact
in TL1, with any limit u satisfying G(p)

∞ (u) <∞.

4.2 The Liminf Inequality

Proof of Theorem 1.6 (Liminf). For any u ∈ L1(µ) and any un ∈ L1(µn) with un → u in TL1 we
claim that

lim inf
n→∞

G(p)
n (un) ≥ G(p)

∞ (u).

Indeed, taking the liminf on both sides of (46) and using Theorem 3.2 we have

lim inf
n→∞

G(p)
n (un) ≥ lim inf

n→∞

ε′n
εn
F (p)
ε′n

(vn) ≥ G(p)
∞ (u)

since limn→∞
ε′n
εn

= 1.

4.3 The Limsup Inequality

Proof of Theorem 1.6 (Limsup). The aim of this section is to prove the following: given u ∈ L1(X,µ)
it is possible to find a sequence {un}∞n=1 ⊂ L1(Xn) with un → u in TL1(X) such that

lim sup
n→∞

G(p)
n (un) ≤ G(p)

∞ (u) .

Without loss of generality we can assume G(p)
∞ (u) < +∞. In particular, u ∈ BV (X;±1).

We divide the proof in two cases: we first assume that u is a polyhedral function and then we extend
the argument to any function u with G(p)

∞ (u) < +∞ via a diagonalisation argument.

Case 1. Assume that u is a polyhedral function (see Definition 2.18) and consider the sequence
un := u

¬
Xn.

Step 1. We show that un → u in TL1. Setting vn = un ◦ Tn, we are required to show vn → u in
L1. Assume u = χA − χAc where A is a polyhedral set. Set

An := {x ∈ X : dist(x, ∂A) ≤ ‖Tn − Id‖L∞} . (47)

Then

‖un ◦ Tn − u‖L1(X) =

∫
X
|un(Tn(x))− u(x)| dx
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=

∫
An

|un(Tn(x))− u(x)| dx

≤ 2Vol (An)

= O(‖Tn − Id‖L∞).

It follows that un → u in TL1.

Step 2. We show that there exists α̂n, ĉn → 1 such that

η

(
Tn(x)− Tn(z)

εn

)
≤ ĉnη

(
α̂n(x− z)

εn

)
. (48)

To show the validity of (48) we use the following subclaim: for all δ̂ > 0 sufficiently small there exists
α̂δ̂, ĉδ̂ > 0 such that α̂δ̂ → 1, ĉδ̂ → 1, as δ̂ → 0, and, for any â, b̂ ∈ Rd, it holds

|â− b̂| < δ̂ ⇒ ĉδ̂η(α̂δ̂ b̂) ≥ η(â) . (49)

Then (48) can be obtained as follows: for any n ∈ N take

â :=
Tn(x)− Tn(z)

εn
, b̂ :=

x− z
εn

, δ̂ :=
2‖Tn − Id‖L∞

εn
,

and let α̂n, ĉn be the numbers given by the subclaim for which (49) holds. Then, since |â− b̂| ≤ δn, we
infer (48).

To prove the subclaim, we let αδ, cδ be as in Assumption (C4) and δ̂ > 0 and choose δ :=

min
{

1, δ̂
infδ∈(0,1] αδ

}
, without loss of generality we assume that infδ∈(0,1] αδ ∈ (0,∞) and trivially

δ → 0 as δ̂ → 0. We assume that δ̂
infδ∈(0,1] αδ

≤ 1. Let â, b̂ ∈ Rd with |â− b̂| < δ̂, and define a := â
αδ

and b := b̂
αδ

. Since, |a− b| ≤ δ̂
αδ
≤ δ̂

infδ∈(0,1] αδ
= δ then

η(b) ≥ cδη(αδa) ⇒ 1

cδ
η

(
b̂

αδ

)
≥ η(â) .

Let ĉδ̂ := 1
cδ

, α̂δ̂ := 1/αδ then δ̂ → 0 implies δ → 0 which in turn implies αδ, cδ → 1 and therefore
α̂δ̂, ĉδ̂ → 1. This proves the claim.

Step 3. Since 1
εn

∫
V (un(x))ρ(x) dx = 0 then

G(p)
n (un) =

1

εnn2

n∑
i,j=1

ηεn(xi − xj)|un(xi)− un(xj)|p .

Then, using Lemma 2.8 and (48) we get

G(p)
n (un) =

1

εn

∫
X

∫
X
ηεn(Tn(x)− Tn(z))|vn(x)− vn(z)|pρ(x)ρ(z) dx dz

≤ ĉn

α̂d+1
n ε̂′n

∫
X

∫
X
ηε̂′n(x− z)|vn(x)− vn(z)|pρ(x)ρ(z) dx dz

=
ĉn

α̂d+1
n ε̂′n

∫
X

∫
X
ηε̂′n(x− z)|u(x)− u(z)|pρ(x)ρ(z) dx dz + an
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where ε′n := εn
α̂n

and

an :=
ĉn

α̂d+1
n ε̂′n

∫
X

∫
X
ηε̂′n(x− z) (|vn(x)− vn(z)|p − |u(x)− u(z)|p) ρ(x)ρ(z) dx dz .

We recall the followings inequalities: ∀δ > 0 there exits Cδ > 0 such that for any a, b ∈ Rd we have

|a|p ≤ (1 + δ)|b|p + Cδ|a− b|p . (50)

Moreover, for all p ≥ 1 and all a, b ∈ R, it holds

|a+ b|p ≤ 2p−1 (|a|p + |b|p) . (51)

Fix δ > 0. Using (50) and (51) we infer

an ≤
ĉnδ

α̂d+1
n ε̂′n

∫
X

∫
X
ηε̂′n(x− z)|u(x)− u(z)|pρ(x)ρ(z) dx dz + bn

where

bn :=
2p−1ĉnCδ

α̂d+1
n ε̂′n

∫
X

∫
X
ηε̂′n(x− z)

(
|vn(x)− u(x)|p + |vn(z)− u(z)|p

)
ρ(x)ρ(z) dx dz .

We show bn → 0. We have that

bn ≤
2pĉnCδc

2
2

α̂d+1
n ε̂′n

∫
X
|vn(x)− u(x)|p dx

∫
Rd
η(x) dx

≤ 22pĉnCδc
2
2

α̂d+1
n ε̂′n

Vol (An)

∫
Rd
η(x) dx

= O

(
‖Tn − Id‖L∞

ε̂′n

)
,

where An is defined as in (47) and in the last equality, we used the fact that ĉn → 1, α̂n → 1 as n→∞.
Since ε̂′n � εn, from hypothesis (A2) we get that

bn → 0 , (52)

as n→∞. Hence,

G(p)
n (un) ≤ ĉn(1 + δ)

α̂d+1
n ε̂′n

∫
X

∫
X
ηε̂′n(x− z)|u(x)− u(z)|pρ(x)ρ(z) dx dz + bn . (53)

Step 4. We now conclude as follows. Using (53) we get

G(p)
n (un) ≤ (1 + δ)Fε̂′n(u) + bn

for Fε̂′n defined as in (3) with sn := ĉn
α̂d+1
n

. Taking the limsup on both sides and using (52), together with
Theorem 3.2 we have

lim sup
n→∞

G(p)
n (un) ≤ lim sup

n→∞
(1 + δ)Fε̂′n(u) ≤ (1 + δ)G(p)

∞ (u).
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Taking δ → 0 completes the proof for case 1.

Case 2. To extend to arbitrary functions u ∈ BV (X;±1) we apply the following diagonalisation
argument. Using Theorem 2.19 together with Lemma 3.9 and Theorem 2.20 we can find a sequence of
polyhedral functions {u(m)}∞m=1 such that

‖u− u(m)‖L1 ≤
1

m
, G(p)

∞ (u(m)) ≤ G(p)
∞ (u) +

1

m
.

Using the result of Case 1, for each m ∈ N we have

lim sup
n→∞

G(p)
n (u(m)

n ) ≤ G(p)
∞ (u(m)) ,

where u(m)
n := u(m) ¬Xn. For each m ∈ N let nm ∈ N be such that

G(p)
n (u(m)

n ) ≤ G(p)
∞ (u(m)) +

1

m
and ‖u(m)

n ◦ Tn − u(m)‖L1 ≤
1

m

for all n ≥ nm. At the cost of increasing nm we assume that nm+1 > nm for all m. Let un := u
(m)
n for

n ∈ [nm, nm+1). Then,

lim sup
n→∞

G(p)
n (un) = lim sup

m→∞
sup

n∈[nm,nm+1)
G(p)
n (u(m)

n ) ≤ lim sup
m→∞

(
G(p)
∞ (u(m)) +

1

m

)
≤ G(p)

∞ (u) .

Similarly,

lim
n→∞

‖un ◦ Tn − u‖L1 ≤ lim sup
m→∞

sup
n∈[nm,nm+1)

(
‖u(m)

n ◦ Tn − u(m)‖L1 +
1

m

)
≤ lim

m→∞

2

m
= 0

therefore un converges to u in TL1. Hence un is a recovery sequence for u. This completes the
proof.

5 Convergence of Minimizers with Data Fidelity

In this section we prove Corollary 1.9.

Proof of Corollary 1.9. In view of Theorem 2.22 and Proposition 2.24 it is enough to prove that, for any
u ∈ L1(X,µ) and any {un}∞n=1 with un ∈ L1(Xn) such that un → u in TL1(X) it holds that

lim
n→∞

Kn(un) = K∞(u) .

We can restrict ourselves to sequences un → u satisfying

sup
n∈N
G(p)
n (un) < +∞ . (54)

Let

vn(x) :=

{
un(x) if x ∈ Xn(un) ,
1 otherwise .

where
Xn(un) := {x ∈ Xn : |un(x)|q ≤ RV } ,
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and RV is as in Assumption (B3).

Step 1. We claim that
lim
n→∞

|Kn(un)−Kn(vn)| → 0 , (55)

as n→∞. Indeed we have that

lim
n→∞

|Kn(un)−Kn(vn)| = lim
n→∞

∣∣∣∣∣∣ 1n
∑

xi 6∈Xn(un)

(kn(xi, un(xi))− kn(xi, 1))

∣∣∣∣∣∣
= β lim

n→∞

1

n

∑
xi 6∈Xn(un)

(3 + |un(xi)|q) .

Now,

1

n

∑
xi 6∈Xn(un)

1 ≤ 1

nRV

∑
xi 6∈Xn(un)

|un(xi)|q ≤
1

nRV τ

∑
xi 6∈Xn(un)

V (un(xi)) ≤
εnG(p)

n (un)

τRV
.

Using (54) we conclude (55).

Step 2. We claim that vn → u in TL1(X). By a direct computation we get

‖un − vn‖L1(µn) =
1

n

∑
xi 6∈Xn(un)

|un(xi)− 1|

≤ 1

n

∑
xi 6∈Xn(un)

(1 + |un(xi)|)

≤ 1

n

∑
xi 6∈Xn(un)

(1 + |un(xi)|q)→ 0,

so vn → u in TL1.

Step 3. We show that Kn(vn)→ K∞(u). Consider any subsequence of vn which we do not relabel.
From Step 2 we have that vn ◦ Tn → u in L1. Thus there exists a further subsequence (not relabeled)
such that vn(Tn(x))→ u(x) for almost every x ∈ X . Using Assumption (D3) we get

lim
n→∞

kn (Tn(x), vn(Tn(x))) = k∞(x, u(x)) . (56)

Moreover it holds

kn(Tn(x), vn(Tn(x)) ≤ β (1 + |vn(Tn(x))|q) ≤ β (1 +RV ) (57)

Using (56), (57) and applying the Lebesgue’s dominated convergence theorem we get

lim
n→∞

Kn(vn) = lim
n→∞

∫
X
kn(Tn(x), vn(Tn(x)) ρ(x) dx

=

∫
X
k∞(x, u(x))ρ(x) dx

= K∞(u) (58)
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Since any subsequence of vn has a further subsequence such that limn→∞Kn(vn) = K∞(u) then we
can conclude the convergence is over the full sequence.

Step 4. Using (55) and (58) we conclude that

lim
n→∞

Kn(un)→ K∞(u)

as required
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