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Abstract. In this paper we provide a method to compute explicitly
the solution of the total variation denoising problem with a Lp fidelity
term, where p > 1, for piecewise constant data in dimension one.

1. Introduction

The images and the signals we use in everyday life are not perfect. Exter-
nal conditions, other then defects or limitations of the instruments we use to
obtain them, affect the quality of the acquired data. Thus, it is important
to be able to recover the clean object in the best possible way, i.e., with
optimal fidelity. If we denote it by u and the acquired, corrupted signal by
f , it is usually assumed that the two are related as1:

f = Au+ n , (1)

where A is a bounded linear operator representing the blurring effect and n
is the random noise. One of the aims of image reconstruction is to deblurring
and denoising f in order to recover u (see [8, 22]).

Here we are interested in the denoising problem, i.e., when the operator A
is the identity and we have to remove the noise. Problem (1) is, in general,
ill-posed (in the sense of Hadamard) and thus we need to regularize it (see
[1, 44]). A widely used variational technique for this purpose was introduced
by Rudin, Osher and Fatemi in [42], where they proposed to recover u in an
open set Ω ⊂ RN via the minimization problem

min
u∈BV (Ω), ‖u−f‖2

L2=σ2
|Du|(Ω) , (2)

for some fixed σ > 0, where f is suppose to be in L2(Ω) and |Du|(Ω) denotes
the total variation of the function u in Ω. The choice of BV (Ω) as the
functional space where to perform the minimization is motivated by the fact
that it permits the presence of discontinuities in the solutions, i.e., the sharp
edges of the objects in the image (actually, it can be shown that, in general,
real images are not of bounded variation (see [30])). Problem (2) has been
shown to be equivalent to the following penalized minimum problem (known
as the total variation denoising model with L2 fidelity term)

min
u∈BV (Ω)

|Du|(Ω) + λ‖u− f‖2L2(Ω) , (3)

for some Lagrange multiplier λ > 0 (see [17]). Today’s literature on the
study of problem (3) is extensive, and here we limit ourselves to recall that:

1We do not want to be precise here.
1
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properties of the solutions have been studied, for instance, in [2, 3, 4, 9, 10,
14, 15, 20, 23, 26, 28, 31, 35, 41, 45, 46], the analysis of variants of (3) that
use the generalized total variation have been performed in [11, 12, 38, 40,
39], anisotropic models are undertaken in [24, 27, 29, 34], while the effects
of considering high-order models have been investigated in [19, 21, 25, 32,
39]. Finally, other variants of (2) have been addressed in [6, 7, 37], and
algorithmic considerations may be found in [13, 16, 18, 36].

In this paper we study the one dimensional case where f is a piecewise
constant function and we generalize the L2 fidelity term as an Lp fidelity
term, with p ∈ [1,∞), i.e., we consider the minimum problem

min
u∈BV (Ω)

G(u) , (4)

where Ω := (a, b) ⊂ R and

G(u) := |Du|(Ω) + λ‖u− f‖pLp(Ω) , (5)

for a given initial piecewise constant data f . In the case p > 1 we are able
to provide an analytic method to find the exact solution of (4).

The principal obs0,–bvtruction in obtaining an analytic method to com-
pute (one) solution of the problem (4) in the case p = 1 is that explicit
computations are difficult to perform, analytically, in the case p 6= 2. Thus,
albeit we know that the solution up of (4) for a fixed λ and corresponding to
the Lp fidelity term, for p > 1, will converge to a solution u1 of (4) for the
same λ, but with L1 fidelity term, we cannot obtain it as an explicit limit of
such solutions. Nevertheless, a finer analysis of the behavior of the solution
for p > 1 is currently under investigation.

Our result extends the one obtained by Strong and Chan in [43], where
they are able to obtain the exact solution for large λ in the case of a noisy
f .

2. Settings

In this section we review the basic definitions of one dimensional functions
of bounded variation. For more details, see [5, 33]. Here a, b ∈ R and a < b.

Definition 2.1. Let u : (a, b)→ R. The pointwise variation of u in (a, b) is
defined as

pV (u; a, b) := sup

{
n−1∑
i=1

|u(xi+1)− u(xi)| : a < x1 < · · · < xn < b

}
.

Definition 2.2. For u ∈ L1
(
(a, b)

)
its total variation in (a, b) is given by

|Du|
(
(a, b)

)
:= sup

{ˆ b

a
ϕ′udx : ϕ ∈ C∞0

(
(a, b)

)
, |ϕ| ≤ 1

}
.

If |Du|
(
(a, b)

)
<∞, we say that u belongs to the space BV

(
(a, b)

)
of func-

tions of bounded variation in (a, b).

The relation among the above objects is given by the following result.
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Theorem 2.3. Let u ∈ L1
(
(a, b)

)
and define the essential variation of u as

eV (u; a, b) := inf{ pV (v; a, b) : v = u L1 − a.e. in (a, b) } .

The above infimum is achieved and it coincides with |Du|
(
(a, b)

)
.

The above result allows us to single out some well behaving representative
of a BV function.

Definition 2.4. Let u ∈ BV
(
(a, b)

)
. Any v with v = u L1-a.e. in (a, b) such

that pV (v; a, b) = eV (u; a, b) = |Du|
(
(a, b)

)
is called a good representative of

u.

3. The general structure of the solutions

We start by proving that a solution to the minimum problem (4) needs to
have the same structure asf , i.e., it has to be a piecewise constant function
with its jump set contained in the jump set of f . In higher dimension, the
inclusion2 Ju ⊂ Jf is well known (see [14] and [45]) in the case p > 1, while
it is not always true if p = 1 (see [20] and [28]). The following result has
been proved, with a different argument, in [12].

Theorem 3.1. Let f ∈ L1
(
(a, b)

)
and let u ∈ BV

(
(a, b)

)
be a solution of

(4). If f is constant in (c, d) ⊂ (a, b), then u is constant in (c, d).

Proof. Let u ∈ BV
(
(a, b)

)
and suppose it is a good representative such that

u(c) = lim
y→c−

u(y) , u(d) = lim
y→d+

u(y) .

Define the function

ũ :=

{
u in (a, b)\(c, d) ,
t in (c, d) ,

where t :=
ffl d
c u. We claim that

F(ũ) ≤ F(u) ,

where equality holds if and only if u ≡ t in (c, d). We show that the above
inequality holds separately for each term of the energy. The fact that the
fidelity term decreases is due to Jensen’s inequality. Indeed, by recalling that
f is constant on (c, d), say f ≡ f̄ in (c, d), we have that∣∣∣ d

c
u(y) dy − f̄

∣∣∣p =
∣∣∣ d

c

(
u(y)− f

)
dy
∣∣∣p ≤  d

c
|u(y)− f̄ |p dy ,

and, by integrating both sides on (c, d), we obtain
ˆ d

c
|t− f̄ |p dx ≤

ˆ d

c
|u(x)− f̄ |p dx ,

where the equality case holds if and only if u ≡ t in (c, d).
We now consider the total variation term. We have that

|Dũ|([c, d]) = |u(c)− t|+ |u(d)− t| ,

2With Ju we denote the jump set of u ∈ BV (Ω)
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Suppose, without loss of generality, that u(c) ≤ u(d). We will consider three
cases: t ∈ [u(c), u(d)], t ≤ u(c) and t ≥ u(d). In the first one, we simply
notice that

|Dũ|([c, d]) = u(d)− u(c) ≤ |Du|([c, d]) .

If t ≤ u(c), then there exists x ∈ [c, d) such that u(x) ≤ t. Thus,

|Du|([c, d]) ≥
(
u(c)− u(x)

)
+
(
u(d)− u(x)

)
≥
(
u(c)− t

)
+
(
u(d)− t

)
= |Dũ|([c, d]) .

The case t ≥ max{u(c), u(d)} can be treated similarly. This concludes the
proof. �

The above result allows us to get the structure of minimizers of problem
(4) in the case in which f is a piecewise constant function.

Corollary 3.2. Let f be a piecewise constant function in (a, b), i.e.,

f(x) =
k∑
i=1

fi χ(xi−1,xi)(x) , fi ∈ R .

Then any solution u of the minimum problem (4) is of the form

u(x) =
k∑
i=1

ui χ(xi−1,xi)(x) , (6)

for some (ui)
k
i=1 ⊂ R , not necessarily distinct from each other.

In particular, a function u of the form (6) is a solution of (4) if and only
ū := (u1, . . . , uk) ∈ Rk is a solution of the minimum problem

min
v∈Rk

G(v) , (7)

where G : Rk → R is the function defined as

G(v) :=
k∑
i=2

|vi − vi−1|+ λ
k∑
i=1

Li|fi − vi|p , (8)

with v = (v1, . . . , vk).

Thus, hereafter we will concentrate on the study of the minimum problem
(7). The issue in finding minimizers of G is that the functional has some
regions where it is not differentiable (due to the first summation), and so,
albeit it is convex (strictly, if p > 1), minimizers cannot be found directly
as critical points. The aim of this paper is to provide a method to overcome
this difficulty.

The cases p = 1 and p > 1 turn out to be quite different. Heuristically, the
difference lies in the fact that, in the first case, the two terms of the energy
are of the same order while, for p > 1, the fidelity term is of higher order than
the total variation one. This leads to very different behavior of the solutions.
A first difference between the two cases is the lack of uniqueness in the case
p = 1 (see Proposition 4.1). However, in this regime it is possible to obtain a
more rigid structure result for a particular solution of the minimum problem
for p = 1.
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Corollary 3.3. For p = 1, there exists a solution u of the problem (7) such
that ui ∈ {f1, . . . , fk} for every i = 1, . . . , k.

Proof. For any given a pair of functions s1 : {2, . . . , k} → {0, 1} and s2 :
{1, . . . , k} → {0, 1} consider the set As1,s2 ⊂ Rk such that

G(u) =

k∑
i=2

(−1)s1(i)(ui − ui−1) + λ

k∑
i=1

Li(−1)s2(i)(fi − ui) , (9)

for all u ∈ As1,s2 . We note that As1,s2 could be empty. Then

min
Rk

G = min
s1,s2

min
As1,s2

G|As1,s2
.

If u ∈ As1,s2 , then (9) can be written as

G(u) = vs1,s2λ · u+ cs1,s2λ , (10)

for some cs1,s2λ ∈ R and vs1,s2λ ∈ Rk, hence for any s1 and s2, the function G
restricted to As1,s2 is always minimized by a vector of the form

ui = fσ(i) ,

for some function σ : {1, . . . , k} → {1, . . . , k}. This concludes the proof. �

The above result allows us to select a particular solution for the minimum
problem in the case p = 1.

Definition 3.4. We will denote by uλ a solution of the minimum problem
(7) corresponding to the value λ. This will be the solution, if p > 1, while,
for p = 1, it will be understood as a solution whose structure is those given
by the previous result.

Remark 3.5. It is easy to see that ui ∈ [min f,max f ] for every solution u.

In the rest of this section we want to understand the behavior of the
solution uλ in the limiting cases for λ, i.e., when λ � 1 and when λ � 1.
In the first case the predominant term of the energy is given by the total
variation, thus we expect uλ to minimizes it.

Lemma 3.6. Fix p ≥ 1, positive numbers (Li)
k
i=1 and two constants m < M .

Then, there exists a constant λ̄ > 0, depending only on p, (Li)
k
i=1, m and M

with the following property: for any piecewise constant function f such that
f ∈ [m,M ] and any λ ∈ (0, λ̄], we have that uλ is constant.

In particular, if p > 1 then there exists c ∈ R such that uλi ≡ c for all
λ ∈ (0, λ̄] and all i = 1, . . . , k.

Proof. We first treat the case p > 1. Assume uλ is not constant and let i ∈
{1, . . . , k} be such that uλi = min{uλj : j = 1, . . . , k}. Let r := inf{j ≤ i :

us = ui for all j ≤ s ≤ i} and let t := sup{j ≥ i : us = ui for all i ≤ s ≤ j}.
By hypothesis, either r > 1 or t < k. Consider, for ε > 0, the vector uε ∈ Rk
defined as uεj := uj + ε for j = r, . . . , t and uεj := uλj for all the other j’s.
Then, recalling that uj ∈ [m,M ] for all j = 1, . . . , k, we have that

lim
ε→0+

G(uε)−G(uλ)

ε
= a+ pλ(−1)siLi|ui − fi|p−1

≤ a+ pλ(M −m)p−1 max
i=1,...,k

Li , (11)
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where a ∈ {−1,−2} (in particular, a = −1 if r = 1 or t = k and a = −2
otherwise), and si ∈ {0, 1}. Let

λ̄ :=
1

p(M −m)p−1 maxi Li
.

If λ < λ̄, from (11) we get that G(uε) < G(uλ). This means that uλ has
to be constant for λ < λ̄. Moreover, it is easy to see that the function G
restricted to the set {(u1, . . . , uk) ∈ Rk : u1 = · · · = uk} admits a unique
minimizer, that is independent of λ.

We now have to prove that uλ̄ is constant. Assume that uλi ≡ c for for all
λ ∈ (0, λ̄) and all i = 1, . . . , k. Let c̄ ∈ Rk be the vector given by c̄i := c.
Then Gλ(c) < Gλ(v) for all v ∈ Rk with v 6= c̄ and all λ ∈ (0, λ̄), where the
subscript λ is to underline the dependence of G on λ. By letting λ↗ λ̄, we
get Gλ̄(c) < Gλ̄(v) for all v ∈ Rk and thus uλ̄ = c̄.

Let us now treat the case p = 1. Suppose that uλ is not constant. Recalling
that uλi ∈ {f1, . . . , fk}, we have that

|Duλ|(Ω) ≥ min
i
|fi − fi−1| .

On the other hand, for any function v such that v ≡ c ∈ [min f,max f ] in
(a, b), it holds that

G(v) ≤ λk(max
i
Li)(M −m) .

Set

λ̄ :=
mini |fi − fi−1|

k(maxi Li)(M −m)
.

For λ < λ̄ the above estimates show that uλ must be constant.
Finally, in order to prove that also uλ̄ is constant, we reason as follows:

we know that uλ = c̄λ for λ ∈ (0, λ̄), for some c̄λ = (cλ, . . . , cλ) ∈ Rk. Take
λn ↗ λ̄. Since cλn ∈ [min f,max f ], up to a not relabelled subsequence
we have that cλn → c. We conclude that Gλ̄

(
(c, . . . , c)

)
≤ Gλ̄(v) for all

v ∈ Rk. �

We now consider the case λ� 1. Since

λLi|uλi − fi|p ≤ G(uλ) ≤ G(f) <∞ ,

we know that
uλ → f as λ→∞ . (12)

The following results underline a first important difference between the cases
p = 1 and p > 1. Indeed, if p = 1 the limit (12) is reached for λ <∞, while
if p > 1 only asymptotically.

Lemma 3.7. Let p > 1 and assume f is not constant. Then uλ ∈ (min f,max f)
for all λ > 0. In particular, f can never be a solution of the minimum prob-
lem.

Proof. We first prove that uλ cannot achieve the value min f . Assume that
uλi = min f for some i ∈ {1, . . . , k}. Let r ≤ i ≤ s be such that uj = ui for
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all j = r, . . . , s. Consider, for ε > 0, the vector uε ∈ Rk given by uεj := uλj +ε

for j = r, . . . , s and uεj := uλj for all other j’s. Then

lim
ε→0+

G(uε)−G(u)

ε
= a− pλ

s∑
j=r

Lj(fj − uλi )p−1 < 0 ,

where a ∈ {−1,−2}. This is in contradiction with the minimality of uλ.
With a similar argument it is possible to show that u does not achieve the

value max f . �

Lemma 3.8. Let p = 1. Then there exists λ̄ > 0 such that for all λ ≥ λ̄ the
solution of the minimum problem (7) is unique and is given by f itself.

Proof. Suppose that there exists a sequence λj →∞ for which uλji 6= fi for
all j’s (this is possible, since k is finite). By recalling that uλji ∈ {f1, . . . , fk},
setting

λ̄ :=
G(f)

mini Li mini |fi − fi−1|
,

we have, for λj > λ̄, that

G(uλj ) ≥ λjLi|u
λj
i − fi| > G(f) ,

contradicting the minimality of uλj . �

4. Explicit solutions in a simple case

Here we study the case in which we have just two grey levels, i.e., k = 2.
This analysis will underline some important features of the cases p = 1 and
p > 1.

Proposition 4.1. Let f1 < f2. Then the solutions uλ of the minimum
problem (7) in the case p = 1 are the following:

• if L1 > L2, set λ1
T := 1

L2
. Then

uλ1 = uλ2 = f1 for λ < λ1
T ,

uλ1 = f1, u
λ
2 ∈ [f1, f2] for λ = λ1

T ,

uλ1 = f1, u
λ
2 = f2 for λ > λ1

T ,

• if L1 = L2, set λ1
T := 1

L1
. Then uλ1 ∈ [f1, f2], uλ2 ≥ u1 for λ ≤ λ1

T ,

uλ1 = f1, u
λ
2 = f2 for λ > λ1

T ,

• if L1 < L2, set λ1
T := 1

L1
. Then

uλ1 = uλ2 = f2 for λ < λ1
T ,

uλ1 ∈ [f1, f2], uλ2 = f2 for λ = λ1
T ,

uλ1 = f1, u
λ
2 = f2 for λ > λ1

T ,
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Proof. It is easy to see that we must have f1 ≤ u1 ≤ u2 ≤ f2. Thus, we
consider the region

T := { (u1, u2) ∈ R2 : f1 ≤ u1 ≤ u2 ≤ f2 } , (13)

and we rewrite the function G in T as

G(ū) = [λL1 − 1]u1 + [1− λL2]u2 + λ[f2L2 − f1L1] = vλ · u+ cλ .

When minimizing G in T , we can drop the term cλ. Then, the minimizers,
according to the position of the vector vλ

|vλ| (well defined for all λ’s, except in
the case L1 = L2 and λ = 1

L1
), are the following:

Figure 1. On the left it is displayed where the (renormal-
ized) vector vλ can vary: from v1 for λ = 0 up tp (asymptot-
ically) v∞ := arctan L2

L1
. On the left the triangle where the

vector u can vary.

Thus, by simply studying the sign of the components of vλ, we obtain the
desired result. Notice that the non uniqueness happens only when the vector
vλ is orthogonal to {x = y} ⊂ R2. �

In the case p > 1 the landscape of the solutions is quite different.

Proposition 4.2. Let f1 < f2 and let p > 1. Define

λpT :=
1

p

(L
1
p−1

1 + L
1
p−1

2 )p−1

L1L2(f2 − f1)p−1
.

The solution uλ of the minimum problem (7) is the following:
• for λ ≤ λpT

uλ1 = uλ2 =
L

1
p−1

1

L
1
p−1

1 + L
1
p−1

2

f1 +
L

1
p−1

2

L
1
p−1

1 + L
1
p−1

2

f2 , (14)

• for λ > λpT

uλ1 = f1 +
1

(pλL1)
1
p−1

, uλ2 = f2 −
1

(pλL2)
1
p−1

. (15)
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Proof. Recalling that f1 ≤ u1 ≤ u2 ≤ f2, we just have to consider the region
T defined in (13) and to rewrite the function G in that region as

G(u1, u2) := u2 − u1 + λL1(u1 − f1)p + λL2(f2 − u2)p .

The critical point of G is given by

u1 = f1 +
1

(pλL1)
1
p−1

, u2 = f2 −
1

(pλL2)
1
p−1

,

and it belongs to the interior of T , i.e., uλ1 < uλ2 , only for λ > λpT . Since G
is strictly convex, this critical value turns out to be the global minimum of
G for λ > λpT . In the case λ ≤ λpT , the minimum point has to be on ∂T .
Instead of performing all the computations for finding the minimum point in
all of the three edges of ∂T and to compare them, we will use the following
argument based on the continuity of the minimum uλ with respect to λ (see
Lemma 5.1), i.e., we invoke the fact that the function λ 7→ uλ is continuous.
Notice that for λ↘ λpT we have

uλ → (ū, ū) ,

where

ū :=
L

1
p−1

1

L
1
p−1

1 + L
1
p−1

2

f1 +
L

1
p−1

2

L
1
p−1

1 + L
1
p−1

2

f2 ,

is independent of λ. By using the continuity of the solution, we can conclude
that, for λ ≤ λpT , the solution of the minimum problem is given by (ū, ū). �

Remark 4.3. We remark a couple of facts:
(1) we have that λpT → λ1

T as p → 1+ (in each of the cases for the
definition of the second one). Indeed, suppose that L1 < L2. Then,

lim
p→1+

λpT = lim
p→1+

(L
1
p−1

1 + L
1
p−1

2 )p−1

L1L2

=
1

L1
lim
p→1+

(
1 +

(
L1

L2

) 1
p−1
)p−1

=
1

L1
lim
t→0+

exp

[
t log

[(
L1

L2

) 1
t

+ 1

]]
=

1

L2
= λ1

T .

Similar reasonings lead to the claimed result in the other two cases.
In particular, notice that λpT > λ1

T .

(2) The solutions that converge to a solution for p = 1, as p ↘ 1.
Indeed, suppose λ > λ1

T , Then for p sufficiently close to 1, from the
above bullet point, we have that λ > λpT . Thus, the solution of the
minimum problem for p is given by (15). In this case, it is easy to see
that the solution converges to (f1, f2), as p↘ 1. In the case λ < λ1

T ,
we can assume as above that p is so close to 1 that the solution of
the minimum problem for p is given by (14).



10 RICCARDO CRISTOFERI

If L1 > L2, then

L
1
p−1

1

L
1
p−1

1 + L
1
p−1

2

=
1(

L2
L1

) 1
p−1

+ 1

→ 1 , as p→ 1 ,

L
1
p−1

2

L
1
p−1

1 + L
1
p−1

2

=
1(

L1
L2

) 1
p−1

+ 1

→ 0 , as p→ 1 .

In the case L1 = L2, both coefficients are equal to 1
2 .

Finally, in the case λ = λ1
T , since λpT > λ1

T we have that the
solution of the minimum problem is given by (14). The result follows
by arguing as before.

5. The behavior of the solution for p > 1

In this section we will describe a method to obtain explicitly the solution uλ
in the case p > 1. This analytic method will be derived by using qualitative
properties of the solution.

We start by proving a continuity property of the solution uλ with respect
to λ.

Lemma 5.1. Let p > 1. Then λ 7→ uλ is continuous.

Proof. Fix λ̄ > 0 and let λn → λ. Then G(uλn) ≤ G(v) for all v ∈ Rk,
where equality holds if and only if v = uλn . Since |uλn | ≤

√
k|maxi fi|, up

to a (not relabeled) subsequence, we have that uλn → v̄. Then, by using the
continuity of G in both v and λ, we have that G(v̄) ≤ G(v) for all v ∈ Rk. By
the uniqueness of the solution, we deduce that v̄ = uλ, and that uλn → uλ

for all sequences λn → λ. �

We now prove several properties that will be used to deduce the behavior
of the solution uλ when λ varies. Albeit some of the following results can
be stated in a more inclusive way, we prefer to consider each single case
separately since they are useful to describe the qualitative behavior of the
solution when no analytic computations can be done (i.e., when p 6= 2).

Lemma 5.2. Let p > 1. Then, the following properties hold true:
(i) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such

that, for some r ≥ 0, uλi = uλi+1 = · · · = uλi+r = ūλ ,

uλi−1 < ū < uλi+r+1 or uλi−1 > ū > uλi+r+1 .



PIECEWISE CONSTANT IMAGES IN DIMENSION ONE 11

Then ūλ is the solution of

min
c∈(uλi−1,u

λ
i+r+1)

i+r∑
j=i

Lj |c− fj |p .

In particular, ūλ is constant in (λ1, λ2).

(ii) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such
that, for some r ≥ 0, uλi = uλi+1 = · · · = uλi+r = ūλ ,

uλi−1 , u
λ
i+r+1 < ūλ .

Then λ 7→ ūλ is increasing.
In particular, in the case r = 0, we have

uλi = fi −
( 2

pλLi

) 1
p−1

.

(iii) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such
that, for some r ≥ 0, uλi = uλi+1 = · · · = uλi+r = ūλ ,

uλi−1 , u
λ
i+r+1 > ūλ .

Then λ 7→ ūλ is decreasing.
In particular, in the case r = 0, we have

uλi = fi +
( 2

pλLi

) 1
p−1

.
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(iv) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such
that, for some r ≥ 0, uλ1 = uλ2 = · · · = uλr = ūλ ,

uλr+1 < ūλ .

Then λ 7→ ūλ is increasing.
In particular, in the case r = 0, we have

uλi = f1 −
( 1

pλL1

) 1
p−1

.

(v) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such
that, for some r ≥ 0, uλ1 = uλi+1 = · · · = uλr = ūλ ,

uλr+1 > ūλ .

Then λ 7→ ūλ is decreasing.
In particular, in the case r = 0, we have

uλi = f1 +
( 1

pλL1

) 1
p−1

.

(vi) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such
that, for some r ≥ 0,

uλk−r = · · · = uλk = ūλ ,

uλk−r−1 > ūλ .
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Then λ 7→ ūλ is decreasing.
In particular, in the case r = 0, we have

uλk = fk +
( 1

pλLk

) 1
p−1

.

(vii) Assume that, for λ ∈ (λ1, λ2), there exists a function λ 7→ ūλ such
that, for some r ≥ 0,

uλk−r = · · · = uλk = ūλ ,

uλk−r−1 < ūλ .

Then λ 7→ ūλ is increasing.
In particular, in the case r = 0, we have

uλk = fk −
( 1

pλLk

) 1
p−1

.

Proof. We start by proving property (i). Suppose that uλi−1 < ūλ < uλi+r+1.
In the other case we argue in a similar way. By hypothesis, the vector uλ
minimizes the function G in the set

{ (u1, . . . , uk) ∈ Rk : ui−1 < ui = · · · = ui+r < ui+r+1 } ,
and in this set, the function G can be written as

G(u) = G̃(u1 . . . , ui−1, ui+r+1, . . . , uk) + λ

i+r∑
j=i

Lj |ū− fj |p .

By keeping u1, . . . , ui−1 and ui+r+1, . . . , uk fixed, the claim follows by mini-
mizing the above quantity with respect to ū.

Since all the other properties can be proved with an argument whose
general lines are the same, we just prove property (ii), leaving the details of
the others proofs to the reader.
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In the hypothesis of (ii), it holds that uλ is a minimum of G in the set

{ (u1, . . . , uk) ∈ Rk : ui−1, ui+r+1 < ui = · · · = ui+r } .

Restricted to this set, the function G can be written as

G(u) = G̃(u1 . . . , ui−1, ui+r+1, . . . , uk) + 2ū+ λ
i+r∑
j=i

Lj |ū− fj |p .

So, for λ ∈ (λ1, λ2) and u1 . . . , ui−1, ui+r+1, . . . , uk fixed, ūλ is the minimum
of the strictly convex function

H(c) := 2c+ λ

i+r∑
j=i

Lj |c− fj |p

in the set (max{uλi , uλi+r},max f).
To study the minimum of H, we can assume without loss of generality

that fi < fi+1 < · · · < fi+r. Indeed, we notice that the order of the fj ’s
doesn’t matter. Moreover, in the case in which fp = fq for some p 6= q,
we can simply collect the two terms in a single one and use Lp + Lq as a
corresponding factor in the above summation. We now want to prove that
λ 7→ ū is decreasing. Note that the function H can be written as

H(c) = 2c+ λ
m∑
j=i

Lj(c− fj)p + λ
i+r∑

j=m+1

Lj(fj − c)p =: Hm(c) ,

if c ∈ (fm, fm+1], for some m ∈ {i, . . . , i+ r − 1}, and

H(c) = 2c+ λ
i+r∑
j=i

Lj(c− fj)p ,

if c ∈ [fi+r,max f). Consider the function Hm in the interval (fm, fm+1).
We have that

H ′m(c) = 2 + pλ

 m∑
j=i

Lj(c− fj)p−1 −
i+r∑

j=m+1

Lj(fj − c)p−1

 .
Here H ′m(c) = 0 has a solution only if the term in the parenthesis is negative
and if so, the let λ 7→ cλ be such a solution. It is easy to see that this
function is regular in (fm, fm+1). By differentiating the expression H ′m(cλ)
with respect to λ, we obtain

p

 m∑
j=i

Lj(c− fj)p−1 −
i+r∑

j=m+1

Lj(fj − c)p−1


+ λ

dcλ

dλ
p(p− 1)

 m∑
j=i

Lj(c− fj)p−2 +
i+r∑

j=m+1

Lj(fj − c)p−2

 = 0 .

Thus, by recalling that the term in the first parenthesis is negative, we get
dcλ

dλ < 0, as desired.
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In the case in which the minimum of the function H is reached at a point
c = fm+1, we simply consider the function Hm and we apply the argument
above.

Finally, the same reasoning applies when c ∈ [fi+r,max f). �

We are now in position to prove the fundamental result we will use to
develop our strategy for finding the solution.

Theorem 5.3. For each i = 1, . . . , k − 1 there exists λi ∈ (0,∞) such that
uλi = uλi+1 for λ ≤ λi, while uλi 6= uλi+1 for λ > λi.

Proof. Step 1. We claim that if uλ̃i = uλ̃i+1 for some λ̃ > 0, then uλi = uλi+1

for all λ ∈ (0, λ̃]. Indeed, let

λ̄ := min{λ : uµi = uµi+1 fo all µ ∈ [λ, λ̃] } ,

and assume that λ̄ > 0. By continuity of λ 7→ uλ there exists ε > 0 such
that uλi 6= uλi+1 for λ ∈ (λ̄ − ε, λ̄). Consider the case in which uλi < uλi+1 in
(λ̄− ε, λ̄) (the other case can be treated similarly).

If i = 1, then property (v) of Lemma 5.2 tells us that λ 7→ uλi is decreasing
in (λ̄− ε, λ̄), and thus it is not possible to have uλ̄i = uλ̄i+1.

If i > 1, we can focus, without loss of generality, only on the following two
cases: uλi−1 > uλi and uλi−1 < uλi in (λ̄− ε, λ̄).

In the first case, we get a contradiction since by property (iii) of Lemma
5.2, the map λ 7→ uλi is decreasing in (λ̄−ε, λ̄) and thus, as above, we cannot
have uλ̄i = uλ̄i+1.

In the other case, we have uλi−1 < uλi < uλi+1 in (λ̄ − ε, λ̄). By using
property (i) of Lemma 5.2, we see that this is possible only if uλi = fi for all
λ ∈ (λ̄− ε, λ̄). This yields the desired contradiction.

Step 2. Let us define

λi := max{λ : uµi = uµi+1 , for all µ ≤ λ } .

Step 1 and the continuity of λ 7→ uλ ensure that λi is well defined. Moreover,
by Lemma 3.6, we also get that λi > 0 for all i = i, . . . , k − 1. Finally, the
fact that uλ → f as λ → ∞, tells us that λi < ∞ for all i = 1, . . . , k − 1.
This concludes the proof. �

Remark 5.4. By direct inspection of the proof of property (ii) of Proposition
5.2, we see that the function λ 7→ uλ is continuous. Moreover, we can also
say that it is smooth for all λ ∈ (0,∞)\S, where S := {λ1, . . . , λk−1} ∪ T ,
where the λi’s are given by Theorem 5.3, and T := {µ1, . . . , µk} where
µi := inf{λ : uλi = fi}.

Finally, we derive another consequence of Lemma 5.2, that will ensure
that the solution is monotone where f is, and with the same monotonicity.

Proposition 5.5. Suppose that fi < fi+1 < · · · < fi+r. Then the solution
u of the minimum problem (7) is such that ui ≤ ui+1 ≤ · · · ≤ ui+r.

In particular, it has the following structure:
• if ui ≥ fi+r, then uj = ui for all j = i, . . . , i+ 1,
• if ui+r ≤ fi, then uj = ui+r for all j = i, . . . , i+ 1,
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• otherwise, u is of the form

uj =

 ui for j = i, . . . , j1 ,
fj for j = j1 + 1, . . . , j2 − 1 ,
ui+r for j = j2, . . . , k ,

for some fj1 ≤ ui < fj1+1 and fj2 ≤ ui+r < fj2+1, where i1 < i2.

Proof. Step 1. We claim that ui ≤ ui+1 ≤ · · · ≤ ui+r.
Suppose that uj−1 > uj for some j ∈ {i+ 1, . . . , i+ r}. We have to treat

three cases: uj < fj , uj = fj and uj > fj .
In the first case, we get a contradiction with the minimality of uλ since it

is easy to see that

G(uλ1 , . . . , u
λ
j−1, u

λ
j + ε, uλj+1, . . . , uk) < G(uλ) ,

for ε > 0 small.
Now, suppose uj > fj and that uj > uj+1. Then, for ε > 0 small,

G(uλ1 , . . . , u
λ
j−1, u

λ
j − ε, uλj+1, . . . , uk) < G(uλ) ,

yielding the desired contradiction.
Finally, we can treat all the remaining cases (namely uj = fj or uj >

fj and uj+1 > uj) simultaneously as follows: let jm ∈ {i, . . . , j} be the
minimum index r such that ur > ur+1. In both cases we have ujm > fjm ,
and thus,

G(uλ1 , . . . , u
λ
jm−1, u

λ
jm − ε, u

λ
jm+1, . . . , uk) < G(uλ) ,

for ε > 0 small.

Step 2. Using Step 1, we have that
i+r∑
j=i+1

|uλj − uλj−1| = uλi+r − uλi .

Since this value is invariant under modification of uλj for j = i+1, . . . , i+r−1,
if we keep ui and ui+r fixed, the minimality of uλ implies that

i+r∑
j=i

|uj − fj |p = min
A

i+r∑
j=i

|vi − fi|p ,

where

A := {(vi+1, . . . , vi+r−1) ∈ Ri+r−2 : ui ≤ vi+1 ≤ · · · ≤ vi+r−1 ≤ ui+r} .
This proves the second part of the statement of the proposition. �

Finally, thanks to the above properties, we can now provide a method to
compute explicitly the solution uλ to the minimum problem (4) in the case
p > 1.

A method for finding the solution. The idea is the following: we
know that uλ → f as λ→∞. Thus, for λ� 1, uλi 6= uλi+1 and

ui+1 − ui
|ui+1 − ui|

=
fi+1 − fi
|fi+1 − fi|

,
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for all i = 1, . . . , k − 1.
By Theorem 5.3, once uλi 6= uλi+1, for some λ, the same holds true for

all bigger values of λ. Moreover, thanks to Lemma 5.2, if uλi is close to fi,
then we can also assert uλi > fi, uλi < fi, or uλi = fi. Thus, we are able to
determine s̄i, t̄i ∈ {0, 1} for which

G(uλ) =

k∑
i=2

(−1)s̄i(uλi − uλi−1) + λ

k∑
i=1

Li
(
(−1)t̄i(fi − uλi )

)p
, (16)

for all λ� 1. In particular, (16) holds for all λ > max{λ1, . . . , λk−1 }, where
the λi’s are the ones given by Theorem 5.3, and the problem is solved for
λ� 1, by simply computing the critical points of (16).

We now let λ decrease. Eventually, a critical event will happen, that is
either λ = λi for some i, or σλi will change, where

σλi :=

{
0 if uλi = fi ,
uλi −fi
|uλi −fi|

otherwise .

Such a critical event will determine a change in the values of s and t for
which

G(uλ) = Gs,t(u) :=
k∑
i=2

(−1)si(ui − ui−1) + λ
k∑
i=1

Li
(
(−1)ti(fi − ui)

)p
,

where si, ti ∈ {0, 1}. Notice that each Gs,t is differentiable. Let us recall
that, if λ = λi for some i, by Theorem 5.3 we know that, for λ ≤ λi, we will
have uλi = uλi+1. So, for λ ≤ λi, we will have to consider the functional G
restricted to the subspace {ui = ui+1}. Again, solutions are found as critical
points of the function under consideration.

Example. To understand better the above strategy, we provide an ex-
ample. We will treat the case p = 2, where explicit analytic computations
can be made.

Suppose that k = 6, take L1 = L3 = L5 = 1 and L2 = L4 = L6 = 2.
Consider the initial data f given by f1 = 2, f2 = 1, f3 = 3, f4 = 5, f5 = 6,
f6 = 4.

Figure 2. The initial data f .
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For λ� 1, we know that we have to consider the following functional

G(u1, u2, u3, u4, u5, u6) := u1 − 2u2 + 2u5 − u6 + λ[ (2− u1)2 + 2(1− u2)2

+ |u3 − 3|2 + 2|u4 − 5|2 + (6− u5)2 + 2(u6 − 4)2 ] .

In particular, we obtain that the solution uλ is given by

uλ1 := 2− 1
2λ , uλ2 := 1 + 1

2λ , uλ3 := 3 ,

uλ4 := 5 , uλ5 := 6− 1
λ , uλ6 := 4 + 1

4λ .

for λ > 1.

Figure 3. The behavior of the solution for λ > 1 for λ decreasing.

The first critical event happens for λ = 1, when uλ1 = uλ2 and uλ4 = uλ5 .
For smaller values of λ, we have to consider the functional

G(v1, v2, v3, v4) := 2v3 − v1 − v4 + λ[ (2− v1)2 + 2(v1 − 1)2 + |v3 − 3|2

+ 2(5− v3)2 + (6− v3)2 + 2(v4 − 4)2 ] .

Here, the solution is given by

uλ1 := 4
3 + 1

6λ , uλ2 := 4
3 + 1

6λ , uλ3 := 3 ,

uλ4 := 16
3 −

1
3λ , uλ5 := 16

3 −
1

3λ , uλ6 := 4 + 1
4λ .

Figure 4. The behavior of the solution for λ ∈ ( 9
14 , 1] for λ decreasing.



PIECEWISE CONSTANT IMAGES IN DIMENSION ONE 19

Then, for λ = 9
14 we have that uλ6 = uλ5 . Hence, the new functional we

have to consider is

G(v1, v2, v3) := v3 − v1 + λ[ (2− v1)2 + 2(v1 − 1)2 + |v2 − 3|2

+ 2(5− v3)2 + (6− v3)2 + 2(v3 − 4)2 ] .

Figure 5. The behavior of the solution for λ ∈ (, 1
10 ,

9
14 ] for λ decreasing.

The solution is now
uλ1 := 4

3 + 1
6λ , uλ2 := 4

3 + 1
6λ , uλ3 := 3 ,

uλ4 := 16
3 −

1
6λ , uλ5 := 16

3 −
1

6λ , uλ6 := 16
3 −

1
6λ .

Notice that for λ = 1
4 we have uλ1 = f1. Thus, for λ < 1

4 , we have to
consider the functional

G(v1, v2, v3) := v3 − v1 + λ[ (v1 − 2)2 + 2(v1 − 1)2 + |v2 − 3|2

+ 2(5− v3)2 + (6− v3)2 + 2(v3 − 4)2 ] .

Hence, the solution remains equal to the previous ones. For λ = 1
10 we get

uλ2 = uλ3 . Then we consider the functional

G(v1, v2) := v2 − v1 + λ[ (2− v1)2 + 2(v1 − 1)2 + |v2 − 3|2

+ 2(5− v2)2 + (6− v2)2 + 2(v2 − 4)2 ] .

Figure 6. The behavior of the solution for λ ∈ ( 9
122 ,

1
10 ] for λ decreasing.
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Such a functional is minimized by

uλ1 := 7
4 + 1

8λ , uλ2 := 7
4 + 1

8λ , uλ3 := 7
4 + 1

8λ ,

uλ4 := 24
5 −

1
10λ , uλ5 := 24

5 −
1

10λ , uλ6 := 24
5 −

1
10λ .

Finally, for λ ≤ 9
122 we have that the solution is given by

uλ1 = uλ2 = uλ3 = uλ4 = uλ5 = uλ6 :=
31

9
.

Figure 7. The behavior of the solution for λ < 9
122 .

Remark 5.6. The previous example allows us to identify some properties
of the solution uλ:

(1) it is not true that if uλ̄i = fi, then uλi = fi for all λ ≥ λ̄,
(2) the function λ 7→ uλi is not monotone in general. Nevertheless, a

change in the monotonicity can happen only if λ = λi or λ = λi−1,

Remark 5.7. As we saw in the example, the value of λ for which the solution
uλ is such that uλi 6= uλi+1 for all i = 1, . . . , k − 1, can be determined a
posteriori.

Remark 5.8. Let us denote by uλ,p the solution of problem (7) correspond-
ing to p and λ. Albeit we know that, for every λ fixed, uλ,p → v as p ↘ 1,
where v is a solution of the problem (7) corresponding to λ and p = 1, we
cannot apply directly our method to find v, since analytic computations are
difficult to perform in the case p ∈ (1, 2). Nevertheless, a finer analysis of the
behavior of the solution uλ,p for p ∈ (1, 2) is currently under investigation.

Acknowledgments. The author wishes to thank Irene Fonseca for having
introduced him to the study of this problem and for helpful discussions during
the preparation of the paper.

The author warmly thanks the Center for Nonlinear Analysis at Carnegie
Mellon University for its support during the preparation of the manuscript.
The research was funded by National Science Foundation under Grant No.
DMS-1411646.



PIECEWISE CONSTANT IMAGES IN DIMENSION ONE 21

References

[1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for
ill-posed problems, Inverse Problems, 10 (1994), pp. 1217–1229.

[2] W. K. Allard, Total variation regularization for image denoising. I. Geometric
theory, SIAM J. Math. Anal., 39 (2007/08), pp. 1150–1190.

[3] , Total variation regularization for image denoising. II. Examples, SIAM J.
Imaging Sci., 1 (2008), pp. 400–417.

[4] , Total variation regularization for image denoising. III. Examples, SIAM J.
Imaging Sci., 2 (2009), pp. 532–568.

[5] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and
free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press
Oxford University Press, New York, 2000.

[6] L. Ambrosio and S. Masnou, A direct variational approach to a problem arising
in image reconstruction, Interfaces Free Bound., 5 (2003), pp. 63–81.

[7] , On a variational problem arising in image reconstruction, in Free boundary
problems (Trento, 2002), vol. 147 of Internat. Ser. Numer. Math., Birkhäuser, Basel,
2004, pp. 17–26.

[8] G. Aubert and P. Kornprobst, Mathematical problems in image processing,
vol. 147 of Applied Mathematical Sciences, Springer, New York, second ed., 2006. Par-
tial differential equations and the calculus of variations, With a foreword by Olivier
Faugeras.

[9] G. Bellettini, V. Caselles, and M. Novaga, The total variation flow in RN , J.
Differential Equations, 184 (2002), pp. 475–525.

[10] G. Bellettini, V. Caselles, and M. Novaga, Explicit solutions of the eigenvalue
problem −div

(
Du
|Du|

)
= u in R2, SIAM J. Math. Anal., 36 (2005), pp. 1095–1129

(electronic).
[11] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J.

Imaging Sci., 3 (2010), pp. 492–526.
[12] K. Bredies, K. Kunisch, and T. Valkonen, Properties of L1-TGV2: the one-

dimensional case, J. Math. Anal. Appl., 398 (2013), pp. 438–454.
[13] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms,

with a new one, Multiscale Model. Simul., 4 (2005), pp. 490–530.
[14] V. Caselles, A. Chambolle, and M. Novaga, The discontinuity set of solutions

of the TV denoising problem and some extensions, Multiscale Model. Simul., 6 (2007),
pp. 879–894.

[15] , Regularity for solutions of the total variation denoising problem, Rev. Mat.
Iberoam., 27 (2011), pp. 233–252.

[16] A. Chambolle, An algorithm for total variation minimization and applications, J.
Math. Imaging Vision, 20 (2004), pp. 89–97. Special issue on mathematics and image
analysis.

[17] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization
and related problems, Numer. Math., 76 (1997), pp. 167–188.

[18] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex prob-
lems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[19] T. Chan, A. Marquina, and P. Mulet, High-order total variation-based image
restoration, SIAM J. Sci. Comput., 22 (2000), pp. 503–516.
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