R-VI. Polynomials

Po-Shen Loh

1 July 2004

1 Warm-Ups

1. Consider the cubic equation $a x^{3}+b x^{2}+c x+d=0$. The roots are

$$
\begin{aligned}
x & =\sqrt[3]{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)+\sqrt{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)^{2}+\left(\frac{c}{3 a}-\frac{b^{2}}{9 a^{2}}\right)^{3}}} \\
& +\sqrt[3]{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)-\sqrt{\left(\frac{-b^{3}}{27 a^{3}}+\frac{b c}{6 a^{2}}-\frac{d}{2 a}\right)^{2}+\left(\frac{c}{3 a}-\frac{b^{2}}{9 a^{2}}\right)^{3}}} \\
& -\frac{b}{3 a} .
\end{aligned}
$$

Prove that no such general formula exists for a quintic equation.

2 Theory

Thanks to Elgin Johnston (1997) for these theorems.
Rational Root Theorem Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with integer coefficients. Then any rational solution r / s (expressed in lowest terms) must have $r \mid a_{0}$ and $s \mid a_{n}$.

Descartes's Rule of Signs Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with real coefficients. Then the number of positive roots is equal to $N-2 k$, where N is the number of sign changes in the coefficient list (ignoring zeros), and k is some nonnegative integer.

Eisenstein's Irreducibility Criterion Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with integer coefficients and let q be a prime. If q is a factor of each of $a_{n-1}, a_{n-2}, \ldots, a_{0}$, but q is not a factor of a_{n}, and q^{2} is not a factor of a_{0}, then $p(x)$ is irreducible over the rationals.

Einstein's Theory of Relativity Unfortunately, this topic is beyond the scope of this program.
Gauss's Theorem If $p(x)$ has integer coefficients and $p(x)$ can be factored over the rationals, then $p(x)$ can be factored over the integers.

Lagrange Interpolation Suppose we want a degree- n polynomial that passes through a set of $n+1$ points: $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{n}$. Then the polynomial is:

$$
p(x)=\sum_{i=0}^{n} \frac{y_{i}}{\text { normalization }}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right),
$$

where the i-th "normalization" factor is the product of all the terms $\left(x_{i}-x_{j}\right)$ that have $j \neq i$.

3 Problems

Thanks to Elgin Johnston (1997) for most of these problems.

1. (Crux Math., June/July 1978) Show that $n^{4}-20 n^{2}+4$ is composite when n is any integer.

Solution: Factor as difference of two squares. Prove that neither factor can be ± 1.
2. (St. Petersburg City Math Olympiad 1998/14) Find all polynomials $P(x, y)$ in two variables such that for any x and $y, P(x+y, y-x)=P(x, y)$.
Solution: Clearly constant polynomials work. Also, $P(x, y)=P(x+y, y-x)=P(2 y,-2 x)=$ $P(16 x, 16 y)$. Suppose we have a nontrivial polynomial. Then on the unit circle, it is bounded because we can just look at the fixed coefficients. Yet along each ray $y=t x$, we get a polynomial whose translate has infinitely many zeros, so it must be constant. Hence P is constant along all rays, implying that P is bounded by its max on the unit circle, hence bounded everywhere. Now suppose maximum degree of y is N. Study the polynomial $P\left(z^{N+1}, z\right)$. The leading coeff of this is equal to the leading coeff of $P(x, y)$ when sorted with respect to x as more important. Since the z-poly is also bounded everywhere, it too must be constant, implying that the leading term is a constant.
3. (Putnam, May 1977) Determine all solutions of the system

$$
\begin{aligned}
x+y+z & =w \\
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} & =\frac{1}{w}
\end{aligned}
$$

Solution: Given solutions x, y, z, construct 3-degree polynomial $P(t)=(t-x)(t-y)(t-z)$. Then $P(t)=t^{3}-w t^{2}+A t-A w=\left(t^{2}+A\right)(t-w)$. In particular, roots are w and a pair of opposites.
4. (Crux Math., April 1979) Determine the triples of integers (x, y, z) satisfying the equation

$$
x^{3}+y^{3}+z^{3}=(x+y+z)^{3} .
$$

Solution: Move z^{3} to RHS and factor as $x^{3} \pm y^{3}$. We get $(x+y)=0$ or $(y+z)(z+x)=0$. So two are opposites.
5. (USSR Olympiad) Prove that the fraction $\left(n^{3}+2 n\right) /\left(n^{4}+3 n^{2}+1\right)$ is in lowest terms for every positive integer n.
Solution: Use Euclidean algorithm for GCD. $\left(n^{3}+2 n\right) n=n^{4}+2 n^{2}$, so difference to denominator is $n^{2}+1$. Yet that's relatively prime to $n\left(n^{2}+2\right)$.
6. (Po, 2004) Prove that $x^{4}-x^{3}-3 x^{2}+5 x+1$ is irreducible.

Solution: Eisenstein with substitution $x \mapsto x+1$.
7. (Canadian Olympiad, 1970) Let $P(x)$ be a polynomial with integral coefficients. Suppose there exist four distinct integers a, b, c, d with $P(a)=P(b)=P(c)=P(d)=5$. Prove that there is no integer k with $P(k)=8$.
Solution: Drop it down to 4 zeros, and check whether one value can be 3. Factor as $P(x)=$ $(x-a)(x-b)(x-c)(x-d) R(x)$; then substitute k. 3 is prime, but we'll get at most two ± 1 terms from the $(x-\alpha)$ product.
8. (Monthly, October 1962) Prove that every polynomial over the complex numbers has a nonzero polynomial multiple whose exponents are all divisible by 10^{9}.
Solution: Factor polynomial as $a\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{n}\right)$. Then the desired polynomial is $a\left(x^{P}-r_{1}^{P}\right) \cdots\left(x^{P}-r_{n}^{P}\right)$, where $P=10^{9}$. Each factor divides the corresponding factor.
9. (Elgin, MOP 1997) For which n is the polynomial $1+x^{2}+x^{4}+\cdots+x^{2 n-2}$ divisible by the polynomial $1+x+x^{2}+\cdots+x^{n-1} ?$
Solution: Observe:

$$
\begin{aligned}
\left(x^{2}-1\right)\left(1+x^{2}+x^{4}+\cdots+x^{2 n-2}\right) & =x^{2 n}-1 \\
(x-1)\left(1+x+x^{2}+\cdots+x^{n-1}\right) & =x^{n}-1 \\
(x+1)\left(1+x^{2}+x^{4}+\cdots+x^{2 n-2}\right) & =\left(x^{n}+1\right)\left(1+x+x^{2}+\cdots+x^{n-1}\right) .
\end{aligned}
$$

So if the quotient is $Q(x)$, then $Q(x)(x+1)=x^{n}+1$. This happens iff -1 is a root of $x^{n}+1$, which is iff n is odd.
10. (Czech-Slovak Match, 1998/1) A polynomial $P(x)$ of degree $n \geq 5$ with integer coefficients and n distinct integer roots is given. Find all integer roots of $P(P(x))$ given that 0 is a root of $P(x)$.
Solution: Answer: just the roots of $P(x)$. Proof: write $P(x)=x\left(x-r_{1}\right)\left(x-r_{2}\right) \cdots\left(x-r_{N}\right)$. Suppose we have another integer root r; then $r\left(r-r_{1}\right) \cdots\left(r-r_{N}\right)=r_{k}$ for some k. Since degree is at least 5 , this means that we have $2 r\left(r-r_{k}\right)$ dividing r_{k}. Simple analysis shows that r is between 0 and r_{k}; more analysis shows that we just need to defuse the case of $2 a b \mid a+b$. Assume $a \leq b$. Now if $a=1$, only solution is $b=1$, but then we already used ± 1 in the factors, so we actually have to have $12 r\left(r-r_{k}\right)$ dividing r_{k}, no good. If $a>1$, then $2 a b>2 b \geq a+b$, contradiction.
11. (Hungarian Olympiad, 1899) Let r and s be the roots of

$$
x^{2}-(a+d) x+(a d-b c)=0
$$

Prove that r^{3} and s^{3} are the roots of

$$
y^{2}-\left(a^{3}+d^{3}+3 a b c+3 b c d\right) y+(a d-b c)^{3}=0
$$

Hint: use Linear Algebra.
Solution: r and s are the eigenvalues of the matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

The y equation is the characteristic polynomial of the cube of that matrix.
12. (Hungarian Olympiad, 1981) Show that there is only one natural number n such that $2^{8}+2^{11}+2^{n}$ is a perfect square.
Solution: $2^{8}+2^{11}=48^{2}$. So, need to have 2^{n} as difference of squares $N^{2}-48^{2}$. Hence $(N+48)$, $(N-48)$ are both powers of 2 . Their difference is 96 . Difference between two powers of 2 is of the form $2^{M}\left(2^{N}-1\right)$. Uniquely set to $2^{7}-2^{5}$.
13. (MOP $97 / 9 / 3)$ Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a set of n distinct complex numbers, for some $n \geq 9$, exactly $n-3$ of which are real. Prove that there are at most two quadratic polynomials $f(z)$ with complex coefficients such that $f(S)=S$ (that is, f permutes the elements of S).
14. (MOP 97/9/1) Let $P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}$ be a nonzero polynomial with integer coefficients such that $P(r)=P(s)=0$ for some integers r and s, with $0<r<s$. Prove that $a_{k} \leq-s$ for some k.

