Combinatorics of sets

Po-Shen Loh

June 2013

1 Definitions

- An r-set is a set of size r.
- The set $\{1,2, \ldots, n\}$ is often denoted $[n]$.
- Given a set S, its power set 2^{S} is the collection of all subsets of S.
- A hypergraph is a set of vertices V, together with a collection $E \subset 2^{V}$ of subsets of V. The members of E are called hyperedges, or just edges for short.
- An r-uniform hypergraph is a hypergraph in which all edges have are r-subsets of V. Note that a 2 -uniform hypergraph is just a graph.
- If $U \subset V$, the sub-hypergraph $H[U]$ of H induced by U is the hypergraph with vertex set U, together with all edges of the original H which were completely contained within U.
- An independent set in a hypergraph is a collection of vertices which induces no edges.

2 Problems and famous results

1. Let \mathcal{F} be a collection of subsets A_{1}, A_{2}, \ldots of $\{1, \ldots, n\}$, such that for each $i \neq j, A_{i} \cap A_{j} \neq \emptyset$. Prove that \mathcal{F} has size at most 2^{n-1}.
Solution: For each set $S \in 2^{[n]}$, observe that at most one of S and \bar{S} is contained in \mathcal{F}.
2. Suppose that \mathcal{F} above has size exactly 2^{n-1}. Must there be a common element $x \in\{1, \ldots, n\}$ which is contained by every A_{i} ?
Solution: No. First, observe that in [3], one can create an intersecting family with the four sets $\{1,2\},\{2,3\},\{3,1\}$, and $\{1,2,3\}$. Then for every $n \geq 3$, one can blow up this construction by taking all sets S which are obtained by taking the union of one of these 4 sets together with an arbitrary subset of $\{4, \ldots, n\}$.
3. (Sauer-Shelah.) A family \mathcal{F} shatters a set A if for every $B \subset A$, there is $F \in \mathcal{F}$ such that $F \cap A=B$. Prove that if $\mathcal{F} \subset 2^{[n]}$ and $|\mathcal{F}|>\binom{n}{0}+\cdots+\binom{n}{k}$, then there is a set $A \subset[n]$ of size $k+1$ such that \mathcal{F} shatters A.
Solution: Compressions: show that if a set family has no shattered subset of size t, then after compressing, it still has no shattered subset of size t. To visualize this, a shattered subset S of size t is specified by a collection of t elementary basis vectors in the hypercube, and the plane P determined by the 2^{t} vectors in their span. Now, consider the orthogonal complement of P, and imagine partitioning the entire hypercube into $|P|$ fibers, each of which is running orthogonally into P. The shattering means that each of the fibers contains some point in the set family. Now a compression is a wind which blows in one dimension. If the wind blows orthogonally to P, and S is shattered, then it is clear that
S was also shattered before. Also, if the wind blows parallel to P, and S is now shattered, then it is also clear that S was shattered before. Therefore, we may assume that all compressions have been completed, and now if a set is in the family, all of its subsets are as well. This forces there to be a set of size $k+1$.
4. (Erdős-Ko-Rado.) Let \mathcal{F} be a collection of distinct r-subsets of $[n]$, with the property that every pair of subsets $A, B \in \mathcal{F}$ intersects. Prove that $|\mathcal{F}| \leq\binom{ n-1}{r-1}$ whenever $n \geq 2 r$.
5. (Putnam 1956/A7.) Call an integer $0 \leq r \leq 1000$ strange if the number of r-subsets of $\{1, \ldots, 1000\}$ is odd. Prove that the number of strange integers is a power of 2. (To make this an AIME problem: how many strange integers are there?)
Solution: Lucas's theorem: it is going to be 2 raised to the power which is equal to the number of 1 's in the binary expansion of 1000 .
6. (From Peter Winkler.) The 53 MOPpers were divided into 7 teams for Team Contest 1. They were then divided into 6 teams for Team Contest 2. Prove that there must be a MOPper for whom the size of her team in Contest 2 was strictly larger than the size of her team in Contest 1.
Solution: In Contest 1, suppose the team breakdown was $s_{1}+\cdots+s_{7}=60$. Then in the i-th team, with s_{i} people, say that each person did $\frac{1}{s_{i}}$ of the work. Similarly, in Contest 2, account equally for the work within each team, giving scores of $\frac{1}{s_{i}^{\prime}}$.
However, the total amount of work done by all people in Contest 1 was then exactly 7, and the total amount of work done by all people in Contest 2 was exactly 6 . So somebody must have done strictly less work in Contest 2. That person saw

$$
\frac{1}{s_{i}^{\prime}}<\frac{1}{s_{i}}
$$

i.e., the size of that person's team on Contest 2 was strictly larger than her team size on Contest 1.
7. Let \mathcal{F} be a collection of r-subsets of $[n]$, and let $t=|\mathcal{F}| / n$. Then there is always a set $S \subset[n]$ of size at least $n /\left(4 t^{\frac{1}{r-1}}\right)$, which does not completely contain any member of \mathcal{F}.
8. (Turán.) Let G be an n-vertex graph with average degree d. Then it contains an independent set of size at least $\frac{n}{d+1}$, and this is tight.
9. (Oddtown.) Let \mathcal{F} be a collection of distinct subsets of $2^{[n]}$ such that every $A \in \mathcal{F}$ has size which is nonzero modulo 2 , but every pair of distinct $A, B \in \mathcal{F}$ has intersection size which is zero modulo 2 . Prove that $|\mathcal{F}| \leq n$.
10. (Open.) What if 2 is replaced by 6 ?
11. (Folklore.) The chromatic number χ of a hypergraph H is the minimum integer k such that it is possible to assign a color from $[k]$ to each vertex of H, with no edge having all of its vertices in the same color. Prove that if $\chi>2$, then H must have two edges which intersect in exactly one vertex.
12. (L.) An r-tree is an r-uniform hypergraph created in the following way: starting with a single hyperedge of size r, repeatedly add new hyperedges by selecting one existing vertex v, and adding $r-1$ new vertices, together with a new hyperedge through v and the $r-1$ new vertices. Let T be an arbitrary r-tree with t edges. Observe that T will always have exactly $1+(r-1) t$ vertices. Prove that every r-uniform hypergraph H with chromatic number $\chi>t$ must contain T as a sub-hypergraph.
13. (TST $2005 / 1$.) Let n be an integer greater than 1 . For a positive integer m, let $X_{m}=\{1,2, \ldots, m n\}$. Suppose that there exists a family \mathcal{F} of $2 n$ subsets of X_{m} such that:
(a) each member of \mathcal{F} is an m-element subset of X_{m};
(b) each pair of members of \mathcal{F} shares at most one common element;
(c) each element of X_{m} is contained in exactly 2 elements of \mathcal{F}.

Determine the maximum possible value of m in terms of n.
Solution: Count in two ways:

$$
\sum_{v}\binom{d_{v}}{2}=\# \text { set pairs intersect } \leq\binom{ 2 n}{2}
$$

But all $d_{v}=2$, so we have $m n \leq n(2 n-1)$, i.e., $m \leq 2 n-1$. Equality is possible: take $2 n$ lines in general position in \mathbb{R}^{2}, and let their $\binom{2 n}{2}=m n$ intersection points be the points.
14. (USAMO $2011 / 6$.) Let X be a set with $|X|=225$. Suppose further that there are eleven subsets A_{1}, \ldots, A_{11} of X such that $\left|A_{i}\right|=45$ for $1 \leq i \leq 11$ and $\left|A_{i} \cap A_{j}\right|=9$ for $1 \leq i<j \leq 11$. Prove that $\left|A_{1} \cup \cdots \cup A_{11}\right| \geq 165$, and give an example for which equality holds.
Solution: The $|X|=225$ condition is unnecessary. Count in two ways:

$$
\sum_{v \in X}\binom{d_{v}}{2}=\binom{11}{2} \cdot 9=495
$$

But also $\sum_{v \in X} d_{v}=11 \cdot 45=495$. This suggests that equality occurs when all $d_{v}=\binom{d_{v}}{2}$, which is precisely at $d_{v}=3$.
Indeed, by Cauchy-Schwarz, if we let Let $n=|X|$, we find

$$
\begin{aligned}
\left(\sum_{v \in X} 1 d_{v}\right)^{2} & \leq\left(\sum_{v \in X} 1\right)\left(\sum_{v \in X} d_{v}^{2}\right) \\
495^{2} & \leq n \cdot 3 \cdot 495
\end{aligned}
$$

where we deduced $\sum d_{v}^{2}=3 \cdot 495$ from $\sum\binom{d_{v}}{2}$ and $\sum d_{v}$. We conclude that $n \geq 165$.
For the construction, take 11 planes in general position in \mathbb{R}^{3}, and let their $\binom{11}{3}=165$ points of intersection be the points in the set.

