Combinatorics of sets

Po-Shen Loh

June 2013

1 Definitions

- An r-set is a set of size r.
- The set $\{1, 2, \ldots, n\}$ is often denoted [n].
- Given a set S, its power set 2^S is the collection of all subsets of S.
- A hypergraph is a set of vertices V, together with a collection $E \subset 2^V$ of subsets of V. The members of E are called hyperedges, or just edges for short.
- An r-uniform hypergraph is a hypergraph in which all edges have are r-subsets of V. Note that a 2-uniform hypergraph is just a graph.
- If $U \subset V$, the sub-hypergraph H[U] of H induced by U is the hypergraph with vertex set U, together with all edges of the original H which were completely contained within U.
- An independent set in a hypergraph is a collection of vertices which induces no edges.

2 Problems and famous results

1. Let \mathcal{F} be a collection of subsets A_1, A_2, \ldots of $\{1, \ldots, n\}$, such that for each $i \neq j$, $A_i \cap A_j \neq \emptyset$. Prove that \mathcal{F} has size at most 2^{n-1} .

Solution: For each set $S \in 2^{[n]}$, observe that at most one of S and \overline{S} is contained in \mathcal{F} .

2. Suppose that \mathcal{F} above has size exactly 2^{n-1} . Must there be a common element $x \in \{1, \ldots, n\}$ which is contained by every A_i ?

Solution: No. First, observe that in [3], one can create an intersecting family with the four sets $\{1, 2\}, \{2, 3\}, \{3, 1\}, \text{ and } \{1, 2, 3\}$. Then for every $n \ge 3$, one can blow up this construction by taking all sets S which are obtained by taking the union of one of these 4 sets together with an arbitrary subset of $\{4, \ldots, n\}$.

3. (Sauer-Shelah.) A family \mathcal{F} shatters a set A if for every $B \subset A$, there is $F \in \mathcal{F}$ such that $F \cap A = B$. Prove that if $\mathcal{F} \subset 2^{[n]}$ and $|\mathcal{F}| > {n \choose 0} + \cdots + {n \choose k}$, then there is a set $A \subset [n]$ of size k + 1 such that \mathcal{F} shatters A.

Solution: Compressions: show that if a set family has no shattered subset of size t, then after compressing, it still has no shattered subset of size t. To visualize this, a shattered subset S of size t is specified by a collection of t elementary basis vectors in the hypercube, and the plane P determined by the 2^t vectors in their span. Now, consider the orthogonal complement of P, and imagine partitioning the entire hypercube into |P| fibers, each of which is running orthogonally into P. The shattering means that each of the fibers contains some point in the set family. Now a compression is a wind which blows in one dimension. If the wind blows orthogonally to P, and S is shattered, then it is clear that

S was also shattered before. Also, if the wind blows parallel to P, and S is now shattered, then it is also clear that S was shattered before. Therefore, we may assume that all compressions have been completed, and now if a set is in the family, all of its subsets are as well. This forces there to be a set of size k + 1.

- 4. (Erdős-Ko-Rado.) Let \mathcal{F} be a collection of distinct *r*-subsets of [n], with the property that every pair of subsets $A, B \in \mathcal{F}$ intersects. Prove that $|\mathcal{F}| \leq \binom{n-1}{r-1}$ whenever $n \geq 2r$.
- 5. (Putnam 1956/A7.) Call an integer $0 \le r \le 1000$ strange if the number of r-subsets of $\{1, \ldots, 1000\}$ is odd. Prove that the number of strange integers is a power of 2. (To make this an AIME problem: how many strange integers are there?)

Solution: Lucas's theorem: it is going to be 2 raised to the power which is equal to the number of 1's in the binary expansion of 1000.

6. (From Peter Winkler.) The 53 MOPpers were divided into 7 teams for Team Contest 1. They were then divided into 6 teams for Team Contest 2. Prove that there must be a MOPper for whom the size of her team in Contest 2 was strictly larger than the size of her team in Contest 1.

Solution: In Contest 1, suppose the team breakdown was $s_1 + \cdots + s_7 = 60$. Then in the *i*-th team, with s_i people, say that each person did $\frac{1}{s_i}$ of the work. Similarly, in Contest 2, account equally for the work within each team, giving scores of $\frac{1}{s_i'}$.

However, the total amount of work done by all people in Contest 1 was then exactly 7, and the total amount of work done by all people in Contest 2 was exactly 6. So somebody must have done strictly less work in Contest 2. That person saw

$$\frac{1}{s_i'} < \frac{1}{s_i} \,,$$

i.e., the size of that person's team on Contest 2 was strictly larger than her team size on Contest 1.

- 7. Let \mathcal{F} be a collection of r-subsets of [n], and let $t = |\mathcal{F}|/n$. Then there is always a set $S \subset [n]$ of size at least $n/(4t^{\frac{1}{r-1}})$, which does not completely contain any member of \mathcal{F} .
- 8. (Turán.) Let G be an n-vertex graph with average degree d. Then it contains an independent set of size at least $\frac{n}{d+1}$, and this is tight.
- 9. (Oddtown.) Let \mathcal{F} be a collection of distinct subsets of $2^{[n]}$ such that every $A \in \mathcal{F}$ has size which is nonzero modulo 2, but every pair of distinct $A, B \in \mathcal{F}$ has intersection size which is zero modulo 2. Prove that $|\mathcal{F}| \leq n$.
- 10. (Open.) What if 2 is replaced by 6?
- 11. (Folklore.) The chromatic number χ of a hypergraph H is the minimum integer k such that it is possible to assign a color from [k] to each vertex of H, with no edge having all of its vertices in the same color. Prove that if $\chi > 2$, then H must have two edges which intersect in exactly one vertex.
- 12. (L.) An *r*-tree is an *r*-uniform hypergraph created in the following way: starting with a single hyperedge of size *r*, repeatedly add new hyperedges by selecting one existing vertex *v*, and adding r-1 new vertices, together with a new hyperedge through *v* and the r-1 new vertices. Let *T* be an arbitrary *r*-tree with *t* edges. Observe that *T* will always have exactly 1 + (r-1)t vertices. Prove that every *r*-uniform hypergraph *H* with chromatic number $\chi > t$ must contain *T* as a sub-hypergraph.
- 13. (TST 2005/1.) Let n be an integer greater than 1. For a positive integer m, let $X_m = \{1, 2, ..., mn\}$. Suppose that there exists a family \mathcal{F} of 2n subsets of X_m such that:
 - (a) each member of \mathcal{F} is an *m*-element subset of X_m ;

- (b) each pair of members of \mathcal{F} shares at most one common element;
- (c) each element of X_m is contained in exactly 2 elements of \mathcal{F} .

Determine the maximum possible value of m in terms of n.

Solution: Count in two ways:

$$\sum_{v} \binom{d_v}{2} = \# \text{ set pairs intersect} \le \binom{2n}{2}.$$

But all $d_v = 2$, so we have $mn \le n(2n-1)$, i.e., $m \le 2n-1$. Equality is possible: take 2n lines in general position in \mathbb{R}^2 , and let their $\binom{2n}{2} = mn$ intersection points be the points.

14. (USAMO 2011/6.) Let X be a set with |X| = 225. Suppose further that there are eleven subsets A_1, \ldots, A_{11} of X such that $|A_i| = 45$ for $1 \le i \le 11$ and $|A_i \cap A_j| = 9$ for $1 \le i < j \le 11$. Prove that $|A_1 \cup \cdots \cup A_{11}| \ge 165$, and give an example for which equality holds.

Solution: The |X| = 225 condition is unnecessary. Count in two ways:

$$\sum_{v \in X} \binom{d_v}{2} = \binom{11}{2} \cdot 9 = 495.$$

But also $\sum_{v \in X} d_v = 11 \cdot 45 = 495$. This suggests that equality occurs when all $d_v = \binom{d_v}{2}$, which is precisely at $d_v = 3$.

Indeed, by Cauchy-Schwarz, if we let Let n = |X|, we find

$$\left(\sum_{v \in X} 1d_v\right)^2 \le \left(\sum_{v \in X} 1\right) \left(\sum_{v \in X} d_v^2\right)$$
$$495^2 \le n \cdot 3 \cdot 495,$$

where we deduced $\sum d_v^2 = 3 \cdot 495$ from $\sum {\binom{d_v}{2}}$ and $\sum d_v$. We conclude that $n \ge 165$.

For the construction, take 11 planes in general position in \mathbb{R}^3 , and let their $\binom{11}{3} = 165$ points of intersection be the points in the set.