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At first, graph theory may seem to be an ad hoc subject, and in fact the elementary results have proofs
of that nature. The methods recur, however, and the way to learn them is to work on problems. Later, when
you see an Olympiad graph theory problem, hopefully you will be sufficiently familiar with graph-theoretic
arguments that you can rely on your own ingenuity to invent an approach.

1 Warm-up

1. Are these two graphs the same?

Solution: No. The Petersen graph (to the left) has no cycles of length 4.

2. There are 21 friends at a party. Each person counts how many of the other people are he/she has met
before. Is it possible for the sum of these counts to be an odd number?

3. Show that every graph has at least two vertices with equal degree.

Solution: Pigeonhole: all degrees between 0 and n− 1, but if we have a 0, we cannot have an n− 1.
So there are n− 1 available degrees and n vertices.

2 Terminology

Definition. A graph G = (V,E) is a collection V of vertices and E ⊂ V × V of edges.

Remark. Informally, we think of the edges as linking the pairs of vertices that they correspond to, and
typically represents graphs by drawings in which we connect the endpoints by a curve.

Another remark. If every edge links a unique pair of distinct vertices, then we say that the graph is
simple. Most of our work will be with simple graphs, so we usually will not point this out.

Glossary of terms.

• Two vertices are adjacent if there is an edge that has them as endpoints.
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• A graph is bipartite if the vertex set can be partitioned into two sets V1 ∪ V2 such that edges only run
between V1 and V2.

• The chromatic number of a graph is the minimum number of colors needed to color the vertices without
giving the same color to any two adjacent vertices.

• A clique on n vertices, denoted Kn, is the n-vertex graph with all
(
n
2

)
possible edges.

• A complete graph on n vertices, denoted Kn, is the n-vertex graph with all
(
n
2

)
possible edges.

• A graph is connected if there is a path between every pair of distinct vertices.

• A cycle is a path for which the first and last vertices are actually adjacent.

• The degree d(v) of a vertex v is the number of edges that are incident to v.

• An Eulerian circuit is a walk that traverses every edge exactly once, and returns to its starting point.

• A forest is a not-necessarily-connected graph with no cycles. See also the definition of tree below.

• If U is a subset of the vertices, then the induced subgraph G[U ] is the graph obtained by deleting all
vertices outside U , keeping only edges with both endpoints in U .

• A Hamiltonian path is a path that includes every vertex. A Hamiltonian cycle is a cycle that includes
every vertex.

• We say that an edge e is incident to a vertex v if v is an endpoint of e.

• A path is a sequence of distinct, pairwise-adjacent vertices. See also the definition of walk below.

• A graph is planar if it is possible to draw it in the plane without any crossing edges.

• A tree is a connected graph with no cycles. See also the definition of forest above.

• A walk is a sequence of not-necessarily-distinct, pairwise-adjacent vertices. See also the definition of
path above.

3 Classical results

1. The sum of all of the degrees is equal to twice the number of edges.

Solution: By counting in two ways, we see that the sum of all degrees equals twice the number of
edges.

2. Every bipartite graph has chromatic number ≤ 2.

3. Every n-vertex tree has exactly n− 1 edges.

4. Every connected graph contains a spanning tree, i.e., a tree which includes every vertex.

5. Every connected graph with all degrees even has an Eulerian circuit, i.e., a walk that traverses each
edge exactly once.

Solution: Start walking from a vertex v1 without repeating any edges, and observe that by the
parity condition, the walk can only get stuck at v1, so we get one cycle. If we still have more edges left
to hit, connectivity implies that some vertex v2 on our current walk is adjacent to an unused edge, so
start the process again from v2. Splice the two walks together at v2, and repeat until done.
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6. (Dirac.) Let G be a graph on n vertices with all degrees at least n/2. Show that G has a Hamiltonian
cycle.

Solution: Suppose the longest path has t vertices x1, . . . , xt. We will show there is a cycle of t
vertices as well. Suppose not. All neighbors of x1 and xt must lie on the path or else it is not longest.
Minimum degree condition implies that both have degree ≥ t/2. But if x1 ∼ xk, then xt 6∼ xk−1 or
else we can re-route to get a cycle. So, each of x1’s t/2 neighbors on the path prohibit a potential
neighbor of xt. Yet xt’s neighbors come from indices 1 . . . t− 1, so there is not enough space for xt to
have t/2 neighbors there, avoiding the prohibited ones.

Now if this longest path is not the full n vertices, then we get a cycle C missing some vertex x. But
min-degree n/2 implies that the graph is connected (smallest connected component is n/2+1), so there
is a shortest path from x to C, and adding this to the cycle gives a longer path than t, contradiction.

7. (Hall’s Marriage Theorem.) For any set S ⊂ A, let N(S) denote the set of vertices (necessarily in B)
which are adjacent to at least one vertex in S. Then, A has a perfect matching to B if and only if
|N(S)| ≥ |S| for every S ⊂ A.

8. (Euler characteristic.) Every connected planar graph satisfies V −E + F = 2, where V is the number
of vertices, E is the number of edges, and F is the number of faces.

9. (Kuratowski.) A graph is planar if and only if it contains no subdivision of K5 or K3,3.

10. (Four color theorem.) Every planar graph can be properly colored using at most 4 colors.

11. (Vizing.) If the maximum degree of a graph is ∆, then at least ∆ colors are required to properly color
its edges, but ∆ + 1 colors are sufficient.

12. (Turán.) For r ≥ 3, the Turán graph Tr−1(n), with r − 1 parts of as equal size as possible, and all
edges between distinct parts, is the unique n-vertex graph with the maximum number of edges subject
to having no Kr subgraphs.

4 Well-known facts

1. Let G be a graph. It is possible to partition the vertices into two groups such that for each vertex, at
least half of its neighbors ended up in the other group.

Solution: Take a max-cut: the bipartition which maximizes the number of crossing edges.

2. Let δ be the minimum degree of G, and suppose that δ ≥ 2. Then G contains a cycle of size ≥ δ + 1.
In particular, it contains a path with ≥ δ edges.

Solution: Take a longest path. Let v be its last endpoint. By maximality, every one of v’s ≥ δ
neighbors lie on the path. So path has length ≥ δ + 1.

3. Consider a graph where every vertex has degree exactly 2k. Show that it is possible to orient each
edge such that the maximum in-degree is exactly k.

Solution: Direct along an Eulerian circuit.

4. Every k-regular bipartite graph can have its edges partitioned into k edge-disjoint perfect matchings.

Solution: Suffices to find one perfect matching. Every set S expands because it has k edges out,
and each vertex on the other side can only absorb up to k of them in.

5. (Petersen, 1891.) A 2-factor of a graph is a 2-regular spanning subgraph (i.e., containing all vertices,
and having all degrees equal to 2). For every positive integer k, show that every 2k-regular graph can
be partitioned into k edge-disjoint 2-factors.
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Solution: Suffices to find one 2-factor. Take an Eulerian orientation. Split each vertex v into
v+, v−. This gives a bipartite graph with twice as many vertices. If there was an edge −→vw, now put
it from v− to w+. It is a k-regular bipartite graph, so it has a perfect matching by above. Collapsing
back the v+, v−, we get a 2-factor.

6. (Sperner.) An antichain in the lattice of subsets 2[n] is a collection F of subsets of {1, 2, . . . , n} such
that no subset in F completely contains the other. Prove that the size of the largest antichain is(

n
bn/2c

)
.

Solution: We can partition the entire lattice into that many chains. To see this, start from the
bottom, and go up to level bn/2c. At each step, when we go up, we need to find a perfect matching
from the lower layer to the upper layer which sends sets to supersets. This is a regular bipartite graph,
and since degrees in the lower layer are ≥ degrees in the upper layer, we can always proceed.

7. (Birkhoff, Von Neumann.) Let A be a square n × n matrix of nonnegative integers, in which each
row and column sum up to the positive integer m. Prove that A can be expressed as a sum of m
permutation matrices A = P1 + · · ·Pm. Here, a permutation matrix is an n × n matrix of zeros and
ones, such that each row contains a single “1”, and each column contains a single “1.”

Solution: Pull out permutation matrices inductively via Hall’s theorem. LHS is the rows, RHS is
the columns, and there is an edge between i on the LHS and j on the RHS if aij , the (i, j) entry of A,
is > 0. Actually, write the number aij next to that edge.

For any subset S of the LHS, note that the sum of all numbers on edges coming out of S is precisely
m|S|. But those edges are a subset of the edges coming out of N(S), so their sum is ≤ m|N(S)|. Thus
|N(S)| ≥ |S| for any S.

8. Every planar graph can be properly colored using at most 6 colors.

Solution: Since E ≤ 3V − 6 for connected planar graphs, they are 5-degenerate.

9. Every tournament (complete graph with every edge oriented in one of the two directions) contains a
vertex of degree at least n−1

2 .

10. Every graph G with average degree d contains a subgraph H such that all vertices of H have degree
at least d/2 (with respect to H).

Solution: Condition on G is that the number of edges is at least nd/2. If there is a vertex with
degree < d/2, then delete it, and it costs 1 vertex and < d/2 edges, so the condition is preserved. But
it can’t go on forever, because once there is 1 vertex left, average degree is 0.

5 Problems

1. (Romania, 2006.) Each edge of a polyhedron is oriented with an arrow such that every vertex has at
least one edge directed toward it, and at least one edge directed away from it. Show that some face of
the polyhedron has its boundary edges coherently oriented in a circular direction.

Solution: A directed cycle in the graph exists by simply following out-edges until we repeat vertices.
Take a shortest directed cycle. If this is not a face, then it has a chord. Yet no matter which way the
chord is oriented, one of the two sub-cycles will be strictly shorter, and still be coherent.

2. (Hungary 2010.) There were n people at a party. Sometimes three persons played a game of cards.
At the end of the party it turned out that any three persons played in at most one game together and
any two persons played exactly twice together. For which values of n is this possible if 3 < n < 9?

Solution: Answer: for n = 4, 6, 7. We are covering each edge of Kn twice with triangles. Thus we
must have 3 | n(n−1), which leaves only the three options above. It remains to find the constructions.
For n = 4, it suffices to take every one of the 4 possible triangles.
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For n = 6, we will need 10 triangles. Start with the “Cayley” triangles (x, x+ 1, x+ 3), identifying the
vertices with Z6 and using all 6 starting points x. This has the effect of covering every edge exactly
once, except for the 3 main diagonals, which are double-covered already. To hit the rest, use the three
triangles (0, 1, 2), (2, 3, 4), and (4, 5, 0), and the triangle (1, 3, 5).

For n = 7, we will need 14 triangles. Use the Cayley triangles (x, x+ 1, x+ 3) and (x, x− 1, x− 3).

3. (Belarus 2010/C7.) Let n ≥ 3 distinct points be marked on a plane so that no three of them lie on the
same line. All points are connected with the segments. All segments are painted one of the four colors
so that if in some triangle (with the vertices at the marked points) two sides have the same color, then
all its sides have the same color (each of the four colors is used). What is the largest possible value of
n?

Solution: Answer: 9. This makes each color class an equivalence relation, so that each color class
is the vertex-disjoint union of cliques. Consider a maximal clique in color 1. It can’t be everybody, so
there’s someone else, v. Since it’s maximal, every edge from v to it has color not 1. But equivalence
classes, so the edges from v to it are all different colors. There are only 3 colors left. Thus the maximal
clique has order at most 3. In particular, every color class’s cliques are at most triangles, and hence
the maximum degree in each color class is at most 2.

There are only 4 colors, so the maximum degree is at most 8, and thus n ≤ 9. Construction for n = 9:
split the vertices into three triples for the first color class: (a1, a2, a3), (b1, b2, b3), (c1, c2, c3). Next
color class makes 3 cliques (ai, bi, ci) for constant i. Next color class makes 3 cliques (ai, bi+1, ci+2),
wrapping mod 3. Fourth color class makes 3 cliques (ai, bi+2, ci+4), wrapping mod 3.

4. (Sweden 2010.) A town has 3n citizens. Any two persons in the town have at least one common friend
in this same town. Show that one can choose a group consisting of n citizens such that every person
of the remaining 2n citizens has at least one friend in this group of n.

Solution: The codegree condition implies that the diameter of the graph is at most 2. We prove
that every n-vertex graph with diameter ≤ 2 has a dominating set (a subset S of vertices such that
every other vertex is either in, or has a neighbor in S) of size only ≤

√
n log n + 1. To see this, let

p =
√

logn
n .

Observe that since the diameter is at most 2, if any vertex has degree ≤ np, then its neighborhood
already is a dominating set of suitable size. Therefore, we may assume that all vertices have degree
strictly greater than np. It feels “easy” to find a small dominating set in this graph because all degrees
are high. Consider a random sample of np vertices (selected uniformly at random, with replacement),
and let S be their union. Note that |S| ≤ np. Now the probability that a particular fixed vertex v fails
to have a neighbor in S is strictly less than (1− p)np, because we need each of np independent samples

to miss the neighborhood of v. This is at most e−np
2 ≤ e− logn = n−1. Therefore, a union bound over

the n choices of v produces the result.

5. (Sweden 2010.) Some of n students in a class (n ≥ 4) are friends. Any n− 1 students in the class can
form a circle so that any two students next to each other on the circle are friends, but all n students
cannot form a similar circle. Find the smallest possible value of n.

Solution: Answer: n = 10, the Petersen graph. It is well-known that the Petersen graph is not
Hamiltonian, but it is easy to see that if one deletes any vertex, one can find a Hamilton cycle. This
is easy to check by symmetry, because all outer vertices are the same, and all inner vertices are the
same.

To see why Petersen is not Hamiltonian, observe that it is two disjoint 5-vertex graphs linked by a
single perfect matching. Any Hamilton cycle must cross back and forth between the parts. If it just
goes across once, and then back, then on each side it must visit all 5 vertices in one go. Those are
paths of length 4, and it’s easy to see that if one takes 4 consecutive edges along the outer cycle, then
it doesn’t complete to an H-cycle. Otherwise, the H-path must go across, back, across, and back. It
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can’t do more times because there are only 5 matching edges. In this case, WLOG start with two
consecutive outer edges, and take forced moves until we are stuck without an H-cycle.

Now we must show that no n ≤ 9 will work. First key observation: if there is a vertex of degree
2 or less, then it’s impossible. Indeed, if so, then delete a neighbor of it; the remainder must be
Hamiltonian, but now this vertex has degree ≤ 1, contradiction. Thus the minimum degree is at least
3, which already disposes of all cases n ≤ 6.

Next observation: let v be the max-degree vertex. Since G−v is still Hamiltonian, take an H-cycle of the
remainder. If two adjacent vertices of the cycle are neighbors of v, then we can extend, contradiction.
So v’s neighbors on the cycle are separated by at least one vertex each.

For n = 7, we can’t have all degrees equal to 3, because the sum of degrees must be even. Thus there
is a degree-4 vertex. But the remainder cycle has 6 vertices, so it’s impossible to alternate. (Another
way to see that n = 7 fails: using an H-cycle from G− v, and then adding v, we get an H-path with v
as an endpoint, but the other endpoint has degree ≥ 3, and 4+3 ≥ n, so the Ore-type condition wins.)

For n = 8, the above alternating condition shows that it is over if there is a vertex of degree 4. Hence
the graph is 3-regular. Pull out a vertex, and look on the remaining 7-cycle. Add back its neighbors,
and there is actually only one way to do so with proper spacing. Then there are only 2 ways to complete
to a 3-regular graph, and in both cases the entire thing is Hamiltonian.

For n = 9, we can’t have all odd degrees, so there’s a vertex of degree 4. It must interact with the
remaining 8-cycle in exactly one way: alternating neighbors. Now the rest of the vertices on the 8-cycle
need degrees ≥ 3. Let A be the set of neighbors of v, and let B be the others. If two consecutive
(separated only by a single vertex of A) vertices of B are adjacent, then one can see that the whole thing
is Hamiltonian. If two opposite vertices of B are adjacent, then also the whole thing is Hamiltonian.
Thus the only way to relieve the degrees is to have the vertices of B adjacent to vertices of A that
they are not already adjacent to. And we can’t create any vertices of degree 5, or else done by failing
to alternate as above. Then there is exactly one way to make this graph, and already, all vertices of
A have degree 4 and all vertices of B have degree 3, and v has degree 4. No more edges can be added
because connecting two vertices of B wins already as above. Thus this is the whole graph. But deleting
any vertex of A we can see that the remainder is not Hamiltonian.

6. (Hungary 2010.) Prove that the edges of the complete graph with 2009 vertices can be labeled with
1, 2, . . . ,

(
2009
2

)
such that the sum of the labels corresponding to all edges having a given vertex is

different for any two vertices.

Solution: Let n = 2009. Consider the random labeling. Let u and v be two fixed vertices. The
label of the edge between u and v is irrelevant for the bad event that the label sums are equal at u
and v. Expose the n − 2 labels of edges from u to [n] \ {u, v}. Let their sum be S. Next we want to
expose the n− 2 labels of the edges from v to [n] \ {u, v}. It suffices to show that conditioned on the
n− 2 labels we already saw from u, their sum equals S with probability less than 1/

(
n
2

)
, because then

a union bound implies that there is a labeling that avoids all bad events.

Intuitively, the probability is actually of order n−5/2. To see this, suppose that the n− 2 new random
labels are sampled independently with replacement from the full set I = {1, . . . ,

(
n
2

)
}. If we sample

one integer from I, the variance is of order n4. Therefore, the variance of this slightly different sum
is of order n5, and since we are adding i.i.d. random variables, the distribution is “nice”, and the
probability that the sum is any particular number is of order at most n−5/2.

Now we formalize this. We make exactly n−3 i.i.d. samples from I. After this, we look to see whether
we ever got the same label multiple times, or if we repeated a label we saw from u. For each of these
occurrences, we re-sample uniformly from I until we find new labels, and ultimately build a set of n−3
distinct new labels. Finally, we repeat this procedure until we get a final new label, and that produces
a set of n − 2 labels which are distinct from those from u, while also uniformly distributed over all
possibilities.
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The first observation is that during the first round, the probability that we hit a repeat label is less
than (2n− 2)/

(
n
2

)
= 4

n . Therefore, the number of times we will have to resample in the second round

is stochastically dominated by Bin
[
n, 4

n

]
, and the probability that such a Binomial exceeds log n is at

most (
n

log n

)(
4

n

)logn

<

(
4e

log n

)logn

� n−3 .

Now note that success (getting a sum of exactly S) comes in one of two ways: (1) if the Binomial
exceeds log n, and then we get lucky, or (2) the Binomial stays below log n, the sum of the n− 3 labels
after the first round is within n2 log n of S, and then after the second round, the final label in the third
round makes the sum exactly S. The chance of winning from (1) is at most n−3 from above. The
chance of winning from (2) is at most the probability that the sum of the n − 3 labels after the first
round is within n2 log n of S, and the final label makes the sum exactly S.

We calculate this by multiplying upper bounds of the probabilities that (a) the first round sum is within
n2 log n of S and (b) the conditional probability that the third round label makes the sum exactly equal
to S. The latter probability is obviously at most 3

n2 because there is only one choice for it which would
make the sum S. The probability of (a) can be bounded by the Central Limit Theorem, because the
first round sum is precisely the sum of i.i.d. random variables with bounded second moment. So, by
the CLT, the probability that this sum lies within any given window of at most n2 log n, given that
the variance of the sum should be of order n5, is o(1).

7. (USAMO Awards 2012.) Find a 3-coloring of the edges of the dodecahedron.

Solution: First find a Hamilton cycle, and then use two colors alternating on it. The remainder is
a perfect matching.
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