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1 Problems

1. (Team contest 2012.) Prove that every simple planar graph can be oriented so that all out-degrees are
at most 3.

Solution: Every planar graph has the property that E < 3V . We seek a perfect matching from the
left in the following auxiliary bipartite graph. The left side has one vertex corresponding to each edge
of the planar graph. The right side has 3 copies of the original vertex set. We link a vertex of the left
(corresponding to an edge uv) to all 3 copies of each of u and v on the right.

Suppose the Hall condition fails, i.e., that there is a subset S of the left such that it has |N(S)| < |S|.
Let s = |S|, and note that |N(S)| = 3t for some integer t, because everything on the right is in
triplicate. This means that in our original graph, there is a subset of t vertices which spans at least
s > 3t edges, which is impossible.

2. (Sweden 2010.) A herd consists of 101 cows. Any 100 of them can be split into two groups of 50 cows
each such that the weights of the two groups are equal. Prove that all the cows have the same weight.

Solution: Let the weights of the cows be the vector x = (x1, . . . , x101)t. Then there is a particular
matrix A with entries from {0,±1} such that Ax = 0, and the structure of A is such that the main
diagonal is entirely 0, and in each row, the number of +1’s is exactly 50, and the number of −1’s is
exactly 50. Observe that the all-ones vector is in the null space of A. It suffices to show that the
dimension of the null space is exactly 1. Let n = 101.

To see this, consider the (n − 1) × (n − 1) upper left submatrix of A, and call this B. The structure
of B is such that it has all 0’s on the main diagonal, and every other entry is ±1. Its determinant
modulo 2 is precisely the same as the determinant of the matrix C = Jn−1 − In−1 over F2. Note that
C2 = J2

n−1 − 2Jn−1 + In−1 = In−1 because Jn−1 has even dimension. So C is non-singular, hence its
determinant over F2 is 1, hence its determinant over R is odd, hence nonzero.

Therefore, B has rank n−1, i.e., its column space has dimension n−1. Now turn B into an (n−1)×n
matrix B′ by adding back the rightmost column. This could only increase the dimension of the column
space, but the column space already has full rank, so the rank of B′ is n − 1. Therefore, the rank
of A is at least n − 1, and the dimension of the null space is exactly 1 as we already have found an
annihilating vector.

3. (Sweden 2010.) A town has 3n citizens. Any two persons in the town have at least one common friend
in this same town. Show that one can choose a group consisting of n citizens such that every person
of the remaining 2n citizens has at least one friend in this group of n.

Solution: The codegree condition implies that the diameter of the graph is at most 2. We prove
that every n-vertex graph with diameter ≤ 2 has a dominating set (a subset S of vertices such that
every other vertex is either in, or has a neighbor in S) of size only ≤

√
n log n + 1. To see this, let

p =
√

logn
n .
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Observe that since the diameter is at most 2, if any vertex has degree ≤ np, then its neighborhood
already is a dominating set of suitable size. Therefore, we may assume that all vertices have degree
strictly greater than np. It feels “easy” to find a small dominating set in this graph because all degrees
are high. Consider a random sample of np vertices (selected uniformly at random, with replacement),
and let S be their union. Note that |S| ≤ np. Now the probability that a particular fixed vertex v fails
to have a neighbor in S is strictly less than (1− p)np, because we need each of np independent samples

to miss the neighborhood of v. This is at most e−np
2 ≤ e− logn = n−1. Therefore, a union bound over

the n choices of v produces the result.

4. (Graham-Pollak.) If the edges of the complete graph Kn are partitioned into the disjoint union of m
complete bipartite graphs, then m ≥ n− 1.

5. (Belarus 2010, adapted.) A 6× 6 table is given, with some cells colored black and some colored white.
You can take any t × t square in the table, with 2 ≤ t ≤ 6, and invert all of the colors in the square.
You can do this as many times as you wish. Is it always possible to reach the all-black configuration?

Solution: Answer: no. The elementary operations do not span enough dimension in F36
2 . There

are 25 2 × 2 squares. Note that if we take the 4 3 × 3 squares inside a 4 × 4 region, then their sum
mod 2 is just the 4 corners. Then we can add in 4 2 × 2 squares, two filling the middle columns and
two filling the middle rows. This now gave a sum mod 2 with 1’s everywhere except the central 2× 2.
Adding that one on top, we find the all 1’s 4 × 4 square, which after adding the 4 2 × 2 squares that
cover it, give all-0. Therefore, if we already have all of the 2× 2 squares in our basis, we can generate
the 4th 3× 3 square in any 4× 4 area. So, we only need to take the top-left 3× 3 square, the 3 more
3× 3 squares along the top row, and the 3 more 3× 3 squares along the left side. From these we can
generate all the rest of the 3× 3 squares, and this has cost us only 7 generators.

A similar argument shows that 3 of the 5 × 5 squares in the table generate the fourth. All 4 × 4 and
6×6 squares can be generated from the 2×2 squares, so we are able to generate everything using only
25 + 7 + 3 = 35 < 36 vectors, and therefore cannot fill F36

2 .

6. (Sperner capacity of cyclic triangle, also Iran 2006.) Let A be a collection of vectors of length n from
Z3 with the property that for any two distinct vectors a, b ∈ A there is some coordinate i such that
bi = ai + 1, where addition is defined modulo 3. Prove that |A| ≤ 2n.

Solution: For each a ∈ A, define the Z3-polynomial fa(x) :=
∏n

i=1(xi − ai − 1). Observe that
this is multilinear. Clearly, for all a 6= b ∈ A, fa(b) = 0, and fa(a) 6= 0; therefore, the fa are linearly
independent, and bounded in cardinality by the dimension of the space of multilinear polynomials in
n variables, which is 2n.

7. Let A be an m×n matrix over F2, and let 1 be the m-element all-ones vector in Fm
2 . Then the matrix

equation Ax = 1 has no solution if and only if there is an odd number of row vectors in A whose sum
(over F2) is the zero vector.

Solution: The “if” direction is obvious, because the sum of the equations corresponding to those
special row vectors would yield 0 on the LHS, while the RHS would be 1, because the sum of an odd
number of 1’s is 1.

For the “only if” direction, suppose that the bulleted condition is not fulfilled; we will show that
there is a solution. Apply Gaussian Elimination, reducing the matrix [ A,1 ] to row-reduced-echelon
form. Note that this process replaces every row by a linear combination of the original rows. However,
over F2, linear combinations are simply sums of selected rows, because the only scalars are {0, 1}. By
our assumption, this process will never create a row that looks like [0, . . . , 0, 1], which is the only
obstruction to the existence of a solution. Therefore, a solution exists.

8. (Sutner; also Iran TST 1996 and Germany TST 2004.) Suppose that each of the vertices of a simple
graph is equipped with an indicator light and a button. Each vertex’s button simultaneously toggles
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the states of all of its neighbors, as well as its own state. Initially, all lights are off. Prove that it is
possible to turn on all of the lights.

Solution: Let A be the adjacency matrix plus the identity matrix, which is a matrix of zeroes and
ones which is symmetric (Aij = Aji for all i, j) such that Aii = 1 for all i. We show that there exists a
subset of the rows whose sum is a vector all of whose components are odd. Let a selection correspond
to a vector x over F2. A valid selection is a solution of ATx = 1, which is the same as Ax = 1 since
A is symmetric. Consider an odd collection of rows, say indexed by {r1, . . . , rt}. Create the t-vertex
graph G with adjacency matrix corresponding to the indices {r1, . . . , rt}, but not putting loops on each
vertex (as would have been required since all Aii = 1).

We need to show that the sum of this odd collection of rows is nonzero. But suppose it is zero. Then,
since each Ariri = 1, the graph G must have all degrees odd. However, G also has an odd number of
vertices, which is impossible! Therefore, the previous problem ensures that there is a solution.

9. (Gallai; also USAMO 2008/6.) The vertex set of any graph can be partitioned into two (possibly
empty) sets such that each set induces a subgraph with all degrees even.

Solution: Hint: for every vertex v of even degree, attach a brand new vertex v′ which
is adjacent only to it. Now all degrees are odd, hence all sets N(v) ∪ {v} are even, and so if X
is an odd-parity cover, then Xc is also an odd-parity cover. Immediately, we have that all degrees
within each X and Xc are even, but there are extra vertices, so we need to show that deleting the
extra vertices keeps all degrees even.

But every special pair {v, v′} as introduced above must be separated by any odd-parity cover, because
v′ has degree exactly 1. Therefore, if we restrict both of X and Xc to the original vertex set (simply
discarding the new vertices v′), all degrees will still be even.

10. (Sweden 2010.) Some of n students in a class (n ≥ 4) are friends. Any n− 1 students in the class can
form a circle so that any two students next to each other on the circle are friends, but all n students
cannot form a similar circle. Find the smallest possible value of n.

Solution: Answer: n = 10, the Petersen graph. It is well-known that the Petersen graph is not
Hamiltonian, but it is easy to see that if one deletes any vertex, one can find a Hamilton cycle. This
is easy to check by symmetry, because all outer vertices are the same, and all inner vertices are the
same.

To see why Petersen is not Hamiltonian, observe that it is two disjoint 5-vertex graphs linked by a
single perfect matching. Any Hamilton cycle must cross back and forth between the parts. If it just
goes across once, and then back, then on each side it must visit all 5 vertices in one go. Those are
paths of length 4, and it’s easy to see that if one takes 4 consecutive edges along the outer cycle, then
it doesn’t complete to an H-cycle. Otherwise, the H-path must go across, back, across, and back. It
can’t do more times because there are only 5 matching edges. In this case, WLOG start with two
consecutive outer edges, and take forced moves until we are stuck without an H-cycle.

Now we must show that no n ≤ 9 will work. First key observation: if there is a vertex of degree
2 or less, then it’s impossible. Indeed, if so, then delete a neighbor of it; the remainder must be
Hamiltonian, but now this vertex has degree ≤ 1, contradiction. Thus the minimum degree is at least
3, which already disposes of all cases n ≤ 6.

Next observation: let v be the max-degree vertex. Since G−v is still Hamiltonian, take an H-cycle of the
remainder. If two adjacent vertices of the cycle are neighbors of v, then we can extend, contradiction.
So v’s neighbors on the cycle are separated by at least one vertex each.

For n = 7, we can’t have all degrees equal to 3, because the sum of degrees must be even. Thus there
is a degree-4 vertex. But the remainder cycle has 6 vertices, so it’s impossible to alternate. (Another
way to see that n = 7 fails: using an H-cycle from G− v, and then adding v, we get an H-path with v
as an endpoint, but the other endpoint has degree ≥ 3, and 4+3 ≥ n, so the Ore-type condition wins.)
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For n = 8, the above alternating condition shows that it is over if there is a vertex of degree 4. Hence
the graph is 3-regular. Pull out a vertex, and look on the remaining 7-cycle. Add back its neighbors,
and there is actually only one way to do so with proper spacing. Then there are only 2 ways to complete
to a 3-regular graph, and in both cases the entire thing is Hamiltonian.

For n = 9, we can’t have all odd degrees, so there’s a vertex of degree 4. It must interact with the
remaining 8-cycle in exactly one way: alternating neighbors. Now the rest of the vertices on the 8-cycle
need degrees ≥ 3. Let A be the set of neighbors of v, and let B be the others. If two consecutive
(separated only by a single vertex of A) vertices of B are adjacent, then one can see that the whole thing
is Hamiltonian. If two opposite vertices of B are adjacent, then also the whole thing is Hamiltonian.
Thus the only way to relieve the degrees is to have the vertices of B adjacent to vertices of A that
they are not already adjacent to. And we can’t create any vertices of degree 5, or else done by failing
to alternate as above. Then there is exactly one way to make this graph, and already, all vertices of
A have degree 4 and all vertices of B have degree 3, and v has degree 4. No more edges can be added
because connecting two vertices of B wins already as above. Thus this is the whole graph. But deleting
any vertex of A we can see that the remainder is not Hamiltonian.

11. (Hungary 2010.) Prove that the edges of the complete graph with 2009 vertices can be labeled with
1, 2, . . . ,

(
2009
2

)
such that the sum of the labels corresponding to all edges having a given vertex is

different for any two vertices.

Solution: Let n = 2009. Consider the random labeling. Let u and v be two fixed vertices. The
label of the edge between u and v is irrelevant for the bad event that the label sums are equal at u
and v. Expose the n − 2 labels of edges from u to [n] \ {u, v}. Let their sum be S. Next we want to
expose the n− 2 labels of the edges from v to [n] \ {u, v}. It suffices to show that conditioned on the
n− 2 labels we already saw from u, their sum equals S with probability less than 1/

(
n
2

)
, because then

a union bound implies that there is a labeling that avoids all bad events.

Intuitively, the probability is actually of order n−5/2. To see this, suppose that the n− 2 new random
labels are sampled independently with replacement from the full set I = {1, . . . ,

(
n
2

)
}. If we sample

one integer from I, the variance is of order n4. Therefore, the variance of this slightly different sum
is of order n5, and since we are adding i.i.d. random variables, the distribution is “nice”, and the
probability that the sum is any particular number is of order at most n−5/2.

Now we formalize this. We make exactly n−3 i.i.d. samples from I. After this, we look to see whether
we ever got the same label multiple times, or if we repeated a label we saw from u. For each of these
occurrences, we re-sample uniformly from I until we find new labels, and ultimately build a set of n−3
distinct new labels. Finally, we repeat this procedure until we get a final new label, and that produces
a set of n − 2 labels which are distinct from those from u, while also uniformly distributed over all
possibilities.

The first observation is that during the first round, the probability that we hit a repeat label is less
than (2n− 2)/

(
n
2

)
= 4

n . Therefore, the number of times we will have to resample in the second round

is stochastically dominated by Bin
[
n, 4

n

]
, and the probability that such a Binomial exceeds log n is at

most (
n

log n

)(
4

n

)logn

<

(
4e

log n

)logn

� n−3 .

Now note that success (getting a sum of exactly S) comes in one of two ways: (1) if the Binomial
exceeds log n, and then we get lucky, or (2) the Binomial stays below log n, the sum of the n− 3 labels
after the first round is within n2 log n of S, and then after the second round, the final label in the third
round makes the sum exactly S. The chance of winning from (1) is at most n−3 from above. The
chance of winning from (2) is at most the probability that the sum of the n − 3 labels after the first
round is within n2 log n of S, and the final label makes the sum exactly S.

We calculate this by multiplying upper bounds of the probabilities that (a) the first round sum is within
n2 log n of S and (b) the conditional probability that the third round label makes the sum exactly equal
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to S. The latter probability is obviously at most 3
n2 because there is only one choice for it which would

make the sum S. The probability of (a) can be bounded by the Central Limit Theorem, because the
first round sum is precisely the sum of i.i.d. random variables with bounded second moment. So, by
the CLT, the probability that this sum lies within any given window of at most n2 log n, given that
the variance of the sum should be of order n5, is o(1).

12. (Sweden 2010.) The numbers 1, 2, . . . , n2 are placed randomly in an n× n table. Prove that there are
two adjacent cells (in a row or a column) such that the numbers in them differ by at least n.

Solution: Isoperimetric inequality. Consider where the numbers 1, 2, . . . , t have been placed. Look
on all squares that are adjacent to these (the “vertex” expansion). If the number of such squares is at
least n, then immediately we know that by the time t+ 1, . . . , t+ n are placed, in particular the t+ n
one must be close to a square with a number ≤ t (like a pigeonhole type of idea). The key transition

point is when t = n(n−1)
2 . At this point, the boundary must have at least n squares.

Some ideas on how to show this: you can compress the hit squares toward the left, and only reduce the
boundary. You can then compress all hit squares down, and only reduce the boundary. Now we have
a staircase pattern. Let the nonzero rows have a1 ≥ a2 ≥ · · · ≥ am hit squares. Any ai which is not
the full n can contribute +1 to the boundary (at its right end). Also, if ai > ai+1, then we contribute
ai − ai+1. These can be reconciled by saying that the boundary is the sum of all ai − ai+1, adding
another +1 for every pair with ai = ai+1.

2 More problems

1. (Balkan 2001/4, adapted.) A cube of side 3 is divided into 27 unit cubes. The unit cubes are labeled
1 to 27, in lexicographical order according to their 3-dimensional coordinates. A move consists of
swapping the cube labeled 27 with one of its 6 neighbors. Is it possible to find a finite sequence of
moves at the end of which cube 27 is in its original position, but every one of cubes 1, 2, . . . , 26 has
moved to the positions originally occupied by cubes 26, 25, . . . , 1?

Solution: No. In order for 27 to return to its initial position, we must take an even number of swaps,
so the parity of the permutation must remain invariant. However, we are asking for 13 transpositions,
which is an odd relative permutation.

2. (Balkan 1994/3.) Let a1, a2, . . . , an be a permutation of the numbers 1, 2, . . . , n, with n ≥ 2. Determine
the largest possible value of the sum

S(n) = |a2 − a1|+ |a3 − a2|+ · · ·+ |an − an−1| .

Solution: Each absolute value is replaced by either +(·) or −(·). This has the effect of creating∑
i δiai where δ1, δn are each only ±1, and all other δi are in {0,±2}, with the constraint that the sum

of all coefficients δi is exactly 0. Given a δi sequence, the Rearrangement inequality tells us that the
optimal permutation is aligned in the same order as the δi.

So, if we had a pair of 0’s, we’d be better off replacing them with a pair of ±2, because one can ensure
to assign the ±2 in the order that gives positive contribution to the total sum. If there is exactly one 0,
then we can take one of the ±1’s, and flip its sign, and then adjust the 0 to one of ±2 to conserve the
total sum equal to zero. If necessary, we can also swap the ai’s so that they are arranged in the proper
order with the new δi. This always improves the sum. Therefore, there are no 0’s, and the unique way
to do this is to have the number of +2 and −2 as balanced as possible, and using the unique way to
finish with one each of +1 and −1, or two of the same.

It remains to show that there is a way to select the permutation that achieves this maximum from
Rearrangement. It’s easy to see that this always works, by considering the cases of n odd and n even
separately.
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3. (Balkan 1994/4.) Find the smallest number n ≥ 5 for which there can exist a set of n people, such
that any two people who are acquainted have no common acquaintances, and any two people who are
not acquainted have exactly two common acquaintances.

Solution: Answer: 16, corresponding to the Clebsch graph, a strongly regular graph. Construction:
Cayley graph on Z4

2, with generators 1000, 0100, 0010, 0001, 1111. The key is that we have an Abelian
group, with all elements of order 2, so it suffices to show that for all nonzero group elements, they
are either generators, or can be achieved as the sum of exactly one pair of generators. As there are 5
generators, and

(
5
2

)
= 10 pairs, it suffices to show that every nonzero group element appears as some

sum or generator. If the group element has Hamming weight 1 or 4, it is already a generator. If it has
weight 2, then it is the sum of 2 weight-1 generators. If it has weight 3, then it is the sum of 1111 and
one weight-1 generator.

Now we show that there are no smaller constructions with n ≥ 5. (The case n = 4 is achievable by the
4-cycle.) Consider a vertex v, and let d be its degree. Since the graph is triangle-free, its neighbors
N(v) form an independent set. Since it has diameter 2, the second neighborhood is everything else.
Consider then a vertex w 6∼ v. By the codegree condition, w is adjacent to exactly two of N(v). This
holds for every w 6∼ v, and the pairs of neighbors of v must be distinct, as if a pair x, y ∈ N(v) was
used more than once, then x, y would have codegree at least 3, contradiction. Furthermore, for every
pair x, y ∈ N(v), the codegree condition implies that there is some w in the second neighborhood that
is adjacent to both of them. Therefore, the second neighborhood has size exactly

(
d
2

)
, and we have

n = 1 + d+

(
d

2

)
.

This severely restricts the number of possibilities for n. If d = 2, then n = 4, which is too small.
If d = 3, then n = 7, but then the sum of all degrees is odd, which is impossible. If d = 4, then
n = 11. No other integer d gives n = 11, so the graph is 4-regular. However, after drawing v and its 4
neighbors, there are 6 neighbors left, each adjacent to a distinct pair of N(v). Let w be in the second
neighborhood. It must have degree 4, and already has degree 2 into N(v). However, every u ∈ N(v)
has its neighborhood as an independent set. Looking over the u ∈ N(v) which are adjacent to w, we
find that there is only one other w′ in the second neighborhood which is permitted to be adjacent to w,
so there is no way to make the degree of 4. Finally, if d = 5, then n = 16, and we found a construction
with those parameters.

4. (Balkan 1989/4.) Let F be a family of 3-element subsets of {1, . . . , n}, such that every pair of distinct
elements of F has intersection size at most 1. Let f(n) be the greatest possible number of elements of
F . Prove that

n2 − 4n

6
≤ f(n) ≤ n2 − n

6
.

Solution: We are decomposing the edges of Kn into edge-disjoint triangles, plus junk. So the RHS
follows immediately, as each triangle eats 3 edges out of the

(
n
2

)
. For the LHS, we could apply Wilson’s

theorem when n is even and 3 | n(n− 1). FIX

5. (Balkan 1985/4.) There are 1985 participants to an international meeting. In any group of three
participants there are at least two who speak the same language. It is known that each participant
speaks at most five languages. Prove that there exist at least 200 participants who speak the same
language.

Solution: This is a 1985-edge hypergraph with matching number at most 2, where every hyperedge
has size at most 5. We seek a vertex of degree at least 200.

Take a maximum matching. It has at most 2 edges, hence at most 10 vertices. Let those vertices be
S. The number of edges not in this matching is at least 1983. By pigeonhole, one of the vertices of S
is incident to at least 198.3 of the non-matching edges, hence at least 199. But it’s also incident to the
matching edge that contains it, therefore giving degree at least 200.
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6. (APMO 2003/5.) Given two positive integers m and n, find the smallest positive integer k such that
among any k people, either there are 2m of them who form m pairs of mutually acquainted people or
there are 2n of them forming n pairs of mutually unacquainted people.

7. (Chvátal.) Let T be a tree, and let t be the number of edges in T . The Ramsey number R(Kk, T ) is
the minimum integer n such that every red-blue coloring of the edges of Kn contains a red Kk or a
blue T (not necessarily induced). Prove that R(Kk, T ) = (k − 1)t+ 1, and show that this is tight.

8. (Chvátal for hypergraphs.) Let r ≥ 2 be a positive integer, and let T be an r-uniform hypertree with
t edges. The Ramsey number Rr(Kk, T ) is the minimum integer n such that every red-blue coloring

of the edges of the complete r-uniform hypergraph on n vertices contains a red K
(r)
k or a blue T

(not necessarily induced). Prove that Rr(Kk, T ) ≤ (k − 1)t + 1, and show that this is tight when
(r − 1) | (k − 1).

9. (Open.) What if (r − 1) - (k − 1)?
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