B-III. Functional Equations

Po-Shen Loh

18 June 2004

Warm-Ups

1. (Russia 2000/9) Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy $f(x+y)+f(y+z)+f(z+x) \geq 3 f(x+2 y+3 z)$ for all x, y, z.
Solution: Answer: f constant. Solution:
Put $x=a, y=z=0$, then $2 f(a)+f(0) \geq 3 f(a)$, so $f(0) \geq f(a)$. Put $x=a / 2, y=a / 2, z=-a / 2$. Then $f(a)+f(0)+f(0) \geq 3 f(0)$, so $f(a) \geq f(0)$. Hence $f(a)=f(0)$ for all a. But any constant function obviously satisfies the given relation.
2. (MOP97/2/1) Let f be a real-valued function which satisfies
(a) for all real $x, y, f(x+y)+f(x-y)=2 f(x) f(y)$.
(b) there exists a real number x_{0} such that $f\left(x_{0}\right)=-1$.

Prove that f is periodic.
Solution: Swapping x and y yields that function is even. Yet plugging in $x=y=0$ we get $f(0)=0$ or 1 . If it is 0 , then plugging in $y=0$ yields $f \equiv 0$, done.
Otherwise, $f(0)=1$, and plug in $x=y=x_{0} / 2$ to get $f\left(x_{0}\right)+1=2 f\left(x_{0} / 2\right)^{2}$, implying that $f\left(x_{0} / 2\right)=0$. Now plugging in $y=x_{0} / 2$, we get that $f\left(x+x_{0} / 2\right)=-f\left(x-x_{0} / 2\right)$, so function inverts sign every x_{0}. Hence periodic with period $2 x_{0}$.
3. (Balkan $1987 / 1) f$ is a real valued function on the reals satisfying (1) $f(0)=1 / 2$, (2) for some real a we have $f(x+y)=f(x) f(a-y)+f(y) f(a-x)$ for all x, y. Prove that f is constant.
Solution: Put $x=y=0$. We get $f(0)=2 f(0) f(a)$, so $f(a)=1 / 2$. Put $y=0$, we get $f(x)=f(x) f(a)+f(0) f(a-x)$, so $f(x)=f(a-x)$. Put $y=a-x$, we get $f(a)=f(x)^{2}+f(a-x)^{2}$, so $f(x)=1 / 2$ or $-1 / 2$.

Now take any x. We have $f(x / 2)=1 / 2$ or $-1 / 2$ and $f(a-x / 2)=f(x / 2)$. Hence $f(x)=f(x / 2+x / 2)=$ $2 f(x) f(a-x / 2)=1 / 2$.

Problems

1. (IMO 2002/5) Find all real-valued functions f on the reals such that $[f(x)+f(y)][f(u)+f(v)]=$ $f(x u-y v)+f(x v+y u)$ for all x, y, u, v.
Solution: Plug in all 0 ; then $f(0)=0$ or $1 / 2$. If $1 / 2$, then plug in $x=y=0$ and get $f(u)+f(v)=1$ implying that constant at $1 / 2$. Now suppose $f(0)=0$.
Plug in $x=v=0$. Then $f(y) f(u)=f(y u)$. So $f(1)^{2}=f(1)$ implying that $f(1)=0$ or 1 . If 0 , then multiplicativity implies that constant at 0 . Else:
Plug in $x=y=1$. Now $2[f(u)+f(v)]=f(u-v)+f(u+v)$. Using $u=0, v=1$, get $f(-1)=1$. Multiplicativity implies f is even.

Plug in $x=y, u=v$. Then $4 f(x) f(u)=f(2 x u)$. Multiplicativity implies that $f(2)=4$. More multiplicativity gives that $f(x)=x^{2}$ for all powers of 2 . Inductively using $2[f(u)+f(v)]=f(u-v)+$ $f(u+v)$, get that $f(z)=z^{2}$ for all integers. Reverse multiplicativity implies that $f(q)=q^{2}$ for all rationals.
Multiplicativity implies $f\left(x^{2}\right)=f(x)^{2}$ so $f \geq 0$. Yet plug in $x=v, y=u$ and get $f\left(x^{2}+y^{2}\right)=$ $[f(x)+f(y)]^{2} \geq f(x)^{2}$ by nonnegativity, so increasing function.
2. (IMO 1999/6) Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x-f(y))=f(f(y))+x f(y)+f(x)-1$ for all $x, y \in \mathbb{R}$.
Solution: Let $c=f(0)$ and A be the image $f(\mathbb{R})$. If a is in A, then it is straightforward to find $f(a)$: putting $a=f(y)$ and $x=a$, we get $f(a-a)=f(a)+a^{2}+f(a)-1$, so $f(a)=(1+c) / 2-a^{2} / 2$ (*).
The next step is to show that $A-A=\mathbb{R}$. Note first that c cannot be zero, for if it were, then putting $y=0$, we get: $f(x-c)=f(c)+x c+f(x)-1\left({ }^{* *}\right)$ and hence $f(0)=f(c)=1$. Contradiction. But $\left(^{* *}\right)$ also shows that $f(x-c)-f(x)=x c+(f(c)-1)$. Here x is free to vary over \mathbb{R}, so $x c+(f(c)-1)$ can take any value in \mathbb{R}.
Thus given any x in \mathbb{R}, we may find $a, b \in A$ such that $x=a-b$. Hence $f(x)=f(a-b)=$ $f(b)+a b+f(a)-1$. So, using $\left(^{*}\right): f(x)=c-b^{2} / 2+a b-a^{2} / 2=c-x^{2} / 2$.
In particular, this is true for $x \in A$. Comparing with $\left(^{*}\right)$ we deduce that $c=1$. So for all $x \in \mathbb{R}$ we must have $f(x)=1-x^{2} / 2$. Finally, it is easy to check that this satisfies the original relation and hence is the unique solution.
3. Let $f(x)$ be a continuous function with $f(0)=1$. Suppose that for every $n \in \mathbb{Z}^{+}$and any $t \in \mathbb{R}$:

$$
(f(t))^{n}=f(\sqrt{n} t)
$$

Prove that there exists a constant c such that on $\mathbb{R}^{+}, f(t)=e^{c t^{2}}$.
Solution: Suppose there exists $t>0$ such that $f(t) \leq 0$. Then there exists a minimal $s_{0}>0$ such that $f\left(s_{0}\right)=0$. But then $f\left(s_{0}\right)=f\left(s_{0} / \sqrt{2}\right)^{2}$, contradicting minimality. Same holds for $t<0$.
Therefore, this function exists: $L(t)=\log f(t)$. But then for any $m, n \in \mathbb{Z}^{+}$, we have $L((n / m) t)=$ $(n / m)^{2} L(t)$. Continuity tells us that $L(r)=r^{2} L(1)$ for any $r \in \mathbb{R}^{+}$.
4. (IMO 1996/3) Let S be the set of non-negative integers. Find all functions $f: S \rightarrow S$ such that $f(m+f(n))=f(f(m))+f(n)$ for all m, n.
Solution: Setting $m=n=0$, the given relation becomes: $f(f(0))=f(f(0))+f(0)$. Hence $f(0)=0$. Hence also $f(f(0))=0$. Setting $m=0$, now gives $f(f(n))=f(n)$, so we may write the original relation as $f(m+f(n))=f(m)+f(n)$.
So $f(n)$ is a fixed point. Let k be the smallest non-zero fixed point. If k does not exist, then $f(n)$ is zero for all n, which is a possible solution. If k does exist, then an easy induction shows that $f(q k)=q k$ for all non-negative integers q. Now if n is another fixed point, write $n=k q+r$, with $0 \leq r<k$. Then $f(n)=f(r+f(k q))=f(r)+f(k q)=k q+f(r)$. Hence $f(r)=r$, so r must be zero. Hence the fixed points are precisely the multiples of k.
But $f(n)$ is a fixed point for any n, so $f(n)$ is a multiple of k for any n. Let us take $n_{1}, n_{2}, \ldots, n_{k-1}$ to be arbitrary non-negative integers and set $n_{0}=0$. Then the most general function satisfying the conditions we have established so far is: $f(q k+r)=q k+n_{r} k$ for $0 \leq r<k$.
We can check that this satisfies the functional equation. Let $m=a k+r, n=b k+s$, with $0 \leq r, s<k$. Then $f(f(m))=f(m)=a k+n_{r} k$, and $f(n)=b k+n_{s} k$, so $f(m+f(n))=a k+b k+n_{r} k+n_{s} k$, and $f(f(m))+f(n)=a k+b k+n_{r} k+n_{s} k$. So this is a solution and hence the most general solution.
5. (IMO 1994/2) Let S be the set of all real numbers greater than - Find all functions $f: S \rightarrow S$ such that $f(x+f(y)+x f(y))=y+f(x)+y f(x)$ for all x and y, and $f(x) / x$ is strictly increasing on each of the intervals $-1<x<0$ and $0<x$.
Solution: Suppose $f(a)=a$. Then putting $x=y=a$ in the relation given, we get $f(b)=b$, where $b=2 a+a^{2}$. If $-1<a<0$, then $-1<b<a$. But $f(a) / a=f(b) / b$. Contradiction. Similarly, if $a>0$, then $b>a$, but $f(a) / a=f(b) / b$. Contradiction. So we must have $a=0$.
But putting $x=y$ in the relation given we get $f(k)=k$ for $k=x+f(x)+x f(x)$. Hence for any x we have $x+f(x)+x f(x)=0$ and hence $f(x)=-x /(x+1)$.
Finally, it is straightforward to check that $f(x)=-x /(x+1)$ satisfies the two conditions.
6. (IMO 1992/2) Find all functions f defined on the set of all real numbers with real values, such that $f\left(x^{2}+f(y)\right)=y+f(x)^{2}$ for all x, y.
Solution: The first step is to establish that $f(0)=0$. Putting $x=y=0$, and $f(0)=t$, we get $f(t)=t^{2}$. Also, $f\left(x^{2}+t\right)=f(x)^{2}$, and $f(f(x))=x+t^{2}$. We now evaluate $f\left(t^{2}+f(1)^{2}\right)$ two ways. First, it is $f\left(f(1)^{2}+f(t)\right)=t+f(f(1))^{2}=t+\left(1+t^{2}\right)^{2}=1+t+2 t^{2}+t^{4}$. Second, it is $f\left(t^{2}+f(1+t)\right)=1+t+f(t)^{2}=1+t+t^{4}$. So $t=0$, as required.
It follows immediately that $f(f(x))=x$, and $f\left(x^{2}\right)=f(x)^{2}$. Given any y, let $z=f(y)$. Then $y=f(z)$, so $f\left(x^{2}+y\right)=z+f(x)^{2}=f(y)+f(x)^{2}$. Now given any positive x, take z so that $x=z^{2}$. Then $f(x+y)=f\left(z^{2}+y\right)=f(y)+f(z)^{2}=f(y)+f\left(z^{2}\right)=f(x)+f(y)$. Putting $y=-x$, we get $0=f(0)=f(x+-x)=f(x)+f(-x)$. Hence $f(-x)=-f(x)$. It follows that $f(x+y)=f(x)+f(y)$ and $f(x-y)=f(x)-f(y)$ hold for all x, y.
Take any x. Let $f(x)=y$. If $y>x$, then let $z=y-x$. $f(z)=f(y-x)=f(y)-f(x)=x-y=-z$. If $y<x$, then let $z=x-y$ and $f(z)=f(x-y)=f(x)-f(y)=y-x$. In either case we get some $z>0$ with $f(z)=-z<0$. But now take w so that $w^{2}=z$, then $f(z)=f\left(w^{2}\right)=f(w)^{2} \geq 0$. Contradiction. So we must have $f(x)=x$.
7. (Balkan 2000/1) Find all real-valued functions on the reals which satisfy $f(x f(x)+f(y))=f(x)^{2}+y$ for all x, y.
Solution: Answer: (1) $f(x)=x$ for all x; (2) $f(x)=-x$ for all x.
Put $x=0$, then $f(f(y))=f(0)^{2}+y$. Put $y=-f(0)^{2}$ and $k=f(y)$. Then $f(k)=0$. Now put $x=y=k$. Then $f(0)=0+k$, so $k=f(0)$. Put $y=k, x=0$, then $f(0)=f(0)^{2}+k$, so $k=0$. Hence $f(0)=0$.
Put $x=0, f(f(y))=y(*)$. Put $y=0, f(x f(x))=f(x)^{2}\left(^{* *}\right)$. Put $x=f(z)$ in $\left({ }^{* *}\right)$, then using $f(z)=x$, we have $f(z f(z))=z^{2}$. Hence $z^{2}=f(z)^{2}$ for all $z\left(^{* * *}\right)$. In particular, $f(1)=1$ or -1 . Suppose $f(1)=1$. Then putting $x=1$ in the original relation we get $f(1+f(y))=1+y$. Hence $(1+f(y))^{2}=(1+y)^{2}$. Hence $f(y)=y$ for all y.
Similarly if $f(1)=-1$, then putting $x=1$ in the original relation we get $f(-1+f(y))=1+y$. Hence $(-1+f(y))^{2}=(1+y)^{2}$, so $f(y)=-y$ for all y.
Finally, it is easy to check that $f(x)=x$ does indeed satisfy the original relation, as does $f(x)=-x$.
8. (IMO 1990/1) Construct a function from the set of positive rational numbers into itself such that $f(x f(y))=f(x) / y$ for all x, y.
Solution: We show first that $f(1)=1$. Taking $x=y=1$, we have $f(f(1))=f(1)$. Hence $f(1)=f(f(1))=f(1 f(f(1)))=f(1) / f(1)=1$.
Next we show that $f(x y)=f(x) f(y)$. For any y we have $1=f(1)=f(1 / f(y) f(y))=f(1 / f(y)) / y$, so if $z=1 / f(y)$ then $f(z)=y$. Hence $f(x y)=f(x f(z))=f(x) / z=f(x) f(y)$.
Finally, $f(f(x))=f(1 f(x))=f(1) / x=1 / x$.
We are not required to find all functions, just one. So divide the primes into two infinite sets $\mathrm{S}=$ $\left\{p_{1}, p_{2}, \ldots\right\}$ and $T=\left\{q_{1}, q_{2}, \ldots\right\}$. Define $f\left(p_{n}\right)=q_{n}$, and $f\left(q_{n}\right)=1 / p_{n}$. We extend this definition to all rationals using $f(x y)=f(x) f(y): f\left(p_{i_{1}} p_{i_{2}} \cdots q_{j_{1}} q_{j_{2}} \cdots /\left(p_{k_{1}} \cdots q_{m_{1}} \cdots\right)\right)=p_{m_{1}} \cdots q_{i_{1}} \cdots /\left(p_{j_{1}} \cdots q_{k_{1}} \cdots\right)$. It is now trivial to verify that $f(x f(y))=f(x) / y$.
9. (IMO Shortlist 1995/A5) Does there exist a real-valued function f on the reals such that $f(x)$ is bounded, $f(1)=1$ and $f\left(x+1 / x^{2}\right)=f(x)+f(1 / x)^{2}$ for all non-zero x ?
Solution: Answer: no.
Suppose there is such a function. Let c be the least upper bound of the set of values $f(x)$. We have $f(2)=f(1+1 / 12)=f(1)+f(1 / 1)^{2}=2$. So $c \geq 2$. But definition we can find y such that $f(y)>c-1 / 4$. So $c \geq f\left(y+1 / y^{2}\right)=f(y)+f(1 / y)^{2}>c-1 / 4+f(1 / y)^{2}$. So $f(1 / y)^{2}<1 / 4$ and hence $f(1 / y)>-1 / 2$.
We also have $c \geq f\left(1 / y+y^{2}\right)=f(1 / y)+f(y)^{2}>-1 / 2+(c-1 / 4)^{2}=c^{2}-c / 2-7 / 16$. So $c^{2}-3 c / 2-7 / 16<$ 0 , or $(c-3 / 4)^{2}<1$. But $c \geq 2$, so that is false. Contradiction. So there cannot be any such function.

