VII. Sequences (from Zuming97/98)

Po-Shen Loh

June 27, 2003

1 Warm-Ups

1. Line up sequentially in height-order, and say "Cauchy."
2. (Abel Summation) Suppose that we have $\left(a_{k}\right)_{1}^{n}$ and $\left(b_{k}\right)_{1}^{n}$. Also, suppose that we define $S_{k}=\sum_{i=1}^{k} a_{i}$. Then:

$$
\sum_{k=1}^{n} a_{k} b_{k}=S_{n} b_{n}+\sum_{k=1}^{n-1} S_{k}\left(b_{k}-b_{k+1}\right)
$$

2 Problems

1. Calculate the sum $\sum_{k=1}^{n} k /\left(2^{k}\right)$.

Solution: Split it into:

$$
\sum_{1}^{n} \frac{k}{2^{k}}=\sum_{k=1}^{n} \sum_{i=k}^{n} \frac{1}{2^{i}}
$$

Now use geometric series summation to get $2-1 /\left(2^{n-1}\right)-n /\left(2^{n}\right)$.
2. Prove that $16<\sum_{k=1}^{80} 1 / \sqrt{k}<17$.

Solution: Divide the sum by 2 , and then substitute the denominator with $(\sqrt{k}+\sqrt{k+1})$, with appropriate adjustment for the two directions.
3. Let $\left(a_{k}\right)_{1}^{n}$ be a positive sequence. Let $\left(b_{k}\right)_{1}^{n}$ be a real sequence (not necessarily positive). Suppose that $\sum_{i \neq j} a_{i} b_{j}=0$. Prove that $\sum_{i \neq j} b_{i} b_{j} \leq 0$.
Solution: Let $a=\sum a_{k}$ and $b=\sum b_{k}$. The given tells us that $a b=\sum a_{k} b_{k}$. The result is equivalent to $b^{2} \leq \sum b_{k}^{2}$. By Cauchy-Schwarz:

$$
(a b)^{2}=\left(\sum a_{k} b_{k}\right)^{2} \leq\left(\sum a_{k}^{2}\right)\left(\sum b_{k}^{2}\right) \leq a^{2} \sum b_{k}^{2},
$$

since (a) is positive. But then we get precisely that $b^{2} \leq \sum b_{k}^{2}$.
4. Let $\left(a_{k}\right)_{1}^{n}$ and $\left(b_{k}\right)_{1}^{n}$ be two real sequences, and suppose that $\left(b_{k}\right)$ is nonnegative and decreasing. For $k \in\{1,2, \ldots, n\}$, define $S_{k}=\sum_{i=1}^{k} a_{i}$. Let $M=\max \left\{S_{1}, \ldots, S_{n}\right\}$ and $m=\min \left\{S_{1}, \ldots, S_{n}\right\}$. Prove that

$$
m b_{1} \leq \sum_{i=1}^{n} a_{i} b_{i} \leq M b_{1}
$$

5. Let $\left(a_{k}\right)_{1}^{n}$ and $\left(b_{k}\right)_{1}^{n}$ be two real sequences with (a) nonnegative and decreasing. Also suppose that $\sum_{i=1}^{k} a_{i} \leq \sum_{i=1}^{k} b_{i}$ for all k. Prove that $\sum_{i=1}^{n} a_{i}^{2} \leq \sum_{i=1}^{n} b_{i}^{2}$.
Solution: Use Abel sum; get $\sum a_{i}^{2} \leq S_{b n} a_{n}+\sum S_{b k}\left(a_{k}-a_{k+1}\right)=\sum b_{k} a_{k}$. But by Cauchy-Schwarz:

$$
\left(\sum b_{k} a_{k}\right)^{2} \leq\left(\sum a_{k}^{2}\right)\left(\sum b_{k}^{2}\right) \leq\left(\sum a_{k} b_{k}\right)\left(\sum b_{k}^{2}\right)
$$

Divide through both sides (it is positive since it is bigger than $\sum a_{k}^{2}$) and we get that $\sum b_{k} a_{k} \leq \sum b_{k}^{2}$ and the result follows by transitivity.
6. (IMO78) Let $\left(a_{k}\right)_{1}^{n}$ be a sequence of distinct positive integers. Prove that for any positive integer n :

$$
\sum_{k=1}^{n} \frac{a_{k}}{k^{2}} \geq \sum_{k=1}^{n} \frac{1}{k}
$$

Solution: Rearrangement
7. (USAMO89) For each positive integer n, let:

$$
\begin{aligned}
S_{n} & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \\
T_{n} & =S_{1}+S_{2}+\cdots+S_{n} \\
U_{n} & =\frac{T_{1}}{2}+\frac{T_{2}}{3}+\cdots+\frac{T_{n}}{n+1} .
\end{aligned}
$$

Find integers $0<a, b, c, d<1000000$ for which $T_{1998}=a S_{1989}-b$ and $U_{1988}=c S_{1989}-d$.
Solution: For the first one, write out the sum in table-form with it on horizontals, and add columns. We will get that $T_{n}=(n+1) S_{n}-(n+1)$. Hence the terms of the U_{n} sum are simply $\left(S_{n}-1\right)$. Plug this back in and use the previous; we get answers of $a=b=1989, c=1990, d=3978$.
8. Given two real sequences $\left(a_{k}\right)_{1}^{n}$ and $\left(b_{k}\right)_{1}^{n}$ with
(a) $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0$
(b) $b_{1} \geq a_{1}$ and $b_{1} b_{2} \geq a_{1} a_{2}$ and \ldots and $b_{1} b_{2} \cdots b_{n} \geq a_{1} a_{2} \cdots a_{n}$.

Prove that $\sum_{i=1}^{n} b_{i} \geq \sum_{i=1}^{n} a_{i}$ and determine the condition of equality.
Solution: Weighted AM-GM:

$$
\frac{\sum a_{i} \frac{b_{i}}{a_{i}}}{\sum a_{i}} \geq \sqrt[\sum a_{i}]{\prod\left(\frac{b_{i}}{a_{i}}\right)^{a_{i}}}
$$

Now divide through in the given conditions and take the $\left(b_{n} / a_{n}\right)_{n}^{a}$ term by taking the $\left(b_{1} b_{2} \cdots b_{n}\right) /\left(a_{1} a_{2} \cdots a_{n}\right) \geq$ 1. Since (a) is decreasing, we can continue in this way without making any of the powers negative.
9. (USAMO94) Let $\left(a_{k}\right)_{1}^{n}$ be a positive sequence satisfying $\sum_{j=1}^{n} a_{j} \geq \sqrt{n}$ for all $n \geq 1$. Prove that for all $n \geq 1$:

$$
\sum_{j=1}^{n} a_{j}^{2}>\frac{1}{4}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)
$$

Solution: Use result from three problems ago; use the a_{j} for the b_{k}, and add in $a_{k}=1 /(2 \sqrt{k})$.
10. Given two real sequences $\left(a_{k}\right)_{1}^{n}$ and $\left(b_{k}\right)_{1}^{n}$, prove that

$$
\sum_{i=1}^{n} a_{i} x_{i} \leq \sum_{i=1}^{n} b_{i} x_{i} \text { for any } x_{1} \leq x_{2} \leq \cdots \leq x_{n}
$$

is equivalent to

$$
\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} b_{i} \text { and } \sum_{i=1}^{k} a_{i} \geq \sum_{i=1}^{k} b_{i}, \text { for } k=1,2, \ldots, n-1
$$

Solution: Abel sum; taking $\Delta_{k} \equiv 0, x_{n}=1$, we get the equality of full sums. For $x_{n}=0, \Delta_{k}=\delta_{k}$, we get the rest of it. For the converse, it simply plugs into the Abel sum.
11. (USAMO85) $0<a_{1} \leq a_{2} \leq a_{3} \leq \ldots$ is an unbounded sequence of integers. Let $b_{n}=m$ if a_{m} is the first member of the sequence to equal or exceed n. Given that $a_{19}=85$, what is the maximum possible value of $a_{1}+a_{2}+\cdots+a_{19}+b_{1}+b_{2}+\cdots+b_{85}$?
Solution: If all a_{k} are 85, then we get 1700. But use algorithm to turn any sequence into flat-85: if $a_{k}<a_{k+1}$, then can replace a_{k} by $a_{k}+1$. This will increase the sum of a_{i} by 1 , but decrease the sum of b_{i} by 1 .
12. (Uses Calculus) Find a compact expression for $\sum_{k=1}^{n} k x^{k}$.

3 Really Hard Zuming Problem

Let $\left(a_{k}\right)_{1}^{n}$ be a positive sequence. Prove that:

$$
\sum_{k=1}^{n} \frac{k}{a_{1}+a_{2}+\cdots+a_{k}}<2 \sum_{i=1}^{n} \frac{1}{a_{i}} .
$$

Hint: use the following lemma:

1. For intermediate k :

$$
\frac{k}{\sum_{i=1}^{k} a_{i}} \leq \frac{4}{k(k+1)^{2}} \sum_{i=1}^{k} \frac{i^{2}}{a_{i}}
$$

Solution: Cauchy-Schwarz with $(k),\left(a_{k}\right)$, and $\left(k / \sqrt{a_{k}}\right)$.
Solution: Now do this:

$$
\begin{aligned}
\sum_{1}^{n} \frac{k}{\sum_{1}^{k} a_{i}} & \leq \sum_{1}^{n} \frac{4 k}{k^{2}(k+1)^{2}} \sum_{1}^{k} \frac{i^{2}}{a_{i}} \\
& <2 \sum_{1}^{n} \frac{2 k+1}{k^{2}(k+1)^{2}} \sum_{1}^{k} \frac{i^{2}}{a_{i}} \\
& =2 \sum_{k=1}^{n} \sum_{i=1}^{k} \frac{i^{2}}{a_{i}}\left(\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}\right) \\
& =2 \sum_{i=1}^{n} \sum_{k=i}^{n} \frac{i^{2}}{a_{i}}\left(\frac{1}{k^{2}}-\frac{1}{(k+1)^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \sum_{i=1}^{n} \frac{i^{2}}{a_{i}}\left(\frac{1}{i^{2}}-\frac{1}{(n+1)^{2}}\right) \\
& <2 \sum_{i=1}^{n} \frac{1}{a_{i}}
\end{aligned}
$$

