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1 Trig (stolen from Titu97)

1. Evaluate:

∞∑
k=0

tan−1 2
(2k + 1)2

Solution: If an is a positive sequence, then:

tan−1 an+1 − tan−1 an = tan−1

(
an+1 − an

1 + an+1an

)
This telescopes with an = 2n from the above notation. The sum is π/2.

2. Evaluate:

∞∑
k=0

tan−1 2
k2

Solution: This telescopes twice; use an = n and the fraction is (an+1 − an−1)/(1 + an−1an+1). So
the answer is π/2 + π/2− π/4− 0 = 3π/4.

3. Prove that the numbers n sinn◦, n = 2, 4, . . . , 180 average to cot 1◦.

Solution: Multiply through by sin 1◦. Then use the sine-product formula to get the form:

(cos 1− cos 3) + 2(cos 3− cos 5) + 3(cos 5− cos 7) + · · ·

Next bunch the (cos 1− cos 3) together with the 89(cos 177− cos 179) because the 90 term is zero. But
they add to get 90(cos 1 − cos 3). Proceed in this way and get telescope, except that at the end, we
have:

· · ·+ 44(cos 87− cos 89) + 45(cos 89− cos 91) + 46(cos 91− cos 93) + · · ·

Here, the 44 and 46 combine as desired, leaving a residue of −90 cos 89. Yet this is cancelled by the 45
term. Thus after telescoping, we only have 90 cos 1 left, which is what we wanted.

4. Evaluate:

n∑
k=1

cot−1(2k2) = cot−1(1 + 1/n)

Solution: Use the fact that the summand is cot−1(1 + 1/k)n− cot−1(1 + 1/(k − 1)). Therefore the
answer is cot−1(1 + 1/n).
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5. Evaluate, for x not a multiple of 2π,

n∑
k=1

cos kx.

Solution: Multiply it by sin(x/2), and use the expansion formula for sin θ cos θ. The answer is
(sin(n + 1/2)x)/(sinx/2) - 1.

6. Evaluate the sum

∞∑
n=1

1
2n

tan
a

2n

where a is not an integer multiple of π.

7. Prove:

∞∑
n=1

3n−1 sin3 a

3n
=

1
4
(a− sin a).

2 No Trig (not entirely stolen from Titu97)

1. Get a nice formula for
∑n

k=1 k!(k2 + k + 1).

Solution: Summand is (k + 1)(k + 1)!− (k)(k)!. So we get (n + 1)(n + 1)!− 1.

2. Let {ak} be an arithmetic progression with common difference d. Compute

n∑
k=1

1
akak+1ak+2

Solution: Summand is:

1
2d

(
1

ak+1ak
− 1

ak+2ak+1

)
So the answer is

1
2d

(
1

a1a2
− 1

an+1an+2

)
3. (IMO 2001 Shortlist) Let x1, x2, . . . , xn be arbitrary real numbers. Prove:

x1

1 + x2
1

+
x2

1 + x2
1 + x2

2

+ · · ·+ xn

1 + x2
1 + · · ·+ x2

n

<
√

n

Solution: Shortlist A3.

4. Let Fn be the Fibonacci sequence with F0 = F1 = 1. Evaluate

∞∑
n=1

1
Fn−1Fn+1

Solution: Summand is 1/(Fn−1Fn)− 1/(FnFn+1), so the sum is 1.
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5. Prove:

2(
√

n + 1−
√

m) <
1√
m

+
1√

m + 1
+ · · ·+ 1√

n
< 2(

√
n−

√
m− 1)

Solution: 1/(2
√

m) > 1/(
√

m+
√

m + 1), then prove that
√

n + 1−
√

m < 1/(2
√

m)+ · · ·+1/(2
√

n).

6. (IMO 2001 Shortlist) Let a0, a1, a2, . . . be an arbitrary infinite sequence of positive numbers. Show
that the inequality 1 + an > an−1

n
√

2 holds for infinitely many positive integers n.

Solution: Shortlist A2.

7. (Titu97) Compute the sum:

1√
1 +

√
2

+
1√

2 +
√

3
+ · · ·+ 1√

n− 1 +
√

n
.

Solution: It’s
√

n− 1 by rationalizing denominators.

8. (Titu97) Prove:

1√
1 +

√
3

+
1√

5 +
√

7
+ · · ·+ 1√

9997 +
√

9999
≥ 24.

Solution: Substitute to 1/(
√

1 +
√

3) > 1/(
√

1 +
√

5), etc and:

1√
k +

√
k + 4

=
√

k + 4−
√

k

4
.

That sums to something greater than 24.75.
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