III. Telescoping Sums and Products

Po-Shen Loh

June 18, 2003

1 Trig (stolen from Titu97)

1. Evaluate:

$$
\sum_{k=0}^{\infty} \tan ^{-1} \frac{2}{(2 k+1)^{2}}
$$

Solution: If a_{n} is a positive sequence, then:

$$
\tan ^{-1} a_{n+1}-\tan ^{-1} a_{n}=\tan ^{-1}\left(\frac{a_{n+1}-a_{n}}{1+a_{n+1} a_{n}}\right)
$$

This telescopes with $a_{n}=2 n$ from the above notation. The sum is $\pi / 2$.
2. Evaluate:

$$
\sum_{k=0}^{\infty} \tan ^{-1} \frac{2}{k^{2}}
$$

Solution: This telescopes twice; use $a_{n}=n$ and the fraction is $\left(a_{n+1}-a_{n-1}\right) /\left(1+a_{n-1} a_{n+1}\right)$. So the answer is $\pi / 2+\pi / 2-\pi / 4-0=3 \pi / 4$.
3. Prove that the numbers $n \sin n^{\circ}, n=2,4, \ldots, 180$ average to $\cot 1^{\circ}$.

Solution: Multiply through by $\sin 1^{\circ}$. Then use the sine-product formula to get the form:

$$
(\cos 1-\cos 3)+2(\cos 3-\cos 5)+3(\cos 5-\cos 7)+\cdots
$$

Next bunch the $(\cos 1-\cos 3)$ together with the $89(\cos 177-\cos 179)$ because the 90 term is zero. But they add to get $90(\cos 1-\cos 3)$. Proceed in this way and get telescope, except that at the end, we have:

$$
\cdots+44(\cos 87-\cos 89)+45(\cos 89-\cos 91)+46(\cos 91-\cos 93)+\cdots
$$

Here, the 44 and 46 combine as desired, leaving a residue of $-90 \cos 89$. Yet this is cancelled by the 45 term. Thus after telescoping, we only have $90 \cos 1$ left, which is what we wanted.
4. Evaluate:

$$
\sum_{k=1}^{n} \cot ^{-1}\left(2 k^{2}\right)=\cot ^{-1}(1+1 / n)
$$

Solution: Use the fact that the summand is $\cot ^{-1}(1+1 / k) n-\cot ^{-1}(1+1 /(k-1))$. Therefore the answer is $\cot ^{-1}(1+1 / n)$.
5. Evaluate, for x not a multiple of 2π,

$$
\sum_{k=1}^{n} \cos k x
$$

Solution: Multiply it by $\sin (x / 2)$, and use the expansion formula for $\sin \theta \cos \theta$. The answer is $(\sin (n+1 / 2) x) /(\sin x / 2)-1$.
6. Evaluate the sum

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}} \tan \frac{a}{2^{n}}
$$

where a is not an integer multiple of π.
7. Prove:

$$
\sum_{n=1}^{\infty} 3^{n-1} \sin ^{3} \frac{a}{3^{n}}=\frac{1}{4}(a-\sin a) .
$$

2 No Trig (not entirely stolen from Titu97)

1. Get a nice formula for $\sum_{k=1}^{n} k!\left(k^{2}+k+1\right)$.

Solution: Summand is $(k+1)(k+1)$! $-(k)(k)$!. So we get $(n+1)(n+1)!-1$.
2. Let $\left\{a_{k}\right\}$ be an arithmetic progression with common difference d. Compute

$$
\sum_{k=1}^{n} \frac{1}{a_{k} a_{k+1} a_{k+2}}
$$

Solution: Summand is:

$$
\frac{1}{2 d}\left(\frac{1}{a_{k+1} a_{k}}-\frac{1}{a_{k+2} a_{k+1}}\right)
$$

So the answer is

$$
\frac{1}{2 d}\left(\frac{1}{a_{1} a_{2}}-\frac{1}{a_{n+1} a_{n+2}}\right)
$$

3. (IMO 2001 Shortlist) Let $x_{1}, x_{2}, \ldots, x_{n}$ be arbitrary real numbers. Prove:

$$
\frac{x_{1}}{1+x_{1}^{2}}+\frac{x_{2}}{1+x_{1}^{2}+x_{2}^{2}}+\cdots+\frac{x_{n}}{1+x_{1}^{2}+\cdots+x_{n}^{2}}<\sqrt{n}
$$

Solution: Shortlist A3.
4. Let F_{n} be the Fibonacci sequence with $F_{0}=F_{1}=1$. Evaluate

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n-1} F_{n+1}}
$$

Solution: Summand is $1 /\left(F_{n-1} F_{n}\right)-1 /\left(F_{n} F_{n+1}\right)$, so the sum is 1 .
5. Prove:

$$
2(\sqrt{n+1}-\sqrt{m})<\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{m+1}}+\cdots+\frac{1}{\sqrt{n}}<2(\sqrt{n}-\sqrt{m-1})
$$

Solution: $1 /(2 \sqrt{m})>1 /(\sqrt{m}+\sqrt{m+1})$, then prove that $\sqrt{n+1}-\sqrt{m}<1 /(2 \sqrt{m})+\cdots+1 /(2 \sqrt{n})$.
6. (IMO 2001 Shortlist) Let $a_{0}, a_{1}, a_{2}, \ldots$ be an arbitrary infinite sequence of positive numbers. Show that the inequality $1+a_{n}>a_{n-1} \sqrt[n]{2}$ holds for infinitely many positive integers n.

Solution: Shortlist A2.
7. (Titu97) Compute the sum:

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\cdots+\frac{1}{\sqrt{n-1}+\sqrt{n}}
$$

Solution: It's $\sqrt{n}-1$ by rationalizing denominators.
8. (Titu97) Prove:

$$
\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots+\frac{1}{\sqrt{9997}+\sqrt{9999}} \geq 24 .
$$

Solution: \quad Substitute to $1 /(\sqrt{1}+\sqrt{3})>1 /(\sqrt{1}+\sqrt{5})$, etc and:

$$
\frac{1}{\sqrt{k}+\sqrt{k+4}}=\frac{\sqrt{k+4}-\sqrt{k}}{4} .
$$

That sums to something greater than 24.75 .

