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1 News Flash From Zuming!

• Remind Po to take all the markers from CBA 337

• Tonight’s study session for Red/Blue is in Bessey 104

• Future Red lectures are in NM B-7, the “Naval Military Base #7”

• Future Red tests and study sessions are in Bessey 104

• All test reviews will be in Bessey 104

2 Warm-Up

1. A coil has an inductance of 2mH, and a current through it changes from 0.2A to 1.5A in a time of 0.2s.
Find the magnitude of the average induced emf in the coil during this time.

Solution: Just kidding.

2. Prove that the number of binary sequences of length n with an even number of 1’s is equal to the
number of binary sequences of length n with an odd number of 1’s.

Solution: Easy induction: Let En, On the numbers of even/odd sequences. Induction hypothesis
is En = On = 2n−1. Now break En+1 into two groups: those with first coordinate 0 and with first
coordinate 1. Number in first group is En, and number in second group is On. So En+1 = En + On,
which by induction is 2n. So On+1 = 2n+1 − En+1, done.

3 Equality

1. Let Fn be the Fibonacci sequence. Prove that F 2
n = Fn−1Fn+1± 1. Determine when it’s +1 and when

it’s −1.

Solution: It’s actually F 2
n = Fn−1Fn+1 − (−1)n, under the convention F0 = 0, F1 = 1. Inductive

step is just evaluating FnFn+2 and expanding out Fn+2 = Fn + Fn+1.

FnFn+2 = Fn(Fn + Fn+1)
= F 2

n + FnFn+1

= Fn−1Fn+1 − (−1)n + FnFn+1

= (Fn+1)Fn+1 − (−1)n

FnFn+2 − (−1)n+1 = F 2
n+1.
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2. (Titu98) Let a be a real number such that sin a + cos a is a rational number. Prove that for all n ∈ N,
sinn a + cosn a is rational.

Solution: Clearly true for n = 2, since sin2 + cos2 = 1; then to go from n 7→ n + 1, just multiply the
1-case by the n case; use the fact that n = 1, 2 show that sin cos ∈ Q.

Specifically,
(sinn + cosn)(sin + cos) = sinn+1 + cosn+1 + sin cos(sinn−1 + cosn−1).

Since we only need this for n ≥ 2, we have everything we need already rational, except for sin cos. But
that is 1

2 [(sin + cos)2 − sin2− cos2], already known to be rational by base case.

3. You’ve seen maps in geography books. Did you know that they could all be colored with just 4 colors?
(That is, “colored” in the sense that no two adjacent countries are the same color. Note that if two
countries share a corner, they do not count as being “adjacent”.) Prove it!

Solution: Well, this is actually the 4-color theorem, which was proved via computer. So don’t try
too hard.

4. (Ricky03 from Internet) I’m playing the color-country game against Bob. We take turns; on my turn, I
draw in a country. On Bob’s turn, he chooses any color for the country, but he must make sure that no
adjacent countries share the same color. Is it possible for me to force Bob to use more than 4 colors?

Solution: Yes it is. Prove the following statement by induction: for any N , I can force Bob to use
N colors, and furthermore, every time I draw a new country, there is some part of the new country’s
border that can see the point at infinity (topologically connected, not straight-line vision).

This is clearly true for N = 2. For the inductive step, suppose we have it for N , and we are trying to
get N + 1. Well, then start a blob of countries, and force Bob to use 1 color in that blob.

Next, start another new blob in a remote area far away, and use the previous algorithm until Bob uses
a second color (different from the 1 already used); note that this is still exposed to the point at infinity.

Proceed until we have N blobs, spread far apart, each with a different one of the N colors exposed to
infinity. Now engulf everything in a huge (not simply-connected) region; that region must have a color
different from the N colors. So we are done.

5. (MOP98) Let S be the set of nonnegative integers. Let h : S → S by a bijective function. Prove that
there do not exist functions f, g from S to itself, f injective and g surjective, such that f(n)g(n) = h(n)
for all n ∈ S.

Solution: Use contradiction; assume that f and g exist, and define F = f ◦ h−1, G = g ◦ h−1; now
F is injective and G is surjective, and f(n)g(n) = h(n) ⇔ F (n)G(n) = n. Prove by strong induction
that F (n) = n: at n = 1, we have F (1)G(1) = 1⇒ F (1) = 1 since we are in nonnegative integers. But
then if true up to N , then F (N + 1)G(N + 1) = N + 1 ⇒ F (N + 1) ∈ [1, N + 1] and by injectivity,
F (N + 1) = N + 1. Hence G can only take on two values, 1 and something else, so not surjective.
Contradiction.

6. Show that every 2n × 2n board with one square removed can be covered by Triominoes.

Solution: First we inductively prove that we can tile any 2n × 2n board such that we only miss one
of the corners. Very easy, since we can cut into quarters, tile each one such that NW, NE, and SW
are missing the corners in the center of the big square, and SE is missing the SE corner. One more
triomino fills in the gap in the middle of the big square.

Then look at a general 2n × 2n board and split it into 4 equal squares. One of the squares contains
the missing block, and we can use the previous result to tile the other 3 major squares, in such a way
that the missing corners form a triomino in the center of the big square. Recursively descend.

2



4 Inequality

1. Prove the AM-GM inequality by induction.

Solution: Easy for n = 1, 2; use n to show 2n, and then use n to show n − 1. For n 7→ 2n, plug in
(ak + ak+1)/2; for the other one, use an = (a1 + · · ·+ an−1)/(n− 1).

2. (Zuming97) Let a1 = 2 and an+1 = an/2 + 1/an for n = 1, 2, . . .. Prove that
√

2 < an <
√

2 + 1/n.

Solution: Draw a picture to see why it is always greater than
√

2. Also use AM-GM to prove that
we must be beyond

√
2. For the other side, induct and bound

an+1 < (
√

2 + 1/n)/2 + 1/
√

2 =
√

2 + 1/(2n)

3. (Zuming97) For the positive sequence {an} with a2
n ≤ an − an+1, prove that an < 1/(n + 2).

Solution: Positive sequence, so a1 ≤ 1, and a2 ≤ 1/4 by AM-GM, or function theory. Now

an+1 ≤ an(1− an) ≤ 1
n + 2

(
1− 1

n + 2

)
=

1
n + 2

n + 1
n + 2

≤ 1
n + 2

n + 2
n + 3

=
1

n + 3

4. (Zuming97) For a > 0, prove that:√√√√
a +

√
2a +

√
3a +

√
4a +

√
5a <

√
a + 1

Solution: True for n = 1. Let fk(a) be the k-th iteration evaluated at a. Then if it’s true for some
k:

fk+1(a)2 < fk(2a) + a <
√

2a + 1 + a < a + 2
√

a + 1 = (
√

a + 1)2

5. Prove that

1 +
1
2

+
1
3

+ · · · =∞

Solution: Bunch the terms in packs of 1, 2, 4, 8, 16, etc. Each pack will exceed 1, and there are
infinitely many of them.

6. Prove that

1 +
1
22

+
1
32

+ · · ·+ 1
n2

< 2

Solution: Similar bunching, but now the bunches are bounded by 1/2k, geometric series converges
to 2.
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5 Additional Problems

1. (Titu98) Prove that for every n ∈ N, there exists a finite set of points in the plane such that for every
point of the set there exist exactly n other points of the set at distance equal to 1 from that point.

Solution: n-dimensional Hypercube, squashed into the plane. Basically, at each step translate the
given point set by a unit distance. Just need to show there is a valid angle for this unit translation.
But there are only a finite number of conflicts, (number of points × 2 because pair of circles has 2
intersections), and an infinite number of angles.

2. (Titu98) Let f : N→ N be such that f(n + 1) > f(f(n)) for all n ∈ N. Prove that f(n) = n for all n.

Solution: We will prove by strong induction the statement Pn: all f(a) = a for a < n, and the n-th
smallest value in the set {f(i)} is uniquely f(n). That is, the unique index which attains that mark is
i = n. For n = 0, there is nothing to prove.

For n = 1, consider the smallest value, and suppose it is attained (possibly not uniquely) by f(a).
Then the recursion says f(a) > f(f(a− 1)). So if a 6= 1, then the RHS is defined, and we have another
f(i) smaller than the MIN. Thus a = 1, and that is unique. This establishes P1.

For P2, consider the 2nd smallest value, say f(a). Recall P1 says the smallest value is uniquely attained
by f(1). Again, f(a) > f(f(a− 1)). We know a 6= 1 since f(1) is the smallest. So, f(a− 1) is defined;
let it be b. Now we have f(a) > f(b). Thus f(b) must be the smallest, hence b = 1. So f(a−1) = b = 1.
But 1 is the minimum of the range, so we must actually have a− 1 = 1, so we now know that f(1) = 1
and f(2) is uniquely the 2nd smallest, giving P2.

Now proceed inductively. Suppose Pn is true. Consider the (n + 1)-st smallest value in the range,
suppose it is attained by f(a). Again, f(a) > f(f(a − 1)), and since we know a 6= 1 (or else it would
be the very smallest), we have f(a − 1) = b. So f(b) is one of the n smallest values. If it were some
i ∈ {1, . . . , n− 1}, then we would also know that b = i by Pn, further giving f(a− 1) = b = i, forcing
a− 1 = i as well, and hence a = i + 1. But then again by Pn, we know f(i + 1) is one of the n smallest
values, contradiction.

Therefore, f(b) is precisely the n-th smallest value, so b = n. This gives f(a− 1) = b = n, which (since
the n− 1 smallest values are known to be {1, . . . , n− 1}) implies that n is the n-th smallest value, i.e.,
a − 1 = n. This shows that f(n) = n and a = n + 1, i.e., f(n + 1) uniquely achieves the (n + 1)-st
smallest value.

3. (MOP97) Let Fk be the Fibonacci sequence, where F0 = F1 = 1 and Fn+2 = Fn + Fn+1. Prove that
for every n, k ∈ N:

Fn ≤ FkFn−k + Fk+1Fn−k−1 ≤ Fn+1

Solution: Write-up for 1997 MOP test 11, problem 3.

4. (MOP97) Prove that for n, k ∈ Z, n > 0, k ≥ 0:

Fn+2 − FkFn−k − Fk+1Fn−k−1 = Fk+1Fn−k

Solution: Write-up for 1997 MOP test 11, problem 3.

5. (MOP97) Given a sequence of numbers {a1, . . . , an}, define the derived sequence {a′1, . . . , a′n+1} by
a′k = S − ak−1 − ak, where

S = min
1≤k≤n+1

(ak−1 + ak) + max
1≤k≤n+1

(ak−1 + ak)
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and a0 = an+1 = 0. Thus, if we start with the sequence {1} of length 1 and apply the derived sequence
operation again and again, we get the family of sequences:

{1}, {1, 1}, {2, 1, 2}, {3, 2, 2, 3}, {5, 3, 4, 3, 5}, . . .

Show that when we apply the operation 2n times in succession to the initial sequence {1} (with n ≥ 1),
we get a sequence whose middle (i.e. (n + 1)-st) term is a perfect square.

Solution: Write-up for 1997 MOP test 11, problem 3.

6. (MOP97) Suppose that each positive integer not greater than n(n2 − 2n + 3)/2 is colored one of two
colors (red or blue). Show that there must be an n-term monochromatic sequence a1 < a2 < · · · an

satisfying

a2 − a1 ≤ a3 − a2 ≤ · · · ≤ an − an−1.

Solution: Write-up for 1997 MOP IMO test 3, problem 2.
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