Red MOP Lecture: June 20, 2002.
 Po-Shen Loh

1 Common abbreviations for geometry problems

Given triangle $A B C$:

- a, b, and c are the lengths of the sides opposing vertices A, B, and C, respectively.
- s is the semiperimeter
- r is the inradius
- R is the circumradius

2 Facts, Part I

1. Extended Law of Sines $a / \sin A=2 R$.
2. $[A B C]=a b c / 4 R$.
3. (Geometry Revisited, page 3.) Let p and q be the radii of two circles through A, touching $B C$ at B and C, respectively. Then $p q=R^{2}$.
4. Ceva Given triangle $A B C$. Let $D \in B C, E \in C A$, and $F \in A B$. Suppose that:

$$
\frac{A F}{F B} \frac{B D}{D C} \frac{C E}{E A}=1
$$

Prove that $A D, B E$, and $C F$ are concurrent.
5. Trig Ceva Given triangle $A B C$. Let $D \in B C, E \in C A$, and $F \in A B$. Suppose that:

$$
\frac{\sin C A D}{\sin D A B} \frac{\sin A B E}{\sin E B C} \frac{\sin B C F}{\sin F C A}=1
$$

Prove that $A D, B E$, and $C F$ are concurrent.
6. Prove that the centroid of a triangle lies $2 / 3$ of the way down each median.
7. Steiner-Lehmus Let $A B C$ be a triangle such that the lengths of two angle bisectors are equal. Prove that $A B C$ is isosceles.
8. (Geometry Revisited, page 13.) Prove that $a b c=4 s r R$.
9. (Geometry Revisited, page 13.) Let r_{a}, r_{b}, and r_{c} be the radii of the three excircles of triangle $A B C$. Prove that $1 / r=1 / r_{a}+1 / r_{b}+1 / r_{c}$.
10. Orthic Triangle The feet of the altitudes of triangle $A B C$ determine a triangle, called the orthic triangle. Prove that the orthocenter of $A B C$ is the incenter of that triangle.
11. Euler Line Let O, G, and H be the circumcenter, centroid, and orthocenter of $A B C$, respectively. Prove that O, G, and H are collinear, and that $H G=2 G O$.

