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1 Introduction

The asymptotic behavior of functionals of the type

Eε(u) :=
∫

Ω

(
1
ε
W (u(x)) + ε|∇u(x)|2

)
dx (1.1)

has received much attention in the last two decades in the context of fluid-fluid phase transitions.
If Ω is an open, bounded domain in RN , with Lipschitz boundary, and if W is a nonnegative bulk
energy density with {W = 0} = {a, b}, then Gibbs’ criterion for equilibria leads to the study of
the problem

(P ) minimize
∫

Ω

W (u(x))dx subject to the constraint
∫

Ω

u(x)dx = m.

If m = θa + (1 − θ)b, 0 < θ < LN (Ω), then the minimum problem (P ) admits infinitely many
solutions. In order to select physically preferred solutions to this problem, and following the ideas
of the gradient theory of phase transitions proposed in 1893 by van der Waals, Cahn and Hilliard
[8] introduced a model where to each configuration u of the two-fluid system an energy Eε which

penalizes the original energy of the system u 7→
∫

Ω

W (u(x))dx through a term containing the

gradient of u and a small parameter ε > 0, i.e. u 7→
∫

Ω

(
W (u(x)) + ε2|∇u|2) dx. The competing
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effects of the resulting two integrals favor separation of phases (i.e. those configurations where u
takes values close to a and b), while penalizing spatial inhomogeneities of u and, consequently, the
introduction of too many transition regions.

The connection between the classical theory of phase transition based on Gibbs’ criterion and
the gradient theory is due to Gurtin [18], [19], who conjectured in 1983 that solutions of

(Pε) minimize Fε(u) subject to the constraint
∫

Ω

u(x)dx = m

converge to minimizers of (P ) having minimal interfacial energy. Gurtin’s conjecture was proved
by Carr, Gurtin, and Slemrod [9] in the scalar case (N = 1), and independently by Modica [20]
and Sternberg [22], in the higher dimensional case N ≥ 2. The approach in [20] and [22] uses
the notion of Γ-convergence, due to De Giorgi [12] (see also [1], [6], [10]), and follows the ideas of
Modica and Mortola [21] who studied a similar functional proposed by De Giorgi in a completely
different physical context.

The vector-valued case, where u : Ω ⊂ RN → Rd (d,N ≥ 2) was considered by Fonseca and
Tartar [16], Sternberg [23], and Barroso and Fonseca [5]. The case where W has more than two
wells was addressed by Baldo [4] (see also Sternberg [23]), and later generalized by Ambrosio [2].

Let Q ⊂ RN be the open unit cube centered at the origin, and given ν ∈ SN−1 := {x ∈ RN :
‖x‖ = 1}, we denote by Qν the cube centered at the origin with two of its faces normal to ν.
Precisely, if {ν1, ..., νN−1, ν} is an orthonormal basis of RN , then

Qν :=
{

x ∈ RN : |x · νi| < 1
2
, |x · ν| < 1

2
, i = 1, ..., N − 1

}
.

In this paper we study a homogenization problem within the context of the gradient theory
of phase transitions, in the vector-valued setting. Let W : RN × Rd → [0, +∞) be a continuous
function satisfying the following hypotheses

(H1) W (·, u) is Q-periodic for every u ∈ Rd;

(H2) W (x, u) = 0 if and only if u ∈ {a, b};
(H3) there exist C > 0 and q ≥ 2 such that

1
C
|u|q − C ≤ W (x, u) ≤ C(1 + |u|q)

for all (x, u) ∈ Ω× Rd,

and let Iε : L1(Ω;Rd) → [0, +∞] be defined by

Iε(u) :=





∫

Ω

(
1
ε
W

(x

ε
, u(x)

)
+ ε|∇u(x)|2

)
dx if u ∈ H1(Ω;Rd)

+∞ otherwise.

The main result of the paper is the following theorem

Theorem 1.1 Assume that (H1)-(H3) hold, let ν ∈ SN−1, ρ : R → [0,+∞) be a mollifier, and
let ρT,ν(x) := TNρ(Tx · ν). Define

K1(ν) = lim
T→∞

1
TN−1

inf

{ ∫

TQν

(
W (y, u(y)) + |∇u(y)|2) dy : u ∈ H1(TQν ;Rd),

u = ρT,ν ∗ u0 on ∂(TQν)

}
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with

u0(x) =
{

b if x · ν > 0,
a if x · ν < 0.

Consider the functional I0 : L1(Ω;Rd) → [0, +∞] defined by

I0(u) :=





∫

∂∗A0∩Ω

K1(ν(x))dHN−1(x) if u ∈ BV (Ω; {a, b}),

+∞ otherwise,

where A0 := {x ∈ Ω : u(x) = a}. Then

(i) Γ(L1(Ω;Rd))− lim inf
ε→0

Iε = I0;

(ii) Assume that the set A0 is polyhedral, and that the outward unit normal ν(x) to the reduced
boundary ∂∗A0 is such that ν(x) ∈ {±e1, · · · ,±eN}, for HN−1-a.e. x ∈ (∂∗A0) ∩ Ω. Then

Γ(L1(Ω;Rd))− lim
ε→0

Iε = I0.

The paper is organized as follows: In Section 2 we recall some facts about functions of bounded
variation, sets of finite perimeter, and Γ-convergence, in Section 3 we prove a compactness re-
sult (Theorem 3.2), and the Γ-liminf inequality, and in Section 4 of the paper we perform the
construction of a recovering sequence for the Γ-limit.

Remark 1.2 Without the additional assumption in part (ii) of Theorem 1.1, some of the tech-
niques used in Section 4.3 to construct a recovering sequence for the Γ-limit would only go through
under the (far too strong) requirement that W (R·, u) be Q-periodic for all rotations R ∈ SO(N),
and u ∈ Rd. Future work will address the general case. The geometry of A0 is important here, as
it can be seen in (4.19), where the periodicity of W (·, u) with respect to the directions orthogonal
to ν(x0) is strongly used.

2 Preliminaries

We begin this section by recalling some facts about functions of bounded variations (we refer the
reader to [3] for details). A function u ∈ L1(Ω;Rd) is said to be of bounded variation, and we write
u ∈ BV (Ω;Rd), if for all i = 1, · · · , d, and j = 1, · · · , N, there exists a Radon measure µij such
that ∫

Ω

ui(x)
∂v

∂xj
(x) dx = −

∫

Ω

v(x) dµij

for every v ∈ C1
c (Ω;R). The distributional derivative Du is the matrix-valued measure with

components µij . Given u ∈ BV (Ω;Rd) the approximate upper and lower limit of each component
ui, i = 1, · · · , d, are given by

u+
i (x) := inf

{
t ∈ R : lim

ε→0+

1
εN
LN ({y ∈ Ω ∩Q(x, ε) : ui(y) > t}) = 0

}

and

u−i (x) := sup
{

t ∈ R : lim
ε→0+

1
εN
LN ({y ∈ Ω ∩Q(x, ε) : ui(y) < t}) = 0

}
,
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while the jump set of u, or singular set, is defined by

S(u) :=
d⋃

i=1

{x ∈ Ω : u−i (x) < u+
i (x)}.

It is well known that S(u) is N − 1 rectifiable, i.e.

S(u) =
∞⋃

n=1

Kn ∪ E,

where HN−1(E) = 0 and Kn is a compact subset of a C1 hypersurface. If x ∈ Ω \ S(u) then u(x)
is taken to be the common value of (u+

1 (x), · · · , u+
d (x)) and (u−1 (x), · · · , u−d (x)). It can be shown

that u(x) ∈ Rd for HN−1-a.e. x ∈ Ω \ S(u). Furthermore, for HN−1-a.e. x ∈ S(u) there exists a
unit vector νu(x) ∈ SN−1, normal to S(u) at x, and two vectors u−(x), u+(x) ∈ Rd (the traces of
u on S(u) at the point x) such that

lim
ε→0

1
εN

∫

{y∈Q(x0,ε):(y−x)·νu(x)>0}
|u(y)− u+(x)|N/(N−1) dy = 0

and
lim
ε→0

1
εN

∫

{y∈Q(x0,ε):(y−x)·νu(x)<0}
|u(y)− u−(x)|N/(N−1) dy = 0.

Note that, in general, (ui)+ 6= (u+)i and (ui)− 6= (u−)i. We denote the jump of u across S(u) by
[u] := u+ − u−. The distributional derivative Du may be decomposed as

Du = ∇uLN + (u+ − u−)⊗ νuHN−1b S(u) + C(u),

where ∇u is the density of the absolutely continuous part of Du with respect to the N -dimensional
Lebesgue measure LN and C(u) is the Cantor part of Du. These three measures are mutually
singular, and the total variation of u,

|Du|(Ω) := sup





∫

Ω

u div φ(x) dx : φ ∈ C1
c (Ω;RN ), ‖φ‖∞ ≤ 1



 ,

is now

|Du|(Ω) =
∫

Ω

|∇u|dx +
∫

S(u)

|u+ − u−|dHN−1 + |C(u)|(Ω).

We recall that if {un} ⊂ BV (Ω;Rd) and un → u in L1(Ω;Rd), then

|Du|(Ω) ≤ lim inf
n→∞

|Dun|(Ω).

We say that a set E ⊂ Ω is of finite perimeter if χE ∈ BV (Ω;R), and we denote by PerΩ(E)
the perimeter of E in Ω, i.e. PerΩ(E) := |DχE |(Ω) given by

PerΩ(E) := sup





∫

E

div φ(x) dx : φ ∈ C1
c (Ω;RN ), ‖φ‖∞ ≤ 1



 .
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Definition 2.1 Let A ⊂ RN be a set of locally finite perimeter and let x0 ∈ RN . We say that
x0 belongs to the reduced boundary of A (and we write x0 ∈ ∂∗A) if, with DχA = −ν|DχA|,
ν ∈ L1

loc(RN ; SN−1) with respect to the Radon measure |DχA|, we have

(i) |DχA|(B(x0, ε)) > 0 for all ε > 0;

(ii) lim
ε→0+

1
LN (B(x0, ε))

∫

B(x0,ε)

ν(x) d|DχA|(x) = ν(x0);

(iii) ‖ν(x0)‖ = 1.

ν is said to be the outward unit normal to the boundary of A at x.

Theorem 2.2 (see [13], [17]) If x ∈ ∂∗A then

lim
δ→0+

1
δN
LN ({y ∈ B(x, δ) \A : (y − x) · ν(x) < 0}) = 0,

lim
δ→0+

1
δN
LN ({y ∈ B(x, δ) ∩A : (y − x) · ν(x) > 0}) = 0.

It can be shown (see [15]) that if PerΩ(A) < +∞ then for HN−1-a.e. x ∈ Ω ∩ ∂∗A

lim
δ→0+

1
δN−1

HN−1((Ω ∩ ∂∗A) ∩ (x + δQν(x))) = 1. (2.1)

Theorem 2.3 (see [4, Lemma 3.1]) Let A be a subset of Ω such that PerΩ(A) < +∞. There
exists a sequence of polyhedral sets {Ak} (i.e. Ak are bounded, Lipschitz domains with ∂Ak =
H1 ∪ H2 ∪ ... ∪ Hp, where each Hi is a closed subset of a hyperplane {x ∈ RN : x · νi = αi})
satisfying the following properties:

(i) lim
k→∞

LN [((Ak ∩ Ω) \A) ∪ (A \ (Ak ∩ Ω))] = 0;

(ii) lim
k→∞

PerΩ(Ak) = PerΩ(A);

(iii) HN−1(∂Ak ∩ ∂Ω) = 0;

(iv) LN (Ak) = LN (A).

Let εn → 0+. A functional
I : L1(Ω;Rd) → [0,∞]

is called the Γ-liminf (resp. Γ-limsup) of a sequence of functionals {Iεn} with respect to the strong
convergence in L1(Ω;Rd) if for every u ∈ L1(Ω;Rd)

I(u) = inf
{

lim inf
n→∞

(resp. lim sup
n→∞

)Iεn(un) : un ∈ L1(Ω;Rd), un → u in L1(Ω;Rd)
}

,

and we write

I = Γ− lim inf
n→∞

Iεn

(
resp. I = Γ− lim sup

n→∞
Iεn

)
.

We say that the sequence {Iεn} Γ-converges to I if the Γ-liminf and the Γ-limsup coincide, and we
write

I = Γ− lim
n→∞

Iεn .
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The functional I is said to be the Γ-liminf ( resp. Γ-limsup) of the family of functionals {Iε} with
respect to the strong convergence in L1(Ω;Rd) if for every sequence εn → 0+ we have that

I = Γ− lim inf
n→∞

Iεn

(
resp. I = Γ− lim sup

n→∞
Iεn

)
,

and we write

I = Γ− lim inf
ε→0

Iε

(
resp. I = Γ− lim sup

ε→0
Iε

)
.

Finally, if Γ-liminf and Γ-limsup coincide, we say that I is the Γ-limit of the family of functionals
{Iε}, and we write

I = Γ− lim
ε→0

Iε.

The following lemma is very useful in many diagonalization arguments.

Lemma 2.4 (Lemma 7.1 in [7]) Let {ak,j} be a doubly indexed sequence of real numbers. If

lim
k→∞

lim
j→∞

ak,j = L,

then there exists an increasing subsequence {k(j)} ↗ +∞ such that lim
j→∞

ak(j),j = L.

In order to prove Theorem 1.1, it is enough to show that every sequence {εn} of positive numbers
converging to zero has a subsequence {εnk

} such that Iεnk
Γ(L1(Ω;Rd))-converges to I0 (see [10],

[11]). We divide the proof of Theorem 1.1 into two parts, which are dealt with in Sections 3 and
4 of the paper. In the sequel, C will denote a generic positive constant that may vary from line to
line, and expression to expression.

3 Compactness and the Γ− lim inf inequality

We first show that the limit in the definition of K1(ν) is well defined.

Lemma 3.1 For all ν ∈ SN−1 the limit

lim
T→∞

1
TN−1

inf





∫

TQν

(
W (y, u(y)) + |∇u(y)|2) dy : u ∈ H1(TQν ;Rd), u = ρT,ν ∗ u0 on ∂(TQν)





exists.

Proof. Assume, without loss of generality that ν = eN , and write ρT for ρT,eN
. For any T > 0,

define

g(T ) :=
1

TN−1
inf





∫

TQ

(
W (y, u(y)) + |∇u(y)|2) dy : u ∈ H1(TQ;Rd), u = ρT ∗ u0 on ∂(TQ)



 ,

and let uT ∈ H1(TQ;Rd) be such that uT = ρT ∗ u0 on ∂(TQ), and

1
TN−1

∫

TQ

(
W (y, uT (y)) + |∇uT (y)|2) dy ≤ g(T ) +

1
T

. (3.1)
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Let S > T +3, and let ET,S , E∗
T,S ⊂

(
S − 1

T

)
Q∩{x ∈ RN : xN = 0}, MS,T :=

[(
S− 1

T

[T ]+2

)N−1
]
∈ N,

and zi ∈ ZN−1 × {0} (i = 1, · · · ,MS,T ) be such that

(
S − 1

T

)
Q ∩ {

x ∈ RN : xN = 0
}

=




MS,T⋃

i=1

(zi + ([T ] + 2)Q) ∩ {
x ∈ RN : xN = 0

}

 ∪ ET,S

=




MS,T⋃

i=1

(zi + TQ) ∩ {
x ∈ RN : xN = 0

}

 ∪ E∗

T,S .

We have

LN−1 (ET,S) =
(

S − 1
T

)N−1

−MS,T ([T ] + 2)N−1

and so, since

E∗
T,S = ET,S ∪




MS,T⋃

i=1

((zi + ([T ] + 2)Q) \ (zi + TQ)) ∩ {
x ∈ RN : xN = 0

}

 ,

we obtain

LN−1
(
E∗

T,S

)
=

(
S − 1

T

)N−1

−MS,T TN−1. (3.2)

Consider cut-off functions ϕS,T ∈ Cc(SQ; [0, 1]) and, for 2 ≤ m < T, i ∈ {1, · · · ,MS,T }, ϕm,i ∈
Cc

(
zi +

(
T + 1

m

)
Q; [0, 1]

)
such that

ϕS,T (x) = 0 if x ∈ ∂(SQ), ϕS,T (x) = 1 if x ∈
(

S − 1
T

)
Q, ‖∇ϕS,T ‖∞ ≤ CT,

and

ϕm,i(x) = 0 if x ∈ ∂

(
zi +

(
T +

1
m

)
Q

)
, ϕm,i(x) = 1 if x ∈ zi + TQ, ‖∇ϕm,i‖∞ ≤ Cm.

Define vS ∈ H1(SQ;Rd) by

vS(x) :=





uT (x− zi) if x ∈ zi + TQ,

ϕm,i(x)(ρT ∗ u0)(x) + (1− ϕm,i(x))(ρm ∗ u0)(x) if x ∈ (
zi +

(
T + 1

m

)
Q

) \ (zi + TQ),

ϕS,T (x)(ρm ∗ u0)(x) + (1− ϕS,T (x))(ρS ∗ u0)(x) if x ∈ SQ \ (
S − 1

T

)
Q.

Note that since zi · eN = 0, we have

uT (· − zi)|∂(zi+TQ) = (ρT ∗ u0)(· − zi)|∂(zi+TQ) = (ρT ∗ u0)(·)|∂(zi+TQ),

and thus vS is a Sobolev function, admissible for the infimum in the definition of g(S). We obtain
that

g(S) ≤ 1
SN−1

∫

SQ

(
W (x, vS(x)) + |∇vS(x)|2) dx

≤ I1(S, T ) + I2(S, T, m) + I3(S, T, m) + I4(S, T,m), (3.3)
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where

I1(S, T ) :=
1

SN−1

MS,T∑

i=1

∫

zi+TQ

(
W (x, uT (x− zi)) + |∇uT (x− zi)|2

)
dx,

I2(S, T,m) :=
1

SN−1

MS,T∑

i=1

∫

(zi+(T+ 1
m )Q)\(zi+TQ)

(
W (x, (ϕm,i(ρT ∗ u0) + (1− ϕm,i)(ρm ∗ u0)) (x))

+ |∇ (ϕm,i(ρT ∗ u0) + (1− ϕm,i)(ρm ∗ u0)) (x)|2
)

dx,

I3(S, T,m) =
1

SN−1

∫

E∗T,S×(− 1
m , 1

m )

(
W (x, (ρm ∗ u0)(x)) + |∇(ρm ∗ u0)(x)|2) dx,

and

I4(S, T, m) :=
1

SN−1

∫

SQ\(S− 1
T )Q

(
W (x, (ϕS,T (ρm ∗ u0) + (1− ϕS,T )(ρS ∗ u0)) (x))

+ |∇ (ϕS,T (ρm ∗ u0) + (1− ϕS,T )(ρS ∗ u0)) (x)|2
)

dx.

In view of (H1) and (3.1), and because zi ∈ ZN , we get W (·+ zi, ·) = W (· , ·), and

I1(S, T ) =
1

SN−1
MS,T

∫

TQ

(
W (x, uT (x)) + |∇uT (x)|2) dx ≤ 1

SN−1
MS,T TN−1

(
g(T ) +

1
T

)

≤ g(T ) +
1
T

. (3.4)

Using (H2), (H3), and the facts that (ρT ∗ u0) (x) ∈ {a, b} if |xN | ≥ 1
T and (ρm ∗ u0) (x) ∈ {a, b} if

|xN | ≥ 1
m , we obtain that

I2(S, T,m) ≤ C

SN−1

MS,T∑

i=1

∫

((zi+(T+ 1
m )Q)\(zi+TQ))∩{x∈RN : |xN |< 1

T }

(
1 + |ρT ∗ u0|q

+ ‖∇(ρT ∗ u0)‖2∞
)

dx

+
C

SN−1

MS,T∑

i=1

∫

((zi+(T+ 1
m )Q)\(zi+TQ))∩{x∈RN : |xN |< 1

m}

(
1 + |ρT ∗ u0|q + |ρm ∗ u0|q

+ ‖∇ϕm,i‖2∞ + ‖∇(ρm ∗ u0)‖2∞
)

dx
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≤ C

SN−1
MS,T

((
T +

1
m

)N−1

− TN−1

)
1 + T 2

T

+
C

SN−1
MS,T

((
T +

1
m

)N−1

− TN−1

)
1 + m2

m

≤ C

(
1
m
· TN−2 + TN

TN
+

1 + m2

m2
· 1
T

)
. (3.5)

Using again (H3), and in view of (3.2), we have

I3(S, T,m) ≤ C

SN−1

∫

E∗T,S×(− 1
m , 1

m )

(
1 + |(ρm ∗ u0)(x)|q + |∇(ρm ∗ u0)(x)|2) dx

≤ C

SN−1
· 1 + m2

m

((
S − 1

T

)N−1

− TN−1

((
S − 1

T

[T ] + 2

)N−1

− 1

))
(3.6)

=
C(1 + m2)

m

((
1− 1

ST

)N−1

−
(

T

[T ] + 2

)N−1 (
1− 1

ST

)N−1

+
(

T

S

)N−1
)

.

Finally,

I4(S, T,m) ≤ C

SN−1

∫

(SQ\(S− 1
T )Q)∩{x∈RN : |xN |< 1

S}

(
1 + |ρS ∗ u0|q + ‖∇(ρS ∗ u0)‖2∞

)
dx

+
C

SN−1

∫

(SQ\(S− 1
T )Q)∩{x∈RN : |xN |< 1

m}

(
1 + |ρS ∗ u0|q + |ρm ∗ u0|q

+ ‖∇ϕS,T ‖2∞ + ‖∇(ρm ∗ u0)‖2∞
)

dx

≤ C(1 + S2)
SN−1

(
SN−1 −

(
S − 1

T

)N−1
)

1
S

+
C(1 + T 2 + m2)

SN−1

(
SN−1 −

(
S − 1

T

)N−1
)

1
m

≤ C
SN−2 + SN

SN
· 1
T

+ C
(1 + T 2 + m2)

Tm
· 1
S

. (3.7)

Taking into account (3.4), (3.5), (3.6), and (3.7), we obtain

lim sup
m→∞

lim inf
T→∞

lim sup
S→∞

(I1(S, T ) + I2(S, T, m) + I3(S, T,m) + I4(S, T,m)) ≤ lim inf
T→∞

g(T ).

Thus, in view of (3.3), we deduce that

lim sup
S→∞

g(S) ≤ lim inf
T→∞

g(T ).

2

We continue this section with the following compactness result
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Theorem 3.2 Let εn → 0+, and {un} ⊂ H1(Ω;Rd) be such that

sup
n∈N

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx < +∞.

Then there exists u ∈ L1(Ω;Rd), with u(x) ∈ {a, b} LN -a.e x ∈ Ω such that, up to a subsequence,
un → u strongly in L1(Ω;Rd).

Proof. First, note that

lim
n→∞

∫

Ω

W

(
x

εn
, un(x)

)
dx = 0. (3.8)

By the coercivity condition in (H3), there exists a constant R > 0 such that

W (y, u) ≥ C|u| for LN − a.e. y ∈ RN , |u| > R.

Define wn(x) := un(x)χ{x∈Ω : |un(x)|>R}(x), and set vn(x) := un(x)− wn(x), x ∈ Ω. Thus,
∫

Ω

|wn(x)|dx =
∫

{x∈Ω : |un(x)|>R}

|un(x)|dx ≤ 1
C

∫

Ω

W

(
x

εn
, un(x)

)
dx,

which gives, in view of (3.8),

wn → 0 strongly in L1(Ω;Rd). (3.9)

Taking into account (3.8) one more time, we also have that
∫

Ω

W

(
x

εn
, vn(x)

)
dx =

∫

{x∈Ω : |un(x)|≤R}

W

(
x

εn
, vn(x)

)
dx +

∫

{x∈Ω : |un(x)|>R}

W

(
x

εn
, 0

)
dx

≤
(

1 +
C

R

) ∫

Ω

W

(
x

εn
, un(x)

)
dx → 0 as n →∞. (3.10)

Set W (u) := min
y∈Q

W (y, u), and note that W : Rd → [0,∞) is continuous on Rd, W (u) = 0 if

and only if u ∈ {a, b}, and that by the coercivity condition in (H3) there exists C > 0 such that
W (u) ≥ C|u|, for |u| sufficiently large. We have

0 ≤
∫

Ω

W (vn(x))dx ≤
∫

Ω

W

(
x

εn
, vn(x)

)
dx.

Thus, by (3.10),

lim
n→∞

∫

Ω

W (vn(x))dx = 0.

We may now proceed as in Fonseca and Tartar [16] (see the proof of their Theorem 4.1) to conclude
that there exists u ∈ L1(Ω;Rd), and a subsequence (not relabelled) of {vn}, which converges to u
strongly in L1(Ω;Rd). Taking into account (3.9), and since un = vn + wn, we deduce that un → u
strongly in L1(Ω;Rd). 2

In the remainder of the section we prove part (i) of Theorem 1.1. Precisely,
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Proposition 3.3 Let (H1)-(H3) hold, and let u ∈ L1(Ω;Rd) be given. If εn → 0+ and if {un} ⊂
H1(Ω;Rd) is such that un → u in L1(Ω;Rd), then

lim inf
n→∞

Iεn(un) ≥ I0(u).

Proof. Step 1. If u ∈ L1(Ω;Rd) and LN ({x ∈ Ω : u(x) /∈ {a, b}}) > 0 then

for any sequence εn → 0+ and for any {un} ⊂ H1(Ω;Rd) such that un → u in L1(Ω;Rd), we have∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx → +∞. (3.11)

Indeed, if for some sequences εn → 0+, and un → u in L1(Ω;Rd)

sup
n∈N

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx < +∞,

then

lim
n→∞

∫

Ω

W

(
x

εn
, un(x)

)
dx = 0. (3.12)

For x = (x1, · · · , xN ) ∈ RN , consider the Q-periodic function v(x) = {x} := ({x1}, · · · , {xN}),
where, for each i ∈ {1, 2, · · · , N}, {xi} := xi−[xi] ([y] stands for the integer part of the real number
y), and define vn(x) := v

(
x
εn

)
. Up to a subsequence (not relabelled), {vn} and {un} generate the

Young measures {νx}x∈Ω and {µx}x∈Ω respectively, where {νx}x∈Ω is homogeneous

〈νx, ϕ〉 = 〈ν, ϕ〉 :=
∫

Q

ϕ(v(y))dy for LN − a.e. x ∈ Ω,

and, in view of the strong convergence of un to u in L1(Ω;Rd),

µx = δu(x) for LN − a.e. x ∈ Ω.

Thus, the sequence (vn, un) : Ω → RN × Rd generates the Young measure {ν ⊗ δu(x)}x∈Ω. By the
Fundamental Theorem on Young measures, and using the periodicity of W in its first variable, we
have that

lim
n→∞

∫

Ω

W

(
x

εn
, un(x)

)
dx = lim inf

n→∞

∫

Ω

W (vn(x), un(x)) dx

≥
∫

Ω

∫

RN×Rd

W (A, B)d(ν ⊗ δu(x))(A, B)dx =
∫

Ω

∫

Q

W (y, u(x))dydx.

Thus, in view of (3.12),
∫

Ω

∫

Q

W (y, u(x))dydx ≤ 0.

The fact that W is nonnegative, together with (H2), implies that u(x) ∈ {a, b} for LN -a.e. x ∈ Ω,
and we have reached a contradiction.
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Step 2. Let u(x) = χA0(x) · a + (1 − χA0(x)) · b and assume that u /∈ BV (Ω;Rd), that is,
PerΩ(A0) = +∞. We will show once again that (3.11) is satisfied. We argue by contradiction.
Suppose that there exists a subsequence (not relabelled) such that un → u in L1(Ω;Rd), and

sup
n∈N

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx < +∞.

Then, by the Cauchy-Schwarz inequality, we obtain that,

sup
n∈N

∫

Ω

√
W

(
x

εn
, un(x)

)
|∇un(x)| dx ≤ C.

Set W (u) := min
y∈Q

W (y, u). As we have already observed (see the proof of Theorem 3.2), W : Rd →
[0,∞) is continuous on Rd, W (u) = 0 if and only if u ∈ {a, b}, and there exists C > 0 such that
W (u) ≥ C|u|, for |u| sufficiently large. In view of Lemma 3.7 in [16], for suitable M > 0 the
function

Φ(u) := inf





1∫

−1

√
min{W (γ(s)),M} |γ′(s)| ds : γ is piecewise C1, γ(−1) = a, γ(1) = u





is Lipschitz continuous and |∇(Φ ◦ v)(x)| ≤
√

W (v(x))|∇v(x)| for any v ∈ H1(Ω;Rd), and LN -a.e.
x ∈ Ω. Thus

sup
n∈N

‖∇(Φ ◦ un)‖L1(Ω;Rd) < +∞.

Therefore |D(Φ ◦ u)|(Ω) < +∞, and since Φ ◦ u = χA0Φ(a) + (1 − χA0)Φ(b), we obtain that
PerΩ(A0) < +∞, which contradicts our initial assumption on u.

Step 3. It remains to prove the proposition in the case where u(x) = χA0(x) ·a+(1−χA0(x)) ·b
with PerΩ(A0) < +∞. Here, I0(u) =

∫

Ω∩∂∗A0

K1(ν(x))dHN−1(x), and it suffices to show that for

any sequence εn → 0+ and for any {un} ⊂ H1(Ω;Rd) such that un → u in L1(Ω;Rd), we have
∫

Ω∩∂∗A0

K1(ν(x))dHN−1(x) ≤ lim inf
n→∞

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx. (3.13)

Upon extracting a subsequence (not relabelled) we may assume, without loss of generality, that

lim inf
n→∞

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx

= lim
n→∞

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx < +∞.

and that there exists a finite Radon measure µ ≥ 0, such that

1
εn

W

( ·
εn

, un(·)
)

+ εn|∇un(·)|2 ⇀ µ, (3.14)
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weakly* in the sense of measures. We claim that

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x) ≥ K1(ν(x)), for HN−1 − a.e. x ∈ Ω ∩ ∂∗A0. (3.15)

Let δk → 0+ be such that for HN−1 − a.e. x0 ∈ Ω ∩ ∂∗A0 we have µ(∂Qν(x0)(x0, δk)) = 0 for all
k ∈ N, and

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0) = lim

δ→0

µ(Qν(x0)(x0, δ))
δN−1

,

where we have taken into account (2.1). Thus, in view of (3.14), we have that

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0) = lim

k→∞
µ(Qν(x0)(x0, δk))

δN−1
k

= lim
k→∞

lim
n→∞

1
δN−1
k

∫

Qν(x0)(x0,δk)

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx.

Let uk,n(x) := un(x0 + δkx), x ∈ Qν(x0). Changing variables, we deduce that

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0)

= lim
k→∞

lim
n→∞

∫

Qν(x0)

(
δk

εn
W

(
x0 + δky

εn
, un(x0 + δky)

)
+ εnδk|∇un(x0 + δky)|2

)
dy

= lim
k→∞

lim
n→∞

∫

Qν(x0)

(
δk

εn
W

(
x0 + δky

εn
, uk,n(y)

)
+

εn

δk
|∇uk,n(y)|2

)
dy. (3.16)

Let mn ∈ ZN and sn ∈ [0, 1)N be such that x0
εn

= mn + sn. Put xk,n := − εn

δk
sn, and note that we

have lim
k→∞

lim
n→∞

xk,n = 0. Changing variables, and using the periodicity of W (·, u), we obtain that

lim
k→∞

lim
n→∞

∫

Qν(x0)

(
δk

εn
W

(
x0 + δky

εn
, uk,n(y)

)
+

εn

δk
|∇uk,n(y)|2

)
dy

= lim
k→∞

lim
n→∞

∫

−xk,n+Qν(x0)

(
δk

εn
W

(
x0 + δk(z + xk,n)

εn
, uk,n(z + xk,n)

)
+

εn

δk
|∇uk,n(z + xk,n)|2

)
dz

= lim
k→∞

lim
n→∞

∫

−xk,n+Qν(x0)

(
δk

εn
W

(
δk

εn
z, uk,n(z + xk,n)

)
+

εn

δk
|∇uk,n(z + xk,n)|2

)
dz. (3.17)

Recall that

u0(x) =
{

b if x · ν(x0) > 0,
a if x · ν(x0) < 0.

We claim that

lim
k→∞

lim
n→∞

‖uk,n − u0‖L1(Qν(x0);Rd) = 0. (3.18)
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Indeed, after changing variables, and making use of Lebesgue’s Dominated Convergence Theorem,

lim
k→∞

lim
n→∞

∫

Qν(x0)

|uk,n(x)− u0(x)|dx

= lim
k→∞

lim
n→∞

{ ∫

Qν(x0)∩{x∈RN :x·ν(x0)>0}

|un(x0 + δkx)− b|dx

+
∫

Qν(x0)∩{x∈RN :x·ν(x0)<0}

|un(x0 + δkx)− a|dx

}

= lim
k→∞





∫

Qν(x0)∩{x∈RN :x·ν(x0)>0}

|u(x0 + δkx)− b|dx +
∫

Qν(x0)∩{x∈RN :x·ν(x0)<0}

|u(x0 + δkx)− a|dx





= lim
k→∞

1
δN
k

{ ∫

Qν(x0)(x0,δk)∩{x∈RN :x·ν(x0)>x0·ν(x0)}

|u(x)− b|dx

+
∫

Qν(x0)(x0,δk)∩{x∈RN :x·ν(x0)<x0·ν(x0)}

|u(x)− a|dx

}

= |b− a| lim
k→∞

{
LN ({x ∈ Qν(x0)(x0, δk) ∩A0 : x · ν(x0) > x0 · ν(x0)})

δN
k

+
LN ({x ∈ Qν(x0)(x0, δk) \A0 : x · ν(x0) < x0 · ν(x0)})

δN
k

}
= 0,

where the last equality follows by Theorem 2.2.
A diagonalization process allows us to find an increasing sequence {nk} ↗ ∞ such that, denot-

ing ηk := εnk

δk
, xk := xk,nk

, wk(z) := uk,nk
(z + xk), we have

lim
k→∞

ηk = lim
k→∞

lim
n→∞

εn

δk
= 0,

lim
k→∞

xk = lim
k→∞

lim
n→∞

xk,n = 0,

in view of (3.18),

lim
k→∞

‖wk − u0‖L1(Qν(x0);Rd) = lim
k→∞

lim
n→∞

‖uk,n − u0‖L1(Qν(x0);Rd) = 0,

and, in addition,

lim
k→∞

∫

−xk+Qν(x0)

(
1
ηk

W

(
z

ηk
, wk(z)

)
+ ηk|∇wk(z)|2

)
dz

= lim
k→∞

lim
n→∞

∫

−xk,n+Qν(x0)

(
δk

εn
W

(
δk

εn
z, uk,n(z + xk,n)

)
+

εn

δk
|∇uk,n(z + xk,n)|2

)
dz.
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By (3.16) and (3.17), we obtain

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0) = lim

k→∞

∫

−xk+Qν(x0)

(
1
ηk

W

(
z

ηk
, wk(z)

)
+ ηk|∇wk(z)|2

)
dz. (3.19)

Since xk → 0 as k → ∞, for k sufficiently large there exists a cube Qk ⊂⊂ Qν(x0), such that
Qk ⊂ (−xk + Qν(x0)), and lim

k→∞
LN (Qν(x0) \Qk) = 0. In view of (3.19), we deduce that

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0) ≥ lim sup

k→∞

∫

Qk

(
1
ηk

W

(
z

ηk
, wk(z)

)
+ ηk|∇wk(z)|2

)
dz. (3.20)

Let Lk,j := {x ∈ Qk : dist(x, ∂Qk) < 1/j}. Divide Lk,j into Mk,j equidistant layers L
(i)
k,j (i =

1, · · · ,Mk,j) of width ηk‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖1/2

L2(Qν(x0);Rd)
, so that

Mk,jηk‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖1/2

L2(Qν(x0);Rd)
= O(1/j) (3.21)

Select now one of these layers L
(i0)
k,j such that

∫

L
(i0)
k,j

(
1 + |wk|q + |ρ 1

ηk
,ν(x0) ∗ u0|q + η2

k|∇wk|2 + η2
k|∇(ρ 1

ηk
,ν(x0) ∗ u0)|2

+
|wk − ρ 1

ηk
,ν(x0) ∗ u0|2

‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖L2(Qν(x0);Rd)

)
dx

≤ 1
Mk,j

∫

Lk,j

(
1 + |wk|q + |ρ 1

ηk
,ν(x0) ∗ u0|q + η2

k|∇wk|2 + η2
k|∇(ρ 1

ηk
,ν(x0) ∗ u0)|2

+
|wk − ρ 1

ηk
,ν(x0) ∗ u0|2

‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖L2(Qν(x0);Rd)

)
dx. (3.22)

Consider cut-off functions ϕk,j ∈ C∞c (Qν(x0); [0, 1]) such that

ϕk,j(x) = 0 if x ∈



Mk,j⋃

i=i0+1

L
(i)
k,j


 ∪ (Qν(x0) \Qk),

ϕk,j(x) = 1 if x ∈
(

i0−1⋃

i=1

L
(i)
k,j

)
∪ (Qk \ Lk,j),

and

‖∇ϕk,j‖∞ = O


 1

ηk‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖1/2

L2(Qν(x0);Rd)


 .

Define

wk,j := ϕk,jwk + (1− ϕk,j)(ρ 1
ηk

,ν(x0) ∗ u0).
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We have∫

Qk

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz

=
∫

 
i0−1S
i=1

L
(i)
k,j

!
∪(Qk\Lk,j)

(
1
ηk

W

(
z

ηk
, wk(z)

)
+ ηk|∇wk(z)|2

)
dz

+
∫

L
(i0)
k,j

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz

+
∫

Mk,jS
i=i0+1

L
(i)
k,j

(
1
ηk

W

(
z

ηk
, (ρ 1

ηk
,ν(x0) ∗ u0)(z)

)
+ ηk|∇(ρ 1

ηk
,ν(x0) ∗ u0)(z)|2

)
dz

=: Ak,j + Bk,j + Ck,j . (3.23)

Taking into account the growth condition in (H3), we have

Bk,j ≤ C

∫

L
(i0)
k,j

(
1
ηk

(
1 + |wk|q + |ρ 1

ηk
,ν(x0) ∗ u0|q

)
+ ηk

(
|∇wk −∇(ρ 1

ηk
,ν(x0) ∗ u0)|2

+ |∇(ρ 1
ηk

,ν(x0) ∗ u0)|2 + ‖∇ϕk,j‖2∞|wk − ρ 1
ηk

,ν(x0) ∗ u0|2
))

dx

≤ C

ηk

∫

L
(i0)
k,j

(
1 + |wk|q + |ρ 1

ηk
,ν(x0) ∗ u0|q + η2

k|∇wk|2 + η2
k|∇(ρ 1

ηk
,ν(x0) ∗ u0)|2

+
|wk − ρ 1

ηk
,ν(x0) ∗ u0|2

‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖L2(Qν(x0);Rd)

)
dx

In view of (3.21) and (3.22) we obtain the estimate

Bk,j ≤ C

ηkMk,j

∫

Lk,j

(
1 + |wk|q + |ρ 1

ηk
,ν(x0) ∗ u0|q + η2

k|∇wk|2 + η2
k|∇(ρ 1

ηk
,ν(x0) ∗ u0)|2

+
|wk − ρ 1

ηk
,ν(x0) ∗ u0|2

‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖L2(Q;Rd)

)
dx

= O(j)‖wk − ρ 1
ηk

,ν(x0) ∗ u0‖1/2

L2(Qν(x0);Rd)

∫

Lk,j

(
1 + |wk|q + |ρ 1

ηk
,ν(x0) ∗ u0|q + η2

k|∇wk|2+

+ η2
k|∇(ρ 1

ηk
,ν(x0) ∗ u0)|2 +

|wk − ρ 1
ηk

,ν(x0) ∗ u0|2
‖wk − ρ 1

ηk
,ν(x0) ∗ u0‖L2(Qν(x0);Rd)

)
dx,

which gives

lim sup
j→∞

lim sup
k→∞

Bk,j = 0. (3.24)

16



Using again the growth condition in (H3), we have that

lim sup
j→∞

lim sup
k→∞

Ck,j

≤ lim
j→∞

lim sup
k→∞

∫

Mk,jS
i=i0+1

L
(i)
k,j

1
ηk

(
1 + |(ρ 1

ηk
,ν(x0) ∗ u0)(z)|q + η2

k|∇(ρ 1
ηk

,ν(x0) ∗ u0)(z)|2
)

dz

≤ lim sup
j→∞

lim sup
k→∞

C

ηk
LN







Mk,j⋃

i=i0+1

L
(i)
k,j


 ∩ {x ∈ Qν(x0) : |x · ν(x0)| < ηk}


 = 0. (3.25)

Similarly, and in view of our choice of the cubes Qk, we obtain that

lim sup
k→∞

∫

Qν(x0)\Qk

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz

≤ lim sup
k→∞

C

ηk
LN

((
Qν(x0) \Qk

) ∩ {x ∈ Qν(x0) : |x · ν(x0)| < ηk}
)

= 0,

and thus, taking into account (3.23), (3.24), and (3.25),

lim sup
j→∞

lim sup
k→∞

∫

Qν(x0)

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz

= lim sup
j→∞

lim sup
k→∞


Ak,j + Bk,j + Ck,j +

∫

Qν(x0)\Qk

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz




= lim sup
j→∞

lim sup
k→∞

Ak,j ≤ lim sup
k→∞

∫

Qk

(
1
ηk

W

(
z

ηk
, wk(z)

)
+ ηk|∇wk(z)|2

)
dz.

In view of (3.20), we obtain that

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0)

≥ lim sup
j→∞

lim sup
k→∞

∫

Qν(x0)

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz. (3.26)

A diagonalization procedure (see Lemma 2.4) allows us to construct an increasing subsequence
{k(j)} ↗ ∞ such that

lim sup
j→∞

lim sup
k→∞

∫

Qν(x0)

(
1
ηk

W

(
z

ηk
, wk,j(z)

)
+ ηk|∇wk,j(z)|2

)
dz

= lim
j→∞

∫

Qν(x0)

(
1

ηk(j)
W

(
y

ηk(j)
, wk(j),j(y)

)
+ ηk(j)|∇wk(j),j(y)|2

)
dy

= lim
j→∞

ηN
k(j)

∫

1
ηk(j)

Qν(x0)

(
1

ηk(j)
W

(
z, wk(j),j(ηk(j)z)

)
+ ηk(j)|∇wk(j),j(ηk(j)z)|2

)
dz, (3.27)
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after making the change of variables y = ηk(j)z. Define vj ∈ H1
(

1
ηk(j)

Qν(x0);Rd
)

by vj(z) :=
wk(j),j(ηk(j)z). Since wk(j),j = ρ 1

ηk(j)
,ν(x0) ∗ u0 on ∂Qν(x0), we have that

vj = ρ 1
ηk(j)

,ν(x0) ∗ u0 on ∂

(
1

ηk(j)
Qν(x0)

)
,

and, in addition,

lim
j→∞

ηN
k(j)

∫

1
ηk(j)

Qν(x0)

(
1

ηk(j)
W

(
z, wk(j),j(ηk(j)z)

)
+ ηk(j)|∇wk(j),j(ηk(j)z)|2

)
dz

= lim
j→∞

ηN−1
k(j)

∫

1
ηk(j)

Qν(x0)

(
W (z, vj(z)) + |∇vj(z)|2) dz (3.28)

≥ lim
j→∞

(
ηN−1

k(j) inf

{ ∫

1
ηk(j)

Qν(x0)

(
W (z, u(z)) + |∇u(z)|2) dz : u ∈ H1

(
1

ηk(j)
Qν(x0);R

d

)
,

u = ρ 1
ηk(j)

,ν(x0) ∗ u0 on ∂

(
1

ηk(j)
Qν(x0)

) })
,

where we have used the fact that vj is admissible for the infimum in the definition of K1(ν(x0)).
Combining (3.26), (3.27), and (3.28), we deduce that

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x0)

≥ lim inf
T→∞

1
TN−1

inf

{ ∫

TQν(x0)

(
W (y, u(y)) + |∇u(y)|2) dy : u ∈ H1(TQν(x0);R

d),

u = ρT,ν(x0) ∗ u0 on ∂(TQν(x0))

}

= K1(ν(x0)),

asserting (3.15).
In view of (3.14), we have that

lim
n→∞

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx ≥ µ(Ω)

≥
∫

Ω

dµ

dHN−1b (Ω ∩ ∂∗A0)
(x)dHN−1b (Ω ∩ ∂∗A0)(x)

≥
∫

Ω∩∂∗A0

K1(ν(x))dHN−1(x),

and we deduce that (3.13) holds, which concludes the proof. 2
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4 The construction of a recovering sequence for the Γ-limit

In this section we prove part (ii) of Theorem 1.1. In view of Steps 1 and 2 in the proof of Proposition
3.3, it suffices to prove

Proposition 4.1 Given any u ∈ BV (Ω; {a, b}) and any sequence εn → 0+, there exists a sequence
{un} ⊂ H1(Ω;Rd) such that un → u in L1(Ω;Rd) and

lim
n→∞

∫

Ω

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un|2

)
dx =

∫

Ω∩∂∗A0

K1(ν(x))dHN−1(x). (4.1)

For the proof of Proposition 4.1, it will be enough to show that given any sequence εn → 0+, (4.1)
holds for a subsequence {εRn } of {εn}. Indeed, recalling the main result of the previous section
(Proposition 3.3) we then obtain that the Γ(L1)-limit of IεRn is I0, which is independent on the
specific subsequence {εRn }. In light of Proposition 7.11 in [6], we deduce that, in fact, Iε Γ(L1)-
converges to I0. The proof of Proposition 4.1 relies on the following result which will allow us to
modify competing sequences near the boundary without increasing the total energy.

Lemma 4.2 Assume that (H1)-(H3) hold, let ν be a unit vector and let

u0(x) :=
{

b if x · ν > 0,
a if x · ν < 0.

Let ρ : R → [0, +∞) be a mollifier and set vn := ρ 1
εn

,ν ∗ u0, where ρ 1
εn

,ν(x) :=
(

1
εn

)N

ρ
(

x·ν
εn

)
,

and {εn} is a sequence of real numbers such that εn → 0+. If {un} is a sequence in H1(Qν ;Rd)
converging in L1(Qν ;Rd) to u0, then there exists a sequence {wn} in H1(Qν ;Rd) such that wn → u0

in L1(Qν ;Rd), wn = vn on ∂Qν , and

lim sup
n→∞

∫

Qν

(
1
εn

W

(
x

εn
, wn(x)

)
+ εn|∇wn(x)|2

)
dx

≤ lim inf
n→∞

∫

Qν

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx.

Proof. Assume, without loss of generality, that

lim inf
n→∞

∫

Qν

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx

= lim
n→∞

∫

Qν

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx < +∞,

and that un(x) → u0(x) LN - a.e. x ∈ Qν . Thus,

lim
n→∞

∫

Qν

(
W

(
x

εn
, un(x)

)
+ ε2

n|∇un(x)|2
)

dx = 0. (4.2)

By (H3) we have

|un(x)− u0(x)|q ≤ C

(
W

(
x

εn
, un(x)

)
+ 1

)
,
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and we deduce that

CLN (Qν)− lim sup
n→∞

‖un − u0‖2Lq(Qν ;Rd) = lim inf
n→∞

∫

Qν

(
CW

(
x

εn
, un(x)

)
+ C − |un(x)− u0(x)|q

)
dx

≥
∫

Qν

lim inf
n→∞

(
CW

(
x

εn
, un(x)

)
+ C − |un(x)− u0(x)|q

)
dx

≥ CLN (Qν),

where we have used (4.2), and Fatou’s lemma. Therefore,

lim sup
n→∞

∫

Qν

|un − u0|qdx = 0, (4.3)

and, in particular, since q ≥ 2 we conclude that un → u0 in L2(Qν ;Rd) as n →∞.
For simplicity, assume in what follows that ν = eN and denote Qν by Q. Note that

vn(x) =
{

b if xN > εn,
a if xN < −εn,

and

‖∇vn‖∞ = O(1/εn), supp∇vn ⊂ {x ∈ Q : |xN | < εn}, and vn → u0 in Lq(Q;Rd). (4.4)

For each k ∈ N define

Lk :=
{

x ∈ Q : dist(x, ∂Q) ≤ 1
k

}
.

Consider n sufficiently large, and divide Lk into Mk,n layers L
(i)
k,n (i = 1, ..., Mk,n) of width εn‖un−

vn‖1/2

L2(Q;Rd)
, so that Mk,nεn‖un − vn‖1/2

L2(Q;Rd)
= O(1/k). Since

Mk,n∑

i=1

∫

L
(i)
k,n

(
1 + |un|q + |vn|q + ε2

n|∇un|2 +
|un − vn|2

‖un − vn‖L2(Q;Rd)

)
dx

=
∫

Lk

(
1 + |un|q + |vn|q + ε2

n|∇un|2 +
|un − vn|2

‖un − vn‖L2(Q;Rd)

)
dx,

there exists i = i(k, n) ∈ {1, ...,Mk,n} such that
∫

L
(i)
k,n

(
1 + |un|q + |vn|q + ε2

n|∇un|2 +
|un − vn|2

‖un − vn‖L2(Q;Rd)

)
dx

≤ 1
Mk,n

∫

Lk

(
1 + |un|q + |vn|q + ε2

n|∇un|2 +
|un − vn|2

‖un − vn‖L2(Q;Rd)

)
dx. (4.5)

Choose cut-off functions ϕk,n ∈ C∞c (Q; [0, 1]) such that ϕk,n = 0 on
Mk,n⋃
j=i+1

L
(j)
k,n =: Ak,n, ϕk,n = 1

on (Q \ Lk) ∪ (
i−1⋃
j=1

L
(j)
k,n) =: Bk,n, and define

wk,n := ϕk,nun + (1− ϕk,n)vn.
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We have

lim
k→∞

lim
n→∞

‖wk,n − u0‖L1(Q;Rd) = 0.

Also

lim sup
k→∞

lim sup
n→∞

∫

Q

(
1
εn

W

(
x

εn
, wk,n(x)

)
+ εn|∇wk,n(x)|2

)
dx

≤ lim sup
k→∞

lim sup
n→∞

∫

Ak,n

(
1
εn

W

(
x

εn
, vn(x)

)
+ εn|∇vn(x)|2

)
dx

+ lim sup
k→∞

lim sup
n→∞

∫

L
(i)
k,n

(
1
εn

W

(
x

εn
, wk,n(x)

)
+ εn|∇wk,n(x)|2

)
dx

+ lim
n→∞

∫

Q

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx. (4.6)

By (H3) and (4.4) we have

lim sup
k→∞

lim sup
n→∞

∫

Ak,n

(
1
εn

W

(
x

εn
, vn(x)

)
+ εn|∇vn(x)|2

)
dx

≤ lim sup
k→∞

lim sup
n→∞

∫

Lk∩{x∈Q:|xN |<εn}

C

εn

(
1 + |vn|q + ε2

n|∇vn|2
)

dx = 0,

and

lim sup
k→∞

lim sup
n→∞

∫

L
(i)
k,n

(
1
εn

W

(
x

εn
, wk,n(x)

)
+ εn|∇wk,n(x)|2

)
dx

≤ lim sup
k→∞

lim sup
n→∞

C

εnMk,n

∫

Lk

(
1 + |un|q + |vn|q + ε2

n|∇un|2 +
|un − vn|2

‖un − vn‖L2(Q;Rd)

)
dx

≤ lim sup
k→∞

lim sup
n→∞

Ck‖un − vn‖1/2

L2(Q;Rd)

(∫

Q

(
1 + |un|q + |vn|q + ε2

n|∇un|2
)

dx

+ ‖un − vn‖L2(Q;Rd)

)
= 0,

where we have used (4.3) and (4.5). Thus, (4.6) becomes

lim sup
k→∞

lim sup
n→∞

∫

Q

(
1
εn

W

(
x

εn
, wk,n(x)

)
+ εn|∇wk,n(x)|2

)
dx

≤ lim
n→∞

∫

Q

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx.
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Using a diagonalization process (see Lemma 2.4) we extract a subsequence {k(n)} of {k} such that,
upon letting wn := wk(n),n, we have wn = vn on ∂Q,

lim
n→∞

‖wn − u0‖L1(Ω;Rd) = 0,

and

lim sup
n→∞

∫

Q

(
1
εn

W

(
x

εn
, wn(x)

)
+ εn|∇wn(x)|2

)
dx

≤ lim inf
n→∞

∫

Q

(
1
εn

W

(
x

εn
, un(x)

)
+ εn|∇un(x)|2

)
dx.

2

Proof of Proposition 4.1. Let A(Ω) be the family of all open subsets of Ω, and let C be the
family of all open cubes in Ω with faces parallel to the axes, centered at points x ∈ Ω ∩ QN and
with rational edgelength. Denote by R the countable subfamily of A(Ω) obtained by taking all
finite unions of elements of C, i.e.,

R :=

{
k⋃

i=1

Ci : k ∈ N, Ci ∈ C
}

.

Let εn → 0+. Since L1(Ω;Rd) is a separable metric space, using Kuratowski’s Compactness
Theorem (see, e.g. [10]), a diagonalization argument, and in the spirit of Γ-convergence (see
Proposition 7.9 in [6]), we can assert the existence of a subsequence {εRn } of {εn} such that, if

W{δn}(u; A) := inf

{
lim inf
n→∞

∫

Ω

(
1
δn

W

(
x

δn
, vn(x)

)
+ δn|∇vn|2

)
dx :

vn → u in L1(A;Rd), vn ∈ H1(A;Rd)

}
,

for A ∈ A(Ω) and δn → 0+, then for every u ∈ L1(Ω;Rd) and C ∈ R, there exists a sequence
{uC

εRn
} ⊂ H1(C;Rd) such that

uC
εRn
→ u in L1(C;Rd)

and

W{εRn }(u;C) = lim
n→∞

∫

C

(
1

εRn
W

(
x

εRn
, uC

εRn
(x)

)
+ εRn |∇uC

εRn
(x)|2

)
dx

We will first prove that

W{εRn }(u; ·) is a finite nonnegative Radon measure, absolutely continuous

with respect to HN−1b ∂∗A0. (4.7)

For each k ∈ N, let {vk
n} ⊂ H1(Ω;Rd) be such that lim

n→∞
‖vk

n − u‖L1(Ω;Rd) = 0, and

W{εRn }(u; Ω) ≤ lim inf
n→∞

∫

Ω

(
1

εRn
W

(
x

εRn
, vk

n(x)
)

+ εRn |∇vk
n(x)|2

)
dx ≤ W{εRn }(u; Ω) +

1
k

.
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Extract an increasing subsequence {n(j, k)}j of {n} such that

lim inf
n→∞

∫

Ω

(
1

εRn
W

(
x

εRn
, vk

n(x)
)

+ εRn |∇vk
n(x)|2

)
dx

= lim
j→∞

∫

Ω

(
1

εRn(j,k)

W

(
x

εRn(j,k)

, vk
n(j,k)(x)

)
+ εRn(j,k)|∇vk

n(j,k)(x)|2
)

dx.

We have

lim
k→∞

lim
j→∞

∫

Ω

(
1

εRn(j,k)

W

(
x

εRn(j,k)

, vk
n(j,k)(x)

)
+ εRn(j,k)|∇vk

n(j,k)(x)|2
)

dx = W{εRn }(u; Ω).

A diagonalization process allows us to extract a subsequence {j(k)} of {j}, such that, upon denoting
nk := n(j(k), k) and vk := vk

n(j(k),k), we have

lim
k→∞

‖vk − u‖L1(Ω;Rd) = 0,

and

lim
k→∞

∫

Ω

(
1

εRnk

W

(
x

εRnk

, vk(x)
)

+ εRnk
|∇vk(x)|2

)
dx = W{εRn }(u; Ω).

The sequence of measures {µk}, where µk :=
(

1
εRnk

W
(

x
εRnk

, vk(x)
)

+ εRnk
|∇vk(x)|2

)
LNb Ω, is

bounded in M(Ω). Thus, there exists a nonnegative Radon measure µ such that, up to a subse-
quence (not relabelled), µk ⇀ µ weakly* in M(Ω). We want to show that W{εRn }(u;A) = µ(A) for
all A ∈ A(Ω). To this end, and in view of Lemma 7.3 in [7] (see also [14]), it suffices to show that
for any A, B, C ∈ A(Ω), W{εRn }(u; ·) : A(Ω) → [0,∞) satisfies

(i) if C ⊂ B ⊂ A, then W{εRn }(u; A) ≤ W{εRn }(u; A\C) +W{εRn }(u; B),

(ii) for any ε > 0, there exists Cε ∈ A(Ω) with Cε ⊂ A and W{εRn }(u; A\Cε) ≤ ε,

(iii) W{εRn }(u; Ω) ≥ µ(RN ),

(iv) W{εRn }(u;A) ≤ µ(A).

We will first prove (i). To this aim, let A, B, C ∈ A(Ω) be such that C ⊂ B ⊂ A. For δ > 0, let
Bδ and Dδ be two elements of R such that Bδ ⊂ B, Dδ ⊂ A \ C, and

HN−1
((

A \ (Bδ ∪Dδ)
) ∩ ∂∗A0

)
< δ. (4.8)

Let
{

uBδ

εRn

}
and

{
uDδ

εRn

}
be sequences in H1(Bδ;Rd) and H1(Dδ;Rd), respectively, such that uBδ

εRn
→

u in L1(Bδ;Rd), uDδ

εRn
→ u in L1(Dδ;Rd),

lim
n→∞

∫

Bδ

(
1

εRn
W

(
x

εRn
, uBδ

εRn
(x)

)
+ εRn |∇uBδ

εRn
(x)|2

)
dx = W{εRn }(u; Bδ) < +∞, (4.9)

and

lim
n→∞

∫

Dδ

(
1

εRn
W

(
x

εRn
, uDδ

εRn
(x)

)
+ εRn |∇uDδ

εRn
(x)|2

)
dx = W{εRn }(u; Dδ) < +∞. (4.10)
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Let ρ : RN → [0,+∞) be a symmetric mollifier, and define ρ 1
εRn

(x) := 1
(εRn )N ρ

(
x

εRn

)
. We may

assume, without loss of generality, that

uBδ

εRn
= ρ 1

εRn
∗ u on ∂Bδ, uBδ

εRn
→ u in L2(Bδ;Rd) and LN − a.e. x ∈ Bδ.

The idea of the proof is along the lines of the proof of Lemma 4.2, where we replace Q by Bδ,
and vn by ρ 1

εRn
∗ u (with ρ 1

εRn
as defined above). Note that in this case supp ∇(ρ 1

εRn
∗ u) ⊂ {x :

dist(x, ∂∗A0) < εRn }, and for each k ∈ N, the layer Lk in the proof of Lemma 4.2 should be taken
to be Lk :=

{
x ∈ Bδ : dist(x, ∂Bδ) ≤ 1

k

}
.

Similarly, we may assume that

uDδ

εRn
= ρ 1

εRn
∗ u on ∂Dδ, uDδ

εRn
→ u in L2(Dδ;Rd) and LN − a.e. x ∈ Dδ.

Extend uBδ

εRn
and uDδ

εRn
as ρ 1

εRn
∗ u outside Bδ and Dδ, respectively. Note that, in view of (4.3),

lim
n→∞

‖uBδ

εRn
− u‖L2(A;Rd) = lim

n→∞
‖uDδ

εRn
− u‖L2(A;Rd) = 0. (4.11)

Write B \ C as a union of Mn layers L
(i)
n (i = 1, ..., Mn) of width εRn ‖uBδ

εRn
− uDδ

εRn
‖1/2

L2(A;Rd)
so that

MnεRn ‖uBδ

εRn
− uDδ

εRn
‖1/2

L2(A;Rd)
= O(1). (4.12)

We have

Mn∑

i=1

∫

L
(i)
n


1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 +

|uDδ

εRn
− uBδ

εRn
|2

‖uBδ

εRn
− uDδ

εRn
‖L2(A;Rd)


 dx

=
∫

B\C


1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 +

|uDδ

εRn
− uBδ

εRn
|2

‖uBδ

εRn
− uDδ

εRn
‖L2(A;Rd)


 dx,

and thus there exists i0 ∈ {1, · · · ,Mn} such that

∫

L
(i0)
n


1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 +

|uDδ

εRn
− uBδ

εRn
|2

‖uBδ

εRn
− uDδ

εRn
‖L2(A;Rd)


 dx (4.13)

≤ 1
Mn

∫

B\C


1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 +

|uDδ

εRn
− uBδ

εRn
|2

‖uBδ

εRn
− uDδ

εRn
‖L2(A;Rd)


 dx.

We remark that by (4.9), (4.10), (4.11), and (H3),

sup
n∈N

∫

B\C


1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 +

|uDδ

εRn
− uBδ

εRn
|2

‖uBδ

εRn
− uDδ

εRn
‖L2(A;Rd)


 dx

=: c0 < +∞. (4.14)
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Consider cut-off functions ϕn ∈ C∞c (Ω; [0, 1]) such that

ϕn(x) = 0 if x ∈



Mn⋃

j=i0+1

L(j)
n


 ∪ (A \B),

ϕn(x) = 1 if x ∈



i0−1⋃

j=1

L(j)
n


 ∪ C,

and

‖∇ϕn‖∞ = O


 1

εRn ‖uBδ

εRn
− uDδ

εRn
‖1/2

L2(A;Rd)


 .

Define

un := ϕnuBδ

εRn
+ (1− ϕn)uDδ

εRn
+ χ(A\(Bδ∪Dδ))

(
ρ 1

εRn
∗ u

)
.

We have that un → u in L1(A;Rd) as n →∞, and in view of (4.9), (4.10),

W{εRn }(u; A) ≤ lim inf
n→∞

∫

A

(
1

εRn
W

(
x

εRn
, un(x)

)
+ εRn |∇un(x)|2

)
dx

W{εRn }(u;A) ≤ lim inf
n→∞

∫

A

(
1

εRn
W

(
x

εRn
, un(x)

)
+ εRn |∇un(x)|2

)
dx

≤ lim inf
n→∞

{ ∫

A\(Bδ∪Dδ)

(
1

εRn
W

(
x

εRn
, ρ 1

εRn
∗ u

)
+ εRn

∣∣∣∣∇
(

ρ 1
εRn
∗ u

)∣∣∣∣
2
)

dx

+
∫

Dδ

(
1

εRn
W

(
x

εRn
, uDδ

εRn

)
εRn + |∇uDδ

εRn
|2

)
dx +

∫

Bδ

(
1

εRn
W

(
x

εRn
, uBδ

εRn

)
+ εRn |∇uBδ

εRn
|2

)
dx

+
∫

L
(i0)
n

(
1

εRn
W

(
x

εRn
, un

)
+ εRn |∇un|2

)
dx

}

≤ lim sup
n→∞

∫

A\(Bδ∪Dδ)

(
1

εRn
W

(
x

εRn
, ρ 1

εRn
∗ u

)
+ εRn

∣∣∣∣∇
(

ρ 1
εRn
∗ u

)∣∣∣∣
2
)

dx +W{εRn }(u;Dδ)

+W{εRn }(u;Bδ) + lim sup
n→∞

∫

L
(i0)
n

(
1

εRn
W

(
x

εRn
, un

)
+ εRn |∇un|2

)
dx

≤ HN−1
((

A \ (Bδ ∪Dδ)
) ∩ ∂∗A0

)
+W{εRn }(u; Dδ) +W{εRn }(u;Bδ)

+ lim sup
n→∞

∫

L
(i0)
n

(
1

εRn
W

(
x

εRn
, un

)
+ εRn |∇un|2

)
dx. (4.15)
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By (4.12), (4.13), and the growth conditions in (H3), we obtain that
∫

L
(i0)
n

(
1

εRn
W

(
x

εRn
, un

)
+ εRn |∇un|2

)
dx

≤ C

εRn

∫

L
(i0)
n

(
1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 + (εRn )2‖∇ϕn‖2∞|uDδ

εRn
− uBδ

εRn
|2

)
dx

≤ C

εRn Mn

∫

B\C


1 + |uBδ

εRn
|q + |uDδ

εRn
|q + (εRn )2|∇uBδ

εRn
|2 + (εRn )2|∇uDδ

εRn
|2 +

|uDδ

εRn
− uBδ

εRn
|2

‖uBδ

εRn
− uDδ

εRn
‖L2(A;Rd)


 dx

≤ c0 C‖uBδ

εRn
− uDδ

εRn
‖1/2

L2(A;Rd)
,

where we have used (4.14). Thus,

lim sup
n→∞

∫

L
(i0)
n

(
1

εRn
W

(
x

εRn
, un

)
+ εRn |∇un|2

)
dx = 0,

and we deduce from (4.8) and (4.15) that

W{εRn }(u; A) ≤ δ +W{εRn }(u; Bδ) +W{εRn }(u; Dδ) ≤ δ +W{εRn }(u; B) +W{εRn }(u;A \ C).

Letting δ → 0+, we obtain that (i) holds.
Next, we note that (ii) follows by the inner regularity of the Radon measure CHN−1b ∂∗A0.

Indeed, it suffices to remark that for all A ∈ A(Ω), by the growth condition in (H3), and since A0

is polyhedral,

W{εRn }(u;A) ≤ lim inf
n→∞

∫

A

(
1

εRn
W

(
x

εRn
,

(
ρ 1

εRn
∗ u

)
(x)

)
+ εRn

∣∣∣∣∇
(

ρ 1
εRn
∗ u

)
(x)

∣∣∣∣
2
)

dx

≤ lim inf
n→∞

C

εRn

∫

{x∈A: dist(x,∂∗A0)≤εRn }

(
1 + |ρ 1

εRn
∗ u|q + (εRn )2

∣∣∣∣∇
(

ρ 1
εRn
∗ u

)∣∣∣∣
2
)

dx

≤ C lim inf
n→∞

LN ({x ∈ A : dist(x, ∂∗A0) ≤ εRn })
εRn

= CHN−1(A ∩ ∂∗A0).

Property (iii) follows immediately from

µ(RN ) ≤ lim inf
k→∞

µk(RN ) = lim
k→∞

∫

Ω

(
1

εRnk

W

(
x

εRnk

, vk(x)
)

+ εRnk
|∇vk(x)|2

)
dx = W{εRn }(u; Ω).

Finally, since the sequence {vk} ⊂ H1(A;Rd) is admissible for the definition of W{εRn }(u;A), we
obtain that

W{εRn }(u;A) ≤ lim inf
k→∞

∫

A

(
1

εRnk

W

(
x

εRnk

, vk(x)
)

+ εRnk
|∇vk(x)|2

)
dx

≤ lim inf
k→∞

µk(A) ≤ µ(A),
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thus asserting (iv). Since W{εRn }(u; ·) satisfies (i)-(iv), we conclude that (4.7) holds.
We claim that

dW{εRn }(u; ·)
dHN−1b ∂∗A0

(x0) ≤ K1(ν(x0)) for HN−1 − a.e. x0 ∈ Ω ∩ ∂∗A0. (4.16)

Assume, without loss of generality, that x0 ∈ Ω ∩ ∂∗A0 is such that ν(x0) = eN and

dW{εRn }(u; ·)
dHN−1b ∂∗A0

(x0) = lim
ε→0+

W{εRn }(u; Q(x0, ε))
εN−1

, (4.17)

and denote Qν(x0) by Q, ρT,ν(x0) by ρT , and K1(ν(x0)) by K1. In view of Lemma 3.1, let {Tk} ⊆ N,
with Tk →∞, and {uk} ⊂ H1(TkQ;Rd) be such that uk = ρTk

∗ u0 on ∂(TkQ), and

lim
k→∞

1
TN−1

k

∫

TkQ

(
W (y, uk(y)) + |∇uk(y)|2) dy = K1.

Changing variables, we obtain that

K1 = lim
k→∞

∫

Q

(
TkW (Tkx, vk(x)) +

1
Tk
|∇vk(x)|2

)
dx, (4.18)

where vk(x) := uk(Tkx), x ∈ Q. For xN ∈ (− 1
2 , 1

2

)
, extend vk(·, xN ) by periodicity outside Q′,

and define

v
(ε)
n,k(x) :=

{
u0(x) if |xN | > εRn Tk

2ε

vk

(
εx

εRn Tk

)
if |xN | ≤ εRn Tk

2ε .

For ε > 0, we have
∫

Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

=
∫

�
x∈Q : |xN |≤ εRn Tk

2ε

�

(
ε

εRn
W

(
εx

εRn
, vk

(
εx

εRn Tk

))
+

ε

εRn T 2
k

∣∣∣∣∇vk

(
εx

εRn Tk

)∣∣∣∣
2
)

dx

=

εRn Tk
2ε∫

− εRn Tk
2ε

∫

Q′

(
ε

εRn
W

((
εx′

εRn
,
εxN

εRn

)
, vk

(
εx′

εRn Tk
,

εxN

εRn Tk

))
+

ε

εRn T 2
k

∣∣∣∣∇vk

(
εx′

εRn Tk
,

εxN

εRn Tk

)∣∣∣∣
2
)

dx′dxN

=

1
2∫

− 1
2

∫

Q′

(
TkW

((
εTkx′

εRn Tk
, TkyN

)
, vk

(
εx′

εRn Tk
, yN

))
+

1
Tk

∣∣∣∣∇vk

(
εx′

εRn Tk
, yN

)∣∣∣∣
2
)

dx′dyN .

Thus, by the Riemann-Lebesgue Lemma (recall that Tk ∈ N, and thus W (Tk·, z) is Q′-periodic)
and the Dominated Convergence Theorem, together with (4.18), we obtain

lim
k→∞

lim
ε→0+

lim
n→∞

∫

Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

= lim
k→∞

∫

Q

(
TkW (Tkx, vk(x)) +

1
Tk
|∇vk(x)|2

)
dx = K1. (4.19)
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Let mn ∈ ZN and sn ∈ [0, 1)N be such that x0
εRn

= mn + sn, and let xε,n := − εRn
ε sn. Note that for

any ε > 0, lim
n→∞

xε,n = 0. Define un,ε,k ∈ H1(Q(x0, ε);Rd) by un,ε,k(x) := v
(ε)
n,k

(
x−x0

ε − xε,n

)
.

We claim that for any k ∈ N and ε > 0, we have

lim
n→∞

‖un,ε,k − u‖L1(Q(x0,ε);Rd) = 0. (4.20)

Indeed, changing variables,
∫

Q(x0,ε)

|un,ε,k(x)− u(x)|dx =
∫

Q(0,ε)−εxε,n

∣∣∣v(ε)
n,k

(z

ε

)
− u(x0 + z + εxε,n)

∣∣∣ dz

=
∫

(Q(0,ε)−εxε,n)∩
�

z:|zN |≤ εRn Tk
2

�

∣∣∣∣vk

(
z

εRn Tk

)
− u(x0 + z + εxε,n)

∣∣∣∣ dz

+
∫

(Q(0,ε)−εxε,n)∩
�

z:|zN |> εRn Tk
2

�

∣∣∣u0

(z

ε

)
− u(x0 + z + εxε,n)

∣∣∣ dz (4.21)

≤
∫

(Q(0,ε)−εxε,n)∩
�

z:|zN |≤ εRn Tk
2

�
C

(
1 +

∣∣∣∣vk

(
z

εRn Tk

)∣∣∣∣
)

dz +
∫

(Q(0,ε)−εxε,n)∩{z:0<zN <−ε(xε,n)N}

|b− a|dz.

Since lim
n→∞

xε,n = 0, we obtain that

lim
n→∞

∫

(Q(0,ε)−εxε,n)∩{z:0<zN <−ε(xε,n)N}

|b− a|dz = 0,

and

lim
n→∞

∫

(Q(0,ε)−εxε,n)∩
�

z:|zN |≤ εRn Tk
2

�
C

(
1 +

∣∣∣∣vk

(
z

εRn Tk

)∣∣∣∣
)

dz

= lim
n→∞

εRn Tk
2∫

− εRn Tk
2

∫

(Q(0,ε)−εxε,n)′

C

(
1 +

∣∣∣∣vk

(
z′

εRn Tk
,

zN

εRn Tk

)∣∣∣∣
)

dz′dzN

= lim
n→∞

Tk
2∫

−Tk
2

∫

(Q(0,ε)−εxε,n)′

CεRn

(
1 +

∣∣∣∣vk

(
z′

εRn Tk
,
zN

Tk

)∣∣∣∣
)

dz′dzN = 0.

Thus, in view of (4.21), we deduce that (4.20) holds.
Consequently,

W{εRn }(u; Q(x0, ε))
εN−1

≤ lim inf
n→∞

1
εN−1

∫

Q(x0,ε)

(
1

εRn
W

(
x

εRn
, un,ε,k(x)

)
+ εRn |∇un,ε,k(x)|2

)
dx
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= lim inf
n→∞

∫

Q

(
ε

εRn
W

(
x0 + εx

εRn
, un,ε,k(x0 + εx)

)
+ εεRn |∇un,ε,k(x0 + εx)|2

)
dx

= lim inf
n→∞

∫

Q

(
ε

εRn
W

(
x0 + εx

εRn
, v

(ε)
n,k(x− xε,n)

)
+

εRn
ε
|∇v

(ε)
n,k(x− xε,n)|2

)
dx. (4.22)

Changing variables, we have by (H1),
∫

Q

(
ε

εRn
W

(
x0 + εx

εRn
, v

(ε)
n,k(x− xε,n)

)
+

εRn
ε
|∇v

(ε)
n,k(x− xε,n)|2

)
dx

=
∫

−xε,n+Q

(
ε

εRn
W

(
x0 + ε(x + xε,n)

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

=
∫

−xε,n+Q

(
ε

εRn
W

(
mn +

εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

=
∫

−xε,n+Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx. (4.23)

Thus,
∫

Q

(
ε

εRn
W

(
x0 + εx

εRn
, v

(ε)
n,k(x− xε,n)

)
+

εRn
ε
|∇v

(ε)
n,k(x− xε,n)|2

)
dx (4.24)

≤
∫

Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

+
∫

(−xn,ε+Q)\Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx.

We claim that

lim sup
k→∞

lim sup
ε→0+

lim sup
n→∞

∫

(−xn,ε+Q)\Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx = 0. (4.25)

After changing variables, we have
∫

(−xn,ε+Q)\Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

=
∫

((−xn,ε+Q)\Q)∩
�

x:|xN |≤ εRn Tk
2ε

�

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

=

1
2∫

− 1
2

∫

((−xn,ε+Q)\Q)′

(
TkW

((
Tkεx′

εRn Tk
, yNTk

)
, vk

(
εx′

εRn Tk
, yN

))
+

1
Tk

∣∣∣∣∇vk

(
εx′

εRn Tk
, yN

)∣∣∣∣
2
)

dy′dyN .
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For each ε > 0, take n(ε) ∈ N such that |xε,n| < ε for all n ≥ n(ε). In particular, we have
(−xn,ε + Q) \Q ⊂ (1 + ε)Q \Q and, in view of the Riemann-Lebesgue Lemma,

lim sup
n→∞

∫

(−xn,ε+Q)\Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

≤ O(ε)
∫

Q

(
TkW (Tky, vk(y)) +

1
Tk
|∇vk|2

)
dy,

thus asserting (4.25). Taking into account (4.17), (4.22), (4.23), (4.24), and (4.25), we obtain that

dW{εRn }(u; ·)
dHN−1b ∂∗A0

(x0) ≤ lim sup
k→∞

lim sup
ε→0+

(
lim sup

n→∞

∫

Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

+ lim sup
n→∞

∫

(−xε,n+Q)\Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx

)

= lim sup
k→∞

lim sup
ε→0+

lim sup
n→∞

∫

Q

(
ε

εRn
W

(
εx

εRn
, v

(ε)
n,k(x)

)
+

εRn
ε
|∇v

(ε)
n,k(x)|2

)
dx = K1,

where the last equality follows by (4.19). Thus, (4.16) holds. In view of (4.7) and (4.16), we have

W{εRn }(u; Ω) =
∫

Ω

dW{εRn }(u; ·)
dHN−1b ∂∗A0

(x)dHN−1b ∂∗A0(x) =
∫

Ω∩∂∗A0

dW{εRn }(u; ·)
dHN−1b ∂∗A0

(x)dHN−1(x)

≤
∫

Ω∩∂∗A0

K1(ν(x))dHN−1(x).

By Proposition 3.3, we deduce that, in fact,

W{εRn }(u; Ω) =
∫

Ω∩∂∗A0

K1(ν(x))dHN−1(x),

and the conclusion follows by a diagonalization argument.
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