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Abstract

A homogenization problem arising in the gradient theory of fluid-fluid phase transitions is
addressed in the vector-valued setting by means of I'-convergence.
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1 Introduction

The asymptotic behavior of functionals of the type
1
E (u) := / <EW(U(£E)) +5Vu(x)|2) dx (1.1)
Q

has received much attention in the last two decades in the context of fluid-fluid phase transitions.
If Q is an open, bounded domain in RY, with Lipschitz boundary, and if W is a nonnegative bulk
energy density with {W = 0} = {a,b}, then Gibbs’ criterion for equilibria leads to the study of
the problem

(P) minimize /W(u(x))dx subject to the constraint /u(a?)dx =m.
Q Q
If m =60a+ (1-0)b, 0<6< LY(Q), then the minimum problem (P) admits infinitely many
solutions. In order to select physically preferred solutions to this problem, and following the ideas

of the gradient theory of phase transitions proposed in 1893 by van der Waals, Cahn and Hilliard
[8] introduced a model where to each configuration u of the two-fluid system an energy E. which

penalizes the original energy of the system u — / W (u(z))dz through a term containing the
Q

gradient of u and a small parameter ¢ > 0, i.e. u — /(W(u(ac)) + €*|Vul?) dz. The competing
Q



effects of the resulting two integrals favor separation of phases (i.e. those configurations where u
takes values close to a and b), while penalizing spatial inhomogeneities of u and, consequently, the
introduction of too many transition regions.

The connection between the classical theory of phase transition based on Gibbs’ criterion and
the gradient theory is due to Gurtin [18], [19], who conjectured in 1983 that solutions of

(P.) minimize F.(u) subject to the constraint / u(z)de =m
Q

converge to minimizers of (P) having minimal interfacial energy. Gurtin’s conjecture was proved
by Carr, Gurtin, and Slemrod [9] in the scalar case (N = 1), and independently by Modica [20]
and Sternberg [22], in the higher dimensional case N > 2. The approach in [20] and [22] uses
the notion of I'-convergence, due to De Giorgi [12] (see also [1], [6], [10]), and follows the ideas of
Modica and Mortola [21] who studied a similar functional proposed by De Giorgi in a completely
different physical context.

The vector-valued case, where u : Q@ C RY — R4 (d, N > 2) was considered by Fonseca and
Tartar [16], Sternberg [23], and Barroso and Fonseca [5]. The case where W has more than two
wells was addressed by Baldo [4] (see also Sternberg [23]), and later generalized by Ambrosio [2].

Let Q C RY be the open unit cube centered at the origin, and given v € SN~ := {z € RV :
lz]] = 1}, we denote by @, the cube centered at the origin with two of its faces normal to v.
Precisely, if {v1,...,n_1,v} is an orthonormal basis of R, then

1 1
Q, = {xGRN:|xow|<2, |xou|<§, il,...,Nl}.

In this paper we study a homogenization problem within the context of the gradient theory
of phase transitions, in the vector-valued setting. Let W : RY x R¢ — [0, 400) be a continuous
function satisfying the following hypotheses

(H1) W(-,u) is Q-periodic for every u € R%;
(H2) W(z,u) =0 if and only if u € {a, b};
(H3) there exist C' > 0 and ¢ > 2 such that

Sl = C < Wiz, w) < OO+ Jult)

for all (z,u) € Q x RY,
and let I. : L' (€;R%) — [0, +00] be defined by

() = [ (2w (Zotw) elvutar)as - ipwe @iy

€
+00 otherwise.

The main result of the paper is the following theorem

Theorem 1.1 Assume that (H1)-(H3) hold, let v € SN~ p: R — [0,400) be a mollifier, and
let pr.,(z) :=TNp(Tx - v). Define

K1<u>—Tlgan§_1mf{ | Wut) + IVuwP) dy < we H'TQRY,
TQu

U = pr,, * ug on B(TQZ,)}



with

wo{b Hev>o
"ol =1 4 if z-v<O.

Consider the functional Iy : L' (2;R?) — [0, +o00] defined by

Ki(v(z)dHN Y (z)  if ue BV (% {a,b}),
Lo(u) == 8 ApnQ
400 otherwise,

where Ag := {x € Q: u(z) = a}. Then
(i) T(LY(RY)) — liminf I. = Io;

e—0
(ii) Assume that the set Ag is polyhedral, and that the outward unit normal v(x) to the reduced
boundary 0* Ag is such that v(z) € {£ey, - ,xen}, for HN "t-a.e. x € (0*Ag) N Q. Then

(LY (Q;RY)) — lim 1. = 1Io.

The paper is organized as follows: In Section 2 we recall some facts about functions of bounded
variation, sets of finite perimeter, and I'-convergence, in Section 3 we prove a compactness re-
sult (Theorem 3.2), and the I-liminf inequality, and in Section 4 of the paper we perform the
construction of a recovering sequence for the I'-limit.

Remark 1.2 Without the additional assumption in part (ii) of Theorem 1.1, some of the tech-
niques used in Section 4.3 to construct a recovering sequence for the I'-limit would only go through
under the (far too strong) requirement that W(R-,u) be Q-periodic for all rotations R € SO(N),
and u € R?. Future work will address the general case. The geometry of Aq is important here, as
it can be seen in (4.19), where the periodicity of W (-, u) with respect to the directions orthogonal
to v(xg) is strongly used.

2 Preliminaries

We begin this section by recalling some facts about functions of bounded variations (we refer the
reader to [3] for details). A function u € L' (£2; R?) is said to be of bounded variation, and we write
u € BV(Q;RY), if for all i = 1,--- ,d, and j = 1,--- , N, there exists a Radon measure p;; such
that

!ul(x);qi(x) dr = Q/v(x) dpi;

for every v € CL(Q;R). The distributional derivative Du is the matrix-valued measure with
components p;;. Given u € BV (£ R?) the approrimate upper and lower limit of each component
u;, ¢ =1,---,d, are given by

uf (z) := inf {t €R: lim ELNEN({y € QNQ(z,¢e) :u(y) >t}) = 0}

e—0+t

and
u; (z) :=sup {t eER: h%l+ giNﬁN({y eNNQ(z,e) s ui(y) <t}) = 0} ,



while the jump set of u, or singular set, is defined by

d

S(u) == U{x € Qv (v) <uf(2)}.

i=1

It is well known that S(u) is N — 1 rectifiable, i.e.

S(u) = G K,UE,

n=1

where HV~1(E) = 0 and K, is a compact subset of a C! hypersurface. If x € Q\ S(u) then u(z)
is taken to be the common value of (uj (z),--- ,u} (x)) and (uj (z),--- ,uy (x)). It can be shown
that u(z) € R? for HN"l-ae. x € Q\ S(u). Furthermore, for HV !-a.e. x € S(u) there exists a
unit vector v, (x) € SNL, normal to S(u) at x, and two vectors v~ (x),ut (x) € R? (the traces of
u on S(u) at the point x) such that

.1 _
hHéTv/ [u(y) — ut @)V NV dy =0
=087 JlyeQ(xo,6):(y—) vu(z)>0}

and

.1

lim —N/

=707 J{weQ(zo):(y—w)vu(2)<0}
Note that, in general, (u;)* # (u™); and (u;)~ # (u™);. We denote the jump of u across S(u) by
[u] :=u™ —u~. The distributional derivative Du may be decomposed as

[u(y) —u™ ()| dy = 0.

Du=Vul™ + (um —u") @ v, HN | S(u) + C(u),

where Vu is the density of the absolutely continuous part of Du with respect to the N-dimensional
Lebesgue measure £V and C(u) is the Cantor part of Du. These three measures are mutually
singular, and the total variation of w,

|Du|(€) = sup / wdiv ¢(x) dr : d € CHLRY), [l <15,
Q

is now

| Dul () :/|Vu|dx+ / = u~ [dHY L+ |O(w)] ().
Q S(u)

We recall that if {u,} € BV(Q;R?) and u,, — u in L*(Q;R?), then
|Du|(Q) < liminf | Duy,|(Q).

We say that a set E C Q is of finite perimeter if xg € BV (Q;R), and we denote by Perg(F)
the perimeter of F in Q, i.e. Perq(E) := |Dxg|(£2) given by

Perg(E) = sup / div ¢(z) dz ¢ € CLURY), [Blloo < 1
E



Definition 2.1 Let A C RY be a set of locally finite perimeter and let xq € RN. We say that
xo belongs to the reduced boundary of A (and we write xo € 0*A) if, with Dxa = —v|Dxa|,
v e L (RN; SN=1) with respect to the Radon measure |Dx 4|, we have

(i) |Dxal(B(zo,€)) > 0 for all e > 0;

o 1
@) dim vy | v dDxal@) = v

B(wo,é‘)
(ii) v (zo)ll = 1.
v 18 said to be the outward unit normal to the boundary of A at x.

Theorem 2.2 (see [13], [17]) If x € 0* A then

Jim £ ({y € Ba.8)\ A: (5~ 2) - v(@) < 0)) =0,

61ir(1)1+ %EN({y € B(z,0)NA:(y—=x)- v(x)>0})=0.

It can be shown (see [15]) that if Perg(A) < +oo then for H¥~t-ae. x € QN I*A

li 1
51%1+ oN-1

HYN"H(QNO*A) N (2 +6Quw)) = 1. (2.1)

Theorem 2.3 (see [4, Lemma 3.1]) Let A be a subset of 2 such that Perq(A) < +o0o0. There
exists a sequence of polyhedral sets {A} (i.e. Ay are bounded, Lipschitz domains with 0A, =
Hy U Hy U ..U H,, where each H; is a closed subset of a hyperplane {x € RN : z-v; = a;})
satisfying the following properties:

(i) Jim LY[((Ax N2)\ A) U (AN (A4 N Q)] = 0;
(ii) kli_)ngo Perq(Ay) = Perq(A4);

(iii) HVN"1(0AL N ON) = 0;
(iv) LN (Ag) = LN (A).
Let €, — 0F. A functional
I:LYQ;RY) — [0, 00]

is called the I'-liminf (resp. T'-limsup) of a sequence of functionals {I. } with respect to the strong
convergence in L(Q;R?) if for every u € L*(Q;R?)

I(u) = inf {lim inf (resp. limsup)l. (un) : u, € L*(Q;R?Y), u, — u in Ll(Q;Rd)} ,

n
n—0oo n— o0

and we write
I=T—liminf I, (resp. I =T —limsup IEH> .

n—0oo n— oo
We say that the sequence {1} I'-converges to I if the T-liminf and the I'-limsup coincide, and we
write
I=T- lim I .

n—oo



The functional I is said to be the I'-liminf ( resp. I'-limsup) of the family of functionals {I.} with
respect to the strong convergence in L'(Q; R?) if for every sequence ¢,, — 0% we have that

I =T —liminf I, <resp. I=T- limsuplsn) ,

n— oo Nn—00

and we write
I1=T- limi(I)lfIE (resp. I1=T- limsup[s> .

e—0

Finally, if I'-liminf and I'-limsup coincide, we say that I is the I'-limit of the family of functionals
{I.}, and we write
I=T- liH(l) I..

The following lemma is very useful in many diagonalization arguments.

Lemma 2.4 (Lemma 7.1 in [7]) Let {ax ;} be a doubly indexed sequence of real numbers. If

lim lim ay; = L,
k—oo j—o0

then there exists an increasing subsequence {k(j)} /" 400 such that lim ay;); = L.
J—00

In order to prove Theorem 1.1, it is enough to show that every sequence {e,} of positive numbers
converging to zero has a subsequence {e,, } such that I., T'(L'(; R?))-converges to Iy (see [10],
[11]). We divide the proof of Theorem 1.1 into two parts, which are dealt with in Sections 3 and
4 of the paper. In the sequel, C will denote a generic positive constant that may vary from line to
line, and expression to expression.

3 Compactness and the I' — liminf inequality

We first show that the limit in the definition of K;(v) is well defined.

Lemma 3.1 For allv € SN the limit

. 1.

Jim zxpint [ (W) + [Va(o)P)dy © we H'(TQuRY, u=pr, «uo on 8(TQ.)
TQ.

exists.

Proof. Assume, without loss of generality that v = ex, and write pr for pr., . For any T > 0,
define

1 inf / (W (s u) + [Vu@)?) dy : we H(TQ:RY), u= pr*ug on (TQ) $,

TQ

and let up € H'(TQ;R?) be such that up = pr * ug on I(TQ), and

it | (Wur) +[Tur()?) dy < 9(7) +

TQ

1
= (3.1)



N-1
Let S > T+3, and let Ers, Bf. ¢ C (S — 2) Qn{z € RY : 2y = 0}, Mg = [([STHTQ) ] €N,
and z; € ZN"1 x {0} (i=1,--- , Mg ) be such that

(S—;)Qﬂ{xeRN : :UN:0}=<U (zi + (T +2)Q)N{z e RN : CBN:O}) UErs

i=1
J\/IS‘T
- ( U (zi+TQ)N{z e RN : zy :0}) UET s
i=1

‘We have

and so, since

Ers=FErsU ( U ((zi +([T]+2)Q)\ (z: +TQ)) N {x eRY : ay= O}) ,

we obtain

N—-1
1
LNt (E;“,S) = (S - T) — Mg TN (32)

Consider cut-off functions pgr € C.(SQ;[0,1]) and, for 2 < m < T,i € {1,--- ,Ms 1}, ¢mi €
C. (zl + (T + %) Q; 10, 1]) such that

. . 1
psir() =01if 2 € (SQ), par(e)=1ifa e (S- 1)@ [Vparl < CT.
and
1
o) =018 20 (54 (T4 ) Q) pmale) = Lit € 5+ TQ, [Vl < Con.

Define vg € H'(SQ;R?) by
ur (x — 2z;) ifx ez +T0Q,

vs(x) =49 Pmi(@)(pr * uo)(x) + (1 — @m.i(2))(pm *x uo)(x)  ifz € (24 (T+ %) Q) \ (2 + TQ),

ps.7(x)(pm * 1) () + (1 — ps.r(2))(ps * uo)(z)  if 2 € SQ\ (S - 1) Q.

Note that since z; - exy = 0, we have

ur (- = 2i)jo(zi+7Q) = (p1 * u0)( = 2i)j0(2i+7Q) = (PT * 10)(*)0(2:+TQ)>
and thus vg is a Sobolev function, admissible for the infimum in the definition of g(5). We obtain
that

95) < gums [ (Wavvs()) + |Vus(o)?) do

5Q
< Il(sv T) + IQ(S, T7 m) + I3(Sv Ta m) + 14(5, Tv m)v (33)



where

Ms,T

L(S,T) SN T Z / W (z,ur(z — 2)) + |Vur(z — z)|?) dz,
zi+TQ
Ms,
BSTm) = g 3 / (W (@, (sl 10) + (1= ) o = w0) ()

(ZH- (T-‘r %)Q)\(zi"’TQ)

+ |V (om,i(pr * uo) + (1 = om,i) (Pm * uo)) (fﬂ)|2> dz,

1(8,T,m) = < (W (@, (o * 00) (@) + |9 (9 * w0) (@)) i
ETSX(_% )
and
WSTm) =g [ (W($7(¢S,T(Pm*uo)+(1SOS,T)(PS*UO))(QT))
s0\(5-4)0

+ |V (psr(pm * uo) + (1 = ps.1)(ps * uo)) ($)|2> d.
In view of (H1) and (3.1), and because z; € ZV, we get W (- + z;,-) = W(- ,-), and

L(S,T) = SN v Msr / (W (z,ur(z)) + |Vur(z)]?) de < %MS,T TN-1 (g(T) + 7{)
TQ
1

<9(T) + - (3.4)

Using (H2) (H3), and the facts that (pr * ug) (z) € {a,b} if |zn| > % and (pm * uo) (z) € {a, b} if
|zy| > --, we obtain that

Ms, T

I(5,T,m) < SN 1 Z / <1+|PT*UO|q

((zi—&-(T—&-%)Q)\(zi-i-TQ))ﬂ{ze]RN Dlonl<k}

+ IV(pr * uo)li;) dx

Ms,r

+ g 2 / <1+|pT*uo|q+|pm*uo|q

((zi+(T+%)Q)\(ZHrTQ))ﬁ{CEGRN lenl<t}

+ 1Vem,illze + 11V (pm * uO)|§o> dz



c N\ 1+ T2

C NV v T m?
+ WMS,T <<T+ m) =T T

1 TN=2 47N 1y, 1
(. + +m ) (3.5)

< —
¢ m TN m2 T

Using again (H3), and in view of (3.2), we have

I(8.T,m) < / (14 (o * w0) ()| + [V (o * 10) (x) ) d:

C
GN-1

Finally,
C q 2
L4(8,T,m) < =5 L+ |ps * uol? + [|V(ps * uo)ll5 |dx
(sQ\(5—%)Q)n{zerRN : |any|<t}
T 1+ [ps * ol + | pm * uo]?
NI ps * U Pm * Uo

(SQ\(S—%)Q)n{zeRN : |an|<L

+Vesrllz + 11V (om uo)lli)dw
< M gN-1_ [g_ 1 1
SN-1 T S

N-1
+C<1+T2+m2) SN—l_ S_l l
SN-1 T m
SN=24 6N 1 (1+T%4+m?) 1
<ol "7 _ RSl e A
R A v S
Taking into account (3.4), (3.5), (3.6), and (3.7), we obtain
(

lim sup liqgninflimsup L(S,T)+ I(S, T,m) + Is(S,T,m) + I4(S,T,m)) < 1ij{ninfg(T).

m— o0 > S—oo
Thus, in view of (3.3), we deduce that

limsup g(S) < lijgn inf g(7).

S—o0

We continue this section with the following compactness result



Theorem 3.2 Let ¢, — 0%, and {u,} C H(Q;R?) be such that

sup ( ( s U (T )) + En|Vun(a:)|2) dx < +o0.
nEN

Q;

‘R

Then there exists u € L( Rd), with u(z) € {a,b} LN -a.e x € Q such that, up to a subsequence,
up, — u strongly in L1(£;R?).

Proof. First, note that

lim [ W (x,un(x)> da = 0. (3.8)

n—oo n

By the coercivity condition in (H3), there exists a constant R > 0 such that
W(y,u) > Clu| for LY —a.e. y € RY, |u| > R.

Define wy, () := un ()X {2€q : [un(2)|>R}(T), and set v, (z) 1= un(2) — wp (), x € Q. Thus,
1
/|wn(x)|dx: / [ (z)|dx < / ( s U (z >dx,
Q {z€Q : |un(z)|>R}

which gives, in view of (3.8),
w, — 0 strongly in L' (Q;RY). (3.9
Taking into account (3.8) one more time, we also have that

/W <;i,vn(x)> do = / W <€i,vn(x)> dz + / W <;o> dz
Q

{zeQ : Jun(z)|<R} {z€Q : Jun(x)|>R}

< (1+g) /W(;;mn(x)) dr — 0 as n — oo (3.10)
Q

Set W(u) := min W(y,u), and note that W : R? — [0,00) is continuous on R? W(u) = 0 if
yeR
and only if u € {a,b}, and that by the coercivity condition in (H3) there exists C' > 0 such that

W (u) > Clul, for |u| sufficiently large. We have

0< Q/W(vn(x))da: < /W (;;,vn(ac)> dz.

Q
Thus, by (3.10),
lim [ W(v,(x))dz = 0.

n—oo

Q

We may now proceed as in Fonseca and Tartar [16] (see the proof of their Theorem 4.1) to conclude
that there exists u € L1(€;R?), and a subsequence (not relabelled) of {v,,}, which converges to u
strongly in L'(€; R?). Taking into account (3.9), and since u,, = v, + wy,, we deduce that u, — u
strongly in L!(Q;R?). O

In the remainder of the section we prove part (i) of Theorem 1.1. Precisely,

10



Proposition 3.3 Let (H1)-(H3) hold, and let u € L*(;RY) be given. If e, — 0% and if {u,} C
HY(;R?) is such that u, — u in L*(;R?), then

liminf I, (un) > Ip(u).

Proof. Step 1. If u € L*(Q;RY) and LY ({x € Q : u(x) ¢ {a,b}}) > 0 then

for any sequence €, — 07 and for any {u,} C H*(Q;R?) such that u,, — u in L'(Q;R?), we have

1 i 2 T — Q. .
! (W (E,un(x)> + £ |V (z)] )d + (3.11)

En n

Indeed, if for some sequences ¢,, — 07, and u,, — u in L'(Q;R?)

1
Sup/ (W (x,un(x)) + 5n|Vun(:1c)|2) dx < o0,
neN En En
Q

then

. x

lim [ W (E,un(az)> dx = 0. (3.12)
For x = (z1, -+ ,2n) € RY, consider the Q-periodic function v(z) = {z} = ({z1}, -+ ,{zn}),
where, for each i € {1,2,--- , N}, {z;} := x; —[z;] ([y] stands for the integer part of the real number

y), and define v, (z) == v (é) . Up to a subsequence (not relabelled), {v,} and {u,} generate the

Young measures {v, }.cq and {u, }.cq respectively, where {v, },cq is homogeneous

Ve, 0) = (v, @) 1= /cp(v(y))dy for £V —ae. z € Q,
Q

and, in view of the strong convergence of u, to u in L!(Q;R?),
Ha = Oy(z) for LN —ae. xz e Q.

Thus, the sequence (vn,uy) : @ — RY x R? generates the Young measure {v ® 8,(,) }ocq. By the
Fundamental Theorem on Young measures, and using the periodicity of W in its first variable, we
have that

lim [ W <:,un(a?)) do = liminf/W(vn(:c),un(x))d;z:

n—oo n n—oo

/ / W(A, B)d(v ® 0y(z))(A, B)d //Wy, ))dydz.

Q RN xRd Q Q

//Wy, ))dydz < 0.

The fact that W is nonnegative, together with (H2), implies that u(z) € {a,b} for LN-a.e. x € Q,
and we have reached a contradiction.

Thus, in view of (3.12),

11



Step 2. Let u(z) = xa,(z) - a+ (1 — xa,(z)) - b and assume that u ¢ BV (;RY), that is,
Perq(Ap) = +o0o. We will show once again that (3.11) is satisfied. We argue by contradiction.
Suppose that there exists a subsequence (not relabelled) such that u, — u in L*(Q;R?), and

Sup/ <1W (x,un(x)> + 6n|Vun(x)|2) de < +oo.

neN €n n
Q

Then, by the Cauchy-Schwarz inequality, we obtain that,

ffégg/ W (:n,un(:c)> Vaup(z)| dz < C.

Set W (u) := min W (y,u). As we have already observed (see the proof of Theorem 3.2), W : R —
yeQ

[0,00) is continuous on RY, W(u) = 0 if and only if u € {a,b}, and there exists C' > 0 such that

W(u) > Clul|, for |u| sufficiently large. In view of Lemma 3.7 in [16], for suitable M > 0 the

function

O (u) := inf / \/min{W(*y(s)),M} |7/ (s)| ds : 7y is piecewise C',y(—1) = a, y(1) =u
“1

is Lipschitz continuous and |V (®ov)(z)| < /W (v(z))|Vu(z)| for any v € HL(Q;RY), and LN -a.e.
x € Q. Thus

Sug ||V((I> o un)HLl(Q;Rd) < +o00.
ne

Therefore |D(® o u)|(Q) < 400, and since ® o u = x4,P(a) + (1 — x4,)P(b), we obtain that
Perg(Ag) < 400, which contradicts our initial assumption on w.

Step 3. It remains to prove the proposition in the case where u(z) = x4, (z)-a+ (1 —x4,(z)) b
with Perg(Ag) < +o00. Here, Iy(u) = / K (v(x))dHN " (z), and it suffices to show that for

QNd* Ao
any sequence €, — 07 and for any {u,} C H*(Q;R?) such that u,, — u in L*(Q;R?), we have

/ Ky (v(z)dHN 1 (z) < liminf/ (1W (:,un(aﬁ)> +€n|Vun(x)|2> dz. (3.13)

n—oo 677, n
QNd* Ay

Upon extracting a subsequence (not relabelled) we may assume, without loss of generality, that

1
liminf/ (€W (:,un(m)> + 8n|Vun(gg)|2> dx
Sz n n

= lim (1W (f':,un(z)> + €n|VUn(x)|2> dz < +oo.

n—oo En n
and that there exists a finite Radon measure p > 0, such that

Ly (Eun()> +en|Van ()2 = s, (3.14)

E’ﬂ n

12



weakly™® in the sense of measures. We claim that

dp

JHNI] (Qﬂa*Ao)(x) > Ki(v(z)), for HN7! —ae. 2 € QN 0* Ap. (3.15)

Let 6, — 0T be such that for HN™! —a.e. 20 € QN 9*Ag we have p(9Q, (4y) (0, 0%)) = 0 for all
k €N, and

dHN-T[ (QNd*Ay) Y~ 550 GN-1 ’

where we have taken into account (2.1). Thus, in view of (3.14), we have that

d/,l, (x ): lim M(Qu(ro)(xmék:))
dHN-1 L (Q N a*AQ) 0 k—oo 5116\[71

1 1 T
— lim lim —— —w (Zu, oV (2)[?) d
Jim lim T / <€n <€n,u (x)) + e |Vu,(z)] ) x

Qu(zg) (%0,9k)

Let ug () := un(2o + 0xx), T € Qu(a,)- Changing variables, we deduce that

dHNflL(Qﬁa*AO( 0)

)
) )
= lim lim (kW <x0 +oky s un (To + 514/)) + endk|Vug (2o + 5ky)|2) dy
Qu(zg)
xo + 0, &

=it [ (2w () + V) (3.16)

V(To)
Let m,, € Z" and s,, € [0,1)" be such that 2 =my, + 8. Put z, 1= —;—:sn, and note that we

have lim lim zj, = 0. Changing variables, and using the periodicity of W (-, u), we obtain that

k—oo n—oo

) 0 n
lim lim (kW (w,uk,n(y)> + §|Vukn(y)|2> dy
k

k— o0 n—00 En En
v(zq)
0 0 n n
= lim lim / (kW (xo (2 + . ),ukn(z + ﬂ%n)) + E—|Vuk’n(z + xk,n)2> dz
k—o0 n—o00 En En 5k
_mk,n“"Qu(mo)
. . (;k 5k En 2
= lim lim —W | =z, ukn(z+ Tkn) | + —|Vupn(z 4+ 2p.)|" | dz. (3.17)
k— o0 n—o0 En En (Sk
—Th,n+Qu(ag)

Recall that ; (z0)
b if z-v(xg) >0,
uo(z) = { a if x-v(xg) <O.

We claim that

lim lirr;o [tk = wollL1(Q, (uy)iRY) = 0- (3.18)

k—o0 n—
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Indeed, after changing variables, and making use of Lebesgue’s Dominated Convergence Theorem,

Jim lim [ug,n () — uo()|dz

QV(IO)

= lim lim |tn (zo + Opx) — bldx

k—o00 n—o00

Qu(zg) {zERN :z-v(20) >0}

+ / |t (2o + Opz) — a|da:}

Qu(wo)ﬁ{IE]RN:.’E'V(.”I:Q)<O}

= klim / |u(zo + Orx) — bldx + / |u(zo + k) — aldx
Qu(zg) {zERN 121 (20) >0} Qu(zg) {zERN 21 (20) <0}
. 1
= klirxgo 5N |u(x) — bldx
g Qu(xg) (#0,06) {2 ERN :z-v(x0) >z0-v(w0) }
+ / lu(z) — adx}
Q,,(zo)(a:o,6k)ﬂ{w6]RN:;E~V(a:0)<a:0~u(wo)}
b i LN({x € Qu(wo) (0, 0k) N Ag : - v(20) > 20 - v(20)})
= |b— a Jim 5N
LN ({x € Qu(z0) (0, 01) \ Ao : - v(z0) < 20 -V(30)})
+ 5N =0,
k

where the last equality follows by Theorem 2.2.

A diagonalization process allows us to find an increasing sequence {ny} /" co such that, denot-

. En
ing n == 5—:, Tk = Ty, Wk(2) = U n, (2 + 2x), we have

. . . €
lim 7, = lim lim -* =0,
k—oo k—o0on—00 O

lim zx = lim lim xg, =0,
k—o0 k—oo n—oo ’

in view of (3.18),
R i = uoll L2 (@ agy ) = am lim = ol 1@y agy ) = 0
and, in addition,

1 z
lim —W | —,wi(z) | + k| Vwg (2 2>dz
g [ (G () i)

—ZTe+Qu(xg)

= lim lim / ((SkW <6kz, U n (2 + xkn)) + %|Vukn(z + ka)|2> dz.
k

k—o00 n—o0 En n
—Zk,nt+Qu(zq)
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By (3.16) and (3.17), we obtain

dp L 1 z 9
YT (N Ag) (zo) = klin;o / <77kW (nk,wk(z)> + N | Vwg (2)] > dz. (3.19)
—2k+Qu(zg)

Since z, — 0 as k — oo, for k sufficiently large there exists a cube Qr CC Q,(4,), such that
Qr C (—xk + Qu(ay)), and klim LY (Qu(z0) \ Qk) = 0. In view of (3.19), we deduce that

du . 1 z 9
>1 —W{ — dz. 2
= g @ 2 msw [ (2w (Zne) sneek a6
Qr
Let Ly ; = {z € Qp : dist(z,0Qk) < 1/j}. Divide Ly ; into My ; equidistant layers L,(;)] (1 =
. 1/2
1,--+, My ;) of width ny||wi — Pt w(ao) * UOHLQ(QV@MW)’ so that
1/2 .
Mk,jﬁk“’wk - pnik,u(zo) * uO"Lé(QU(IO);Rd) = 0(1/j) (3.21)

Select now one of these layers L,(;‘;) such that

/ (1 + |wk‘q + |pi,u(zg) ® u0|q + nl%'vka + nz‘v(pi,u(zo) * u0)|2

L'y
_ 2
|wk pr%k,u(xo) * u0| e
[we = P uiag) * wollL2(Qu ag) 2)
< 1 / 1+|wk|q+\p1 *uo|q+77;%|Vwk|2+n,%|V(p1 *uo)‘Q
> Mk,j H,u(mo) H,V(Io)

Lij

2
‘wk - pi,u(:};o) * u0|

>dm. (3.22)
)

||wk7 - p%k,u(wo) * uOHLQ(QU(mO);Rd

Consider cut-off functions ¢ ; € C2°(Qy(x0); [0,1]) such that

Mk,j
pri@)=0ifze [ |J L | U(Quo \ Q0
1=1i0+1

io—1

prj@)=1ifz e (U LEJ@-) U(Qr\ Liy),
=1

and
1

Ver,jllec = O 1/2
Mellwk = p L uiae) * w0l (g, 0 )
Define

Whyj i = PhgWh + (1= @1ei) (P L (g * 0)-

15



We have

[ (2w (2@ + iV () ds

k

_ / (nlkw (%7wk(z)> + nkak(z)F) dz

i(sl B
L;)g U(Qr\Lk,5)

1 z
+ / (W <,wk,j(z)> +nk|Vwk,j(2)|2> dz
Nk Nk

1y
1 z 9
+ n*kW - (PL w(zo) *U0)(2) | + 77k|v(ﬂi,y(x0) *up)(2)[” | dz
Y& )
I
i=ig+1
=: Ay ; + By ; +Cr ;. (3.23)

Taking into account the growth condition in (H3), we have

B<c [ ( (15 1okl + 10,1 ey *0l?) + 16 (1900 = V(01 (2 % 0)

L(7,3)
+ |V(p 1 -,v(xo) *U0)| + ||v<kaHoo|wk - pi (o) *u0| )) €

C
< — / (1 F Wkl 11 () * w0l + | Vw|* + 77;%|V(p%k,y(xo) * ug)[?

Mk
(i)
Li;

Wk = Pt (a0 * ugl? .
X
[k = P 1 w(ao) * U0llL2(Qu ag) 1B

In view of (3.21) and (3.22) we obtain the estimate

By, < / (1 F k] 1P 1 (o) * uol? + | Vwr|* + 7713|V(p%k,y(zo> % ug)|?

kg
|wg, — pa * ug |2
kT Pl v(zg) * U0

. dzx

[wr — p%,y(mg) * u0||L2(Q;Rd)

MMk, 5
L

. 1/2
= O(])Hwk - pi”/(ﬂ)) * u0||L/2’(Ql,(m0);Rd) / (1 + |wk‘q + |pi”/(10) * u0|q + nl%'vwk|2+
Lk,j

|1,Uk - pi ,v(zo) *U0|
+ 17 V(p L v(zo) ¥ uo)|? + - dx
my A0 Hwk - pi w(zo) * uOHLZ(Qu(TU) iR)
which gives
lim sup lim sup By ; = 0. (3.24)

j—o00 k—o0
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Using again the growth condition in (H3), we have that

lim sup lim sup C}, ;

j—oo k—oo

s 1
<mtmswn [ (1 (0 e #0002 d
M, j

(i)
i=ig+1 Lk’j
c e
< limsup lim sup — £V U Lg)j N{z € Quay) : T - v(xo)| <mi} | =0. (3.25)
j—oo k—oo Tk imigtl

Similarly, and in view of our choice of the cubes @, we obtain that

lim sup / < ! w (z»wk,j(z)> + nk‘VU/k’j(Z)2> dz

T

k—o0 Mk
Qu(zo)\Qk
. C .N
< 11}I:l$llp %ﬁ ((Quiwe) \ Qi) N{T € Quy) ¢ 2+ v(w0)| < mi}) =0,

and thus, taking into account (3.23), (3.24), and (3.25),

1
lim sup lim sup / <W <Z,wk,j(z)) + nk|Vwk,j(Z)2> dz
j—o0 k—oo nk T]k:
v(xq)

1 z
= limsuplimsup | Ak ; + Bk, + Ck,; + / (nW (, w;w'(z)> + 77/6|Vw;€,j(z)|2) dz
k

Qu(zg) \Qk
1
= limsuplimsup Ay ; < limsup/ (W (Z,u;k(z)) + nk|Vwk(z)|2) dz.
j—oo  k—oo k—oo Mk Nk
k
In view of (3.20), we obtain that
@)
x
dHN=T (2N d*Ag) " °
1
> lim sup lim sup / (W (Z,wk,j(z)> —|—77k|Vwk,j(z)|2> dz. (3.26)
j—oo k—oo Tk Nk

v(zg)

A diagonalization procedure (see Lemma 2.4) allows us to construct an increasing subsequence
{k(4)} / oo such that

1
lim sup lim sup / (W (Z,wk,j(z)> + 77k|vwk,j(z)|2) dz
v(zg)

. 1 y 2
= jim w aw','y)Jrn-Vw-,-y )dy
e (”k(j) (Uk(j) k()3 (W) k() | VW0k() 5 ()|

. 1
= Jlim, M) / (nk(j) W (2, wk(5),5 k() %)) + k() sze<j>,j(nk<j>z)|2) dz,  (3.27)
1

nGy Qo)
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after making the change of variables y = ny;)2. Define v; € H' (nkl(‘) Qy(zo);Rd> by v;(z) =
W), (M) %) Since wy(j) ; = pnkl(‘) w(zo) * Uo o0 0Q,(z,), We have that

Mk

1
Vi = P () * Mo 01 O (_)Qu«vo)) ,

and, in addition,

. 1
Jim i / < W(Z,Wku),j(ﬂk(j)«z))+nk(j)|Vwk<j>,j(nk(j)z)|2> dz

1 M)
i) Qo)
= ]1520 77;]@\2]-_)1 / (W (2,v(2)) + |Vv;(2)[?) dz (3.28)
ﬁQV(TO)

1
Tk(5)

1
u= Uy ¥ Ug ON O y ,
P s w(ag) * U0 <77k(j)Q <x0)> })

where we have used the fact that v; is admissible for the infimum in the definition of K;(v(xo)).
Combining (3.26), (3.27), and (3.28), we deduce that

> lim (nﬁj)l inf{ / (W (z,u(2)) + |[Vu(2)|*) dz : ue H' (

QV(mo)

Qu(zo); Rd) ;

e (5)

dp
TN (00 Ag) 0

. 1.
> liminf —— inf / (W(y,u(y) +Vu@)*) dy : v e H(TQuwy); RY),
TQu(xp)

U = PT,v(xo) * Uo O a(TQV(aZ()))}

= Ki(v(20)),

asserting (3.15).
In view of (3.14), we have that

lim <1W (;,un(x)> + anun(x)|2> da > p(Q)

n—oo 677/ n

> / dHN_lL‘(igma*AO)(x)dHNw (2N Ao)()
Q

> / Ky (v(z))dHN (),

QNo*Ag

and we deduce that (3.13) holds, which concludes the proof. O
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4 The construction of a recovering sequence for the I'-limit

In this section we prove part (ii) of Theorem 1.1. In view of Steps 1 and 2 in the proof of Proposition
3.3, it suffices to prove

Proposition 4.1 Given any u € BV (Q;{a,b}) and any sequence £, — 0, there exists a sequence
{un,} € HY(Q;R?Y) such that u,, — u in L*(;RY) and

lim (1W (“T,un(z)> +€n|Vun|2> i — / K (v(a))dH " (a). (4.1)

n—oo En n
QNo*Ag

For the proof of Proposition 4.1, it will be enough to show that given any sequence €, — 07, (4.1)

holds for a subsequence {®} of {¢,}. Indeed, recalling the main result of the previous section
(Proposition 3.3) we then obtain that the T'(L')-limit of Iz is Iy, which is independent on the
specific subsequence {e®}. In light of Proposition 7.11 in [6], we deduce that, in fact, I. T'(L')-
converges to Iyp. The proof of Proposition 4.1 relies on the following result which will allow us to
modify competing sequences near the boundary without increasing the total energy.

Lemma 4.2 Assume that (H1)-(H3) hold, let v be a unit vector and let

_J b if x-v>0,
uo(ﬁ)'_{a if v-v<O.

N
Let p : R — [0,400) be a mollifier and set v, 1= p1, * ug, where p1 ,(v) 1= (i) P <H> ,

En En
and {e,} is a sequence of real numbers such that e, — 0%. If {u,} is a sequence in H*(Q,;R?)
converging in L*(Q,; R?) to ug, then there exists a sequence {wy,} in H(Q,;R?) such that w, — ug
in LY(Q,;RY), w, = v, on 0Q,, and

limsup/ <1W (:,wn(m)) + 5n|an(x)|2> do

< liminf/ <1W (;,un(x)) +enlvun(x)|2) dx.

v

n—oo En n

v

Proof. Assume, without loss of generality, that

imint [ <1w <x,un<x>) +en|wn(x>|2) dx
n— oo En En

1
= lim <EW <;,un(:c)> —|—6n|Vun(l”)|2) dzr < +o0,

and that u,(z) — ug(z) LN- a.e. z € Q,. Thus,

lim (W (i,un(g;)> + €Z|Vun(x)|2) dz = 0. (4.2)

n—oo

By (H3) we have V
| () — up(2)|¢ < C (W <;,u"(x)> + 1) :

n
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and we deduce that

cLhNQ,) — hyrln_)solip [lter, — UOH%G(Q,,;W) = hnnilgolf/ <CW (al,un(x)) +C —|up(z) — uo(a:)|q> dx

v

> /unnliogf (cw <§L,un(w)) +C - Jun(z) - uo(x)|q> dx

v

Z C‘CN(QV)a
where we have used (4.2), and Fatou’s lemma. Therefore,
lim sup/ |y, — ugl?dz =0, (4.3)

and, in particular, since ¢ > 2 we conclude that u, — uo in L?(Q,;R%) as n — oc.
For simplicity, assume in what follows that v = ey and denote @, by Q. Note that

v (.73)— b if xy > en,
" a if an < —€p,

and
[Von|leo = O(1/2,), suppVu, C {z € Q: |rn| <&,}, and v, — ugp in LY(Q;RY). (4.4)
For each k € N define
Ly = {:17 € Q : dist(z,0Q) < ]1} .

Consider n sufficiently large, and divide Ly, into My, ,, layers L;Z)n (t=1,..., My ) of width e, ||u, —
vn||}:/22(Q;W)7 so that My nen|lun — vn||L2(Q Ra) = = O(1/k). Since

Mk: n

Up — Up |2
2 / (1+|un|q onl? + 2V 2 o= >dx

— UnllL2(Qira)
L( D

_ q q 2 2 |, — Un|2
= 1+ upl? + |op|? + 5 |[Vun|© + dx,
|1, — UnHL?(Q;Rd)

there exists ¢ = i(k, ) € {1 s M} such that

2
Up — v
/ ( + [un|? + v ]? + 2| Vun > + [tn = vn ) dx

llwn — Un”L"’(Q;le)

2 2 |, — Un|2
< 1+ |up|? + |on|? + €5 | Vun |~ + dzx. (4.5)
My l|un — Un”L?(Q;Rd)
M, n
Choose cut-off functions ¢y, € C°(Q;[0,1]) such that @i, = 0 on U L(J) = Akn, Pkn =1
J=i+1

on (Q\ Lg) U( U Lg;) =: By n, and define

7j=1

Wh,n = Pknln + (1 - SDk,n)'Un
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We have

kh—{go nh—>néo Hwkm - UOHLl(Q;Rd) =0.

Also

limsuplimsup/ <51W (x,’wkn(x)> +5n|Vwk,n($)|2> dz

k—oo n— oo n

< lim sup lim sup / < W <x,vn(ﬂv)> + €n|VUn(I)|2> dx
k—oo n—oo n n
Apon

+ lim sup lim sup / <51W (g,wk;,n(x)> + €n|Vwk,n($)|2> dx

k—oo n— 00 n

+ lim (1W <:,un(m)> +EnVun(x)|2> da.

n—oo En
By (H3) and (4.4) we have

lim sup lim sup / <1W (xﬂ)n(fﬁ)) + 5nVUn($)2> dx

k—oco n—oo En En
Ak,n
. . 9 q 2 2 _
< lim sup lim sup (1+ vn|? + 5| Vo, |?) dz =0,
k—oo n—oo En

Lin{z€Q:|zn|<en}

and

1
lim sup lim sup / (W <:,wkn($)) + €n|vwk,n(x)|2) dx

k— oo n—oo n
()
Lk,n

< lim sup lim sup
k—oo n—oo &n k.n

_ 2
L4 |un|? 4 va]? + €2 | Vun | + [un = vul dx
n

FA [l — 'UnHLQ(Q;Rd)

< lim sup lim sup Ck||u,, — U"||1L/22(Q-]Rd) </ (1 + un|? + |va]? + 83|Vun|2) dz

k—o0 n—oo
Q

+ ||un - Un”L?(Q;]Rd)> =0,
where we have used (4.3) and (4.5). Thus, (4.6) becomes

1
lim sup limsup/ (W <x,wk,n(iﬂ)) + €n|vwk,n(l”)|2) dx

k—oo n—oo En n

n—oo En n

< lim (lw <;,un(x)) —&—EnVun(a:)F) da.

21
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Using a diagonalization process (see Lemma 2.4) we extract a subsequence {k(n)} of {k} such that,
upon letting wy, := wy(n),n, we have w, = v, on 9Q,

lim ||wn - UoHLl(Q;Rd) = O7

n—oo
and

limsup/ (1W (x,wn(;v)> + En|an(x)|2> d

< liminf <51W (;,un(x)> + 5n|Vun(x)|2> dx.

Q
O

Proof of Proposition 4.1. Let A(2) be the family of all open subsets of 2, and let C be the
family of all open cubes in ) with faces parallel to the axes, centered at points z € Q N QN and
with rational edgelength. Denote by R the countable subfamily of A(£2) obtained by taking all
finite unions of elements of C, i.e.,

k
R:{UCi:keN, Cl-ec}.

i=1

Let e, — 0T. Since L'(;RY) is a separable metric space, using Kuratowski’s Compactness
Theorem (see, e.g. [10]), a diagonalization argument, and in the spirit of I'-convergence (see
Proposition 7.9 in [6]), we can assert the existence of a subsequence {e*} of {¢,} such that, if

T

1
Wis,y (u; A) :=inf{liminf/ <5W (5,vn(:c)> +5ann|2) dr -
Q n

VU, — U In Ll(A;]Rd), Up € Hl(A;]Rd)},

for A € A(Q) and §,, — 0%, then for every u € L*(;R?) and C € R, there exists a sequence
{uS} c H'(C;R?) such that

uS — uin L' (C;R?)
and

N — T L r . c R, C 2
Weery(u;C) = lim (d?w (672’“65 (x)) +en | Vur (2)]” ) do

n—oo
n

We will first prove that

W{az}}(u; -) is a finite nonnegative Radon measure, absolutely continuous

with respect to HN 1| 9% Ao. (4.7

For each k € N, let {v}} ¢ H'(Q;R?) be such that lim [[vf — ul|;1(qre) =0, and

. 1 T k !
Wier(u; Q) < hmmf/ <€RW (gzbg,vn(x)) + €§|an(x)2> dr < Wiepy (u; Q) + o

n—oo
n
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Extract an increasing subsequence {n(j, k)}; of {n} such that

1
lim inf <gRW (;,dﬁ(m) +5§Vuﬁ(m)|2) dx

n—oo
n

. 1 T
= fim <5R(.k)w (572(%) 7”5<j,k>(x)> +5nR<j,k>V”5(j,k>(x)|2> da.
n(g, niy,

‘We have

. . 1 T
Lo bm <5R( o <€R( " ’”%’k)(@“)) + fﬁj,kﬂwﬁu,k)(ﬂw) dz = Wiy (u; Q).
n(J, nig,

A diagonalization process allows us to extract a subsequence {j(k)} of {j}, such that, upon denoting
ng = n(j(k), k) and vg := vfl(j(k) k) We have

kh—>nolo lvg — U”LI(Q;RCL) =0,

and
. 1 x
lim ( w (eR,Uk(LL‘)) + EZ%W%(:U)P) dz = Wiery (u; Q).

R
k—o0 Enk e

The sequence of measures {u}, where py = (g%W (6%,11;6(33)) +E§k|Vvk(x)|2) LN Q, is
X X

bounded in M(€Q). Thus, there exists a nonnegative Radon measure p such that, up to a subse-

quence (not relabelled), ux — p weakly™ in M(€2). We want to show that Wi =y (u; A) = pu(A) for

all A € A(Q). To this end, and in view of Lemma 7.3 in [7] (see also [14]), it suffices to show that

for any A, B, C € A(Q), Wicry(u;-) + A(Q) — [0, 00) satisfies
(i) if C C BC A, then Wi.ry(u; A) < Wiery (u; A\C) + Wiery (u; B),
(i) for any & > 0, there exists C. € A(Q2) with C. C A and W=y (u; A\C:) <,
(iil) Wiery (w5 Q) > p(RY),
) _

(iv) Wiery(u; 4) < p(A).

We will first prove (i). To this aim, let A, B, C' € A(Q) be such that C € B C A. For § > 0, let
B? and D° be two elements of R such that B® ¢ B, D° ¢ A\ C, and

HNTL((A\ (B°UD%) Nd*Ag) < 6. (4.8)

Let {ufg} and {ug: } be sequences in H'(B%;R?) and H'(D?; R%), respectively, such that ugj —
win LNB%R?), uby — uin L'(D%;RY),

1
Tim <€RW <;2uBR (x)> + RVl (:v)|2> dx = Wiary (u; B) < +o0, (4.9)
and
1
Tim. <ERW (E"fzuf%;‘ (x)) + R Vub: (1’)|2) de = Wiery (u; D?) < +oo. (4.10)
Dé n n
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Let p : RY — [0,4+0) be a symmetric mollifier, and define p (x) = (551)1\,,0 (%) We may

E‘VL

assume, without loss of generality, that

uEB;:p *u on OB°, ER—>u1nL2(B‘SRd)and£N—ae xe B

1
B
The idea of the proof is along the lines of the proof of Lemma 4.2, where we replace Q by B?,
and v, by Py *u (with P as defined above). Note that in this case supp V(p 1 oku) C{x -

dist(z, 8*A0) < eR}. and for each k € N, the layer L, in the proof of Lemma 4.2 should be taken
to be Ly := {x€B5 : dist(z, 5)B5 1}
Similarly, we may assume that

Uk = pi U on oD?, ufg — win L2(D%;R?) and LY —ae. x € D°.

Extend u? R and u2, cr A8 p 1 KU outside B° and D°, respectively. Note that, in view of (4.3),

En

nILH;o ||u = — ull2(aRre) = hrn ||u = — ullr2(are) = 0. (4.11)
Write B\ C as a union of M, layers Ly (t=1,..., My,) of width ERHUER - us72 ||L2 (Ara) SO that

1/2
Myelul — ulR (|7 4 20y = O(1). (4.12)

‘We have

n UD;_UR|2
5
Z/ R R e G R e

usf o 53 ”LQ(A?Rd’)

dxr

i=1
Ly

2
q g4 (eR)2 B% 2 R\2 D% 2 |6R7u67€|
= 1 + |usR| + ‘u | ( €n ) |VU’5R| + (En) |V’U/ER‘ + Bo dl’,
" " llu Ugr — Ugg ||L2(A;]Rd)

B\C
and thus there exists ig € {1,---, M, } such that
B® D° Ry2|v7,B012 1 2y | Uer 7“67%'2

/ || 572 - UER HL2(A;]Rd)
Lg:o)

| ER - ugR|2

1
<qr [ {1 B RV + T .

|| 572 - UER ||L2(A;]Rd)

B\C
We remark that by (4.9), (4.10), (4.11), and (H3),

| Ucr _U5R|2

sup / 1 JuB 7+ B+ ()2 Vb P + (R)2|Vule 2 + di
neN J_ " " |uZ Ur _UERHL?(A;]Rd)

B\C
=: ¢ < +00. (4.14)
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Consider cut-off functions ¢, € C2°(£2; [0, 1]) such that

My,
pn(x)=0ifze | |J LY |U(A\B),
Jj=to+1

i0—1
on(x)=11if x € ULSlj) uc,

j=1

and
1

[Venlleo =0 12

5 5
EnR”ufZl% - “5}} HL?(A;Rd)
Define
8 S5
Up = pnule + (1= on)uz + X(a\(B5UD?)) <Ps;2 * U) .

We have that u,, — u in L'(A;R?) as n — oo, and in view of (4.9), (4.10),

.. 1 T R 2
Wiery(u; A) < hmlnf/ (ERW (dla,un(x)) + e, | Vun ()] ) dz

n—oo
n

n—o0

.. 1 T R 2
Weery(u; A) < 11m1nf/ (gzle (dlz,un(ac)) + e, | Vuy, ()] ) dx

< liminf {
A\(BSUD?)

1 T
+ [ (v (5
D5 n n

S|

n

5 5 1 T 5 5
>5§+ |Vu?§|2) dx+/(€RW (ﬂvufﬁ) +s§|Vuf§|2> dx
n
BS

1 z R 9
n n
n— o0 % En

Lo
\Y% (p s%} * u)
A\(BSUD?)

1
+ Weery (u; Béthflsip / (d’fw (%w) +s§|Vun|2> dx
LE:O)
<HYTH((AN(B°U D) N0 Ao) + Wiery (us D°) + Wiery (us BY)
. 1 T
+ hmsup / <8RW <5R,Un) + 5,7?|Vun|2) dz. (415)

n—oo

1 2
< lim sup / < w (i,p%a * u) +eR > dz + Wiery (u; DY)
eR =

LSO)
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By (4.12), (4.13), and the growth conditions in (H3), we obtain that

1 T

lei())
¢ B’ q DS q RN\2 B2 R\2 D% 2 R\2 2 |, DS B2
" LSO)
D? B% 2
C B D BS Dé |ugR _UER|
< - 14 |uB 7 4 [ul |9 + ()2 VulB: |2 + (eR)? | Vulk |2 + a a dx
gstnB\/c R R LG R e e

IN

s 511/2
¢o Cllue - uzx ”L/z(A;Rd)’
where we have used (4.14). Thus,
I 1 T R 2\ gy —
1£S£p %W ﬁ,un + e, | Vuy| x =0,
L%io)
and we deduce from (4.8) and (4.15) that
Wiery (U5 A) < 6+ Wiery (u; BY) + Wiery (u; D) < 6+ Wiery (45 B) + Wiery (u; A\ ©).

Letting & — 0T, we obtain that (i) holds.
Next, we note that (ii) follows by the inner regularity of the Radon measure CHN 1| 9* A,.
Indeed, it suffices to remark that for all A € A(£2), by the growth condition in (H3), and since Ay

is polyhedral,
1 T 2
Wiery(u; 4) < hnHi}oIcl)f/ <€RW <5R, <p5ia *u) (:E)) +eR v <p5ia *u) (x) ) dz
A n
(e

= CHN L AN O* Ap).

... C

< liminf — / (1 1o wul? + (ex)?
{z€A: dist(z,0* Ag)<eR}

< Climinf LY{x e A: dist(z,0%Ap) <e})

n—o00 EZS

2
>dm

Property (iii) follows immediately from

.. . 1 €T
p(®) < tint (@) = iy [ (oW (o)) + <8 (V0@ do = Wi ().

= R
k—o0 6nk e

Finally, since the sequence {vy} C H'(A4;R9) is admissible for the definition of Wiery (u; A), we
obtain that

.. 1 X R 2
Wiery(u; A) < hmmf/ <5RW <€R,vk(x)) + e, VUi ()| > dx

k—oo o Tk

< lim inf i (A) < p(4),
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thus asserting (iv). Since Wy =) (u;-) satisfies (i)-(iv), we conclude that (4.7) holds.
We claim that

dHN-1 L 3*A0
Assume, without loss of generality, that xg € QN 9* Ay is such that v(zg) = ey and

dWiery (u; ) . Wiery (w5 Q(w0,€))
dHN -1 9% Ay (o) = Eli)%hr _N—1 ; (4.17)

and denote Q(z,) by @, pP1.u(x0) DY pr, and K (v(zo)) by K. In view of Lemma 3.1, let {73} C N,
with T}, — oo, and {uy} C HY(TxQ;R?) be such that uy = pr, * up on d(TxQ), and

1

(x0) < Ky (v(zg)) for HN=T —ae. 20 € QN O* Ay. (4.16)

Changing variables, we obtain that

1
K, = lim (TkW(Tkx,vk(x)) + |Vvk(a:)|2> dx, (4.18)
k— o0 Tk
where vy, (z) := ug(Thz), = € Q. For xy € (—3%,1), extend vy(-,zn) by periodicity outside ¢,
and define
. EleTk
() uo(x) if |zn| > T
vn,k(‘r) = ET : En Ty
Uk 7E§Tk) if len| < =25

For € > 0, we have

g EX B 55 5
/ (&?W (657117(%3@(1:)) + 8|val’3€(:v)|2) dx
Q

2
€ EXT EX e
—W (=0 (= — d
R Ty

ex
Vg | ——
’ <533Tk>
z€Q : |rn|< 2
7 / € w exr’ exn exr’  exn N € < exr’  exn 2 de'd
- 5 R , U ) v ’ €T ar
eR eR’ R M\ eRTy,’ eR Ty, eRTZ | P\ RTy eR Ty, N

1
2 2
ey’ ex’ 1 ex’ ,
= W T , —, — |V —, dz'dyn.
//< k ((65% kyN> Uk (gng yn | | + T Uk RT, YN T aYN
,% Q'

Thus, by the Riemann-Lebesgue Lemma (recall that T € N, and thus W (Ty-, z) is Q'-periodic)
and the Dominated Convergence Theorem, together with (4.18), we obtain

R
it [ (S0 (S0 + B0 do

k—o0 e—0t n—oo 55 ’ ’

= lim (TkW(Tkx, ve(x)) + z{k|Vv;.C(3[:)|2) dr = K;. (4.19)

k—oo
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R
Let m,, € Z" and s,, € [0,1)" be such that & = My + sp, and let 2., = —s;_} Sp. Note that for

any £ > 0, lim z., = 0. Define u, . x € H*(Q(x0,¢); R?) by up c 1(2) := USL (% — xg,n) .

n—oo

We claim that for any k£ € N and € > 0, we have

A ek = vl Qan,ermny =0 (4.20)
Indeed, changing variables,
_ (e) (7
[tn.er(x) —u(z)|de = / Vp (E) —u(xo+ 2z +ex. )| dz
Q(wo,€) Q(0,e)—ewc n
z
= / Vg (é_ng) —u(zo + 2+ exe )| dz
(Q(0,e)—exe n)N z:|zN\§%
+ / ‘uo (E) —u(zo + 2z +exepn)| dz (4.21)
€

R
(Q(an)fgzs-,n)m Z:IZN|>EHTIC

z
< 1 — .
< / C ( + |vk (€§Tk) D dz + / |b—aldz

R 0,e)—ex: n)N{2:0 — en
(Q(0,e)—€exe n)N z:|ZN\§E"2Tk (QUO.€)—eme, )N {z:0<z <—e(@e n)n}

Since lim z., = 0, we obtain that
n—oo

lim / |b —aldz =0,
(Q(075)_5z5,n)m{Z:O<ZN<_€(ms,n)N}

. z
mo [ e(l ()

R,
(Q0,8)—€ze )N z:|zn|< Tk

and

EZ?Tk
2
= lim / / C (1 +
_EZ?ZTk (Q(0,)—exe,n)’

z ZN do'd
Vg | =) e Z'dz
k EnRTk EZETk N

Ty

2
= lim Cel <1 +

_ T (Q(0,0)—ewe,n)’

Z zn , B
Vi <EZL€1—"C’ 1_‘]@) ‘) dz dZN =0.

Thus, in view of (4.21), we deduce that (4.20) holds.

Consequently,
Wiery (w3 Q(20,8)) 1 1 @
BB i i [ (G (S unen)) + FTun a0 ) do

Q(wo,¢e)
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= lim inf

n—oo

= lim inf

n—oo

g
—W
(&
Q
Q

€
ex

(

To + Ex
eR

n

yUne.k(To + &T)) + ee® |V o 1 (T0 + 5x)|2) dx

(e)

ER 1o () 2
’Un’k(l‘ —ZTep) | + ?|an’k(as — Zen)|” | da.

Changing variables, we have by (H1),

£ zo + ex eR
/(R ( 0 = ,USL(JC—.Z‘E’”)> —|—|VUT(LEL(1‘—CE5,”)|2> dx
eR eR : € ’
Q
+e(z+2en R
-/ <;W ( &+ Ten) ;f;<x>) +€|w;f;<x>|2> da
eR eR €
—Te,n+Q
€ ET (o) eR &), 2
= ngW m”+772’ n,k(x) + ‘an,k<x)‘ dx
7I5'n+Q n n
€ ex el
- [ (& (Fehe) s Emir) b
Te,n+Q
Thus,
€ Tot+er (o ek o) 9
57RW eR n,k(x_x&n) +7|an,k(x_l‘57n)| dx
Q n n
€ ET (e eR .
< [(Gw(Siw)+ Emier) e
Q n n
e w (&% @ 5§v 9 (12 ) d
+ R R (@) ‘|‘?| U, (@) ) d
(=Zn,:+Q\Q
We claim that
R
li]rcn sup lim ilip lim sup (;z (;ﬁmfi(ﬂc)) + E;L|Vvifz€(gc)|2> dz =0
o (eocr\Q !

After changing variables, we have

9
R
En

(

(—n,e+QN\Q

/

v

EX ()

(~net@\Q)N |z |< BTk

1

_% ((=2n,c+Q\Q)’

(e ((

Tksx'
EBTk

el R
(x)) + E|vu,§}€(m)|2) dz

EX

(e)

@)

ex’!
T -
y YN k) , Uk (€RTk y YN

n

)+
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(4.22)

(4.23)

(4.24)

(4.25)



For each € > 0, take n(¢) € N such that |z.,| < € for all n > n(e). In particular, we have
(—Zne+Q)\Q C (1+¢)Q\ Q and, in view of the Riemann-Lebesgue Lemma,

n—oo

(=2n,c+QN\Q

R
_ 5 ET (o) ex )/ 12
lim sup / (%‘W (etzlz’v”’k(x)) + ?\ank(xﬂ ) dx
1
<0 [ (W (T + 1 190 iy

thus asserting (4.25). Taking into account (4.17), (4.22), (4.23), (4.24), and (4.25), we obtain that

AWiery (ui-) / ( £ (Ew © ) e 10, (©) 2)
——n7— (79) <limsuplimsup | limsu —W | —=,v () | + =|Vu, 7 (x dx
dHN,1L 8*A0( 0) = k:~>oop 5*»0+p n—)oopQ 8;’5 55 mk( ) c ‘ n,k( )‘

R
+ lim sup / (;QW (;J’fi(@) + ?|val€3€(x)|2> dm)

(—2e,n+Q)\Q

R
= limsuplimsuplimsup/ (;W (;ﬁ,vfi(x)) + E;|Vv7(f?€(gc)|2> dz = Ky,
n

k—oo e—0t n—oo n

where the last equality follows by (4.19). Thus, (4.16) holds. In view of (4.7) and (4.16), we have

_ [ WVery(u) No1| g _ dWiery (u;-) N1
W{gg}(u,ﬂ) = / m(x)dH | 0" Ao(z) = / m(@‘“’f (z)
Q QNd* Ag

< / Ky (v(2)dHY ().

QNo*Ag
By Proposition 3.3, we deduce that, in fact,
Wen@® = [ Kab@)dn (),
QNo* Ag

and the conclusion follows by a diagonalization argument.
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