Math 301: Homework 7

Due Thursday November 1 at noon on Canvas

1. (a) Modify the proof of the upper bound for $\operatorname{ex}\left(n, K_{2, t}\right)$ that we did in class to prove the Kővari-Sós-Turán Theorem. For $2 \leq s \leq t$ there exists a constant c such that $\operatorname{ex}\left(n, K_{s, t}\right) \leq c n^{2-1 / s}$.
(b) Give the best lower bound you can for $\operatorname{ex}\left(n, K_{s, t}\right)$.
2. (a) Let G be a graph where $V(G)$ consists of n points in the Euclidean plane and two points are adjacent if and only if they are at distance 1 from each other. Show that no matter how the points are placed, the number of edges in the graph is $O\left(n^{3 / 2}\right)$.
(b) Make a construction of n points in the plane that has as many pairs at unit distance as you can. How many edges are in the graph?
3. Let k be fixed. Show that there is a constant c so that $\operatorname{ex}\left(n,\left\{C_{3}, C_{4}, \cdots, C_{2 k}\right\}\right) \leq$ $c n^{1+1 / k}$. (Hint: you need to show that if G has more than $c n^{1+1 / k}$ edges then it must contain a cycle of length at most $2 k$. Assume G has this many edges and use a previous homework problem to start with a graph of minimum degree $c^{\prime} n^{1 / k}$. Do a breadth first search and show that you must find your cycle).
4. In this problem, we will "smash together" the two partite sets of the incidence graph of a projective plane and give an asymptotic formula for $\operatorname{ex}\left(n, C_{4}\right)$. Let V be a 3dimensional vector space over a finite field \mathbb{F}_{q}. We define a graph G_{π}^{o} where $V\left(G_{\pi}^{o}\right)$ is the set of one-dimensional subspaces of V. There are $q^{2}+q+1$ of these (to see this, think of a vector in V having 3 coordinates, and then for each subspace it is defined by a vector which you can normalize so that the first non-zero coordinate is 1). Two vertices are adjacent if and only if the subspaces are orthogonal to each other (note that angles don't really make sense in this setting. I say that two vectors are orthogonal if their dot product is 0 . Note that this means that a vector can be orthogonal to itself!).
(a) Show that each vertex has degree $q+1$ (Hint: V is a 3 -dimensional vector space. Given a fixed 1-dimensional subspace, the set of vectors orthogonal to it is 2dimensional. How many 1-dimensional subspaces are in a 2-dimensional vector space over \mathbb{F}_{q} ?)
(b) Show that every pair of vertices has exactly one path of length 2 between them (Hint: this is much easier to do geometrically than algebraically).
(c) Show that there are loops in the graph (you may allow q to be of any form that is convenient for you).
(d) It is known that there are $q+1$ loops in this graph. Let G_{π} be the graph with the loops removed. Then G_{π} is a graph on $q^{2}+q+1$ vertices with q^{2} vertices of degree $q+1$ and $q+1$ vertices of degree q.
(e) Use part (b) and (d) to count the number of triangles in G_{π}.
(f) It is known that for any $\epsilon>0$, there is an M such that for $m \geq M$, there is a prime number in the interval $[m,(1+\epsilon) m]$. Use this to show that $\operatorname{ex}\left(n, C_{4}\right) \sim \frac{1}{2} n^{3 / 2}$.
