Math 301: Homework 7

Due Thursday November 1 at noon on Canvas

- 1. (a) Modify the proof of the upper bound for $ex(n, K_{2,t})$ that we did in class to prove the Kővari-Sós-Turán Theorem. For $2 \le s \le t$ there exists a constant c such that $ex(n, K_{s,t}) \le cn^{2-1/s}$.
 - (b) Give the best lower bound you can for $ex(n, K_{s,t})$.
- 2. (a) Let G be a graph where V(G) consists of n points in the Euclidean plane and two points are adjacent if and only if they are at distance 1 from each other. Show that no matter how the points are placed, the number of edges in the graph is $O(n^{3/2})$.
 - (b) Make a construction of *n* points in the plane that has as many pairs at unit distance as you can. How many edges are in the graph?
- 3. Let k be fixed. Show that there is a constant c so that $ex(n, \{C_3, C_4, \dots, C_{2k}\}) \leq cn^{1+1/k}$. (Hint: you need to show that if G has more than $cn^{1+1/k}$ edges then it must contain a cycle of length at most 2k. Assume G has this many edges and use a previous homework problem to start with a graph of minimum degree $c'n^{1/k}$. Do a breadth first search and show that you must find your cycle).
- 4. In this problem, we will "smash together" the two partite sets of the incidence graph of a projective plane and give an asymptotic formula for $ex(n, C_4)$. Let V be a 3dimensional vector space over a finite field \mathbb{F}_q . We define a graph G^o_{π} where $V(G^o_{\pi})$ is the set of one-dimensional subspaces of V. There are $q^2 + q + 1$ of these (to see this, think of a vector in V having 3 coordinates, and then for each subspace it is defined by a vector which you can normalize so that the first non-zero coordinate is 1). Two vertices are adjacent if and only if the subspaces are orthogonal to each other (note that angles don't really make sense in this setting. I say that two vectors are orthogonal if their dot product is 0. Note that this means that a vector can be orthogonal to itself!).
 - (a) Show that each vertex has degree q + 1 (Hint: V is a 3-dimensional vector space. Given a fixed 1-dimensional subspace, the set of vectors orthogonal to it is 2dimensional. How many 1-dimensional subspaces are in a 2-dimensional vector space over \mathbb{F}_q ?)
 - (b) Show that every pair of vertices has exactly one path of length 2 between them (Hint: this is *much* easier to do geometrically than algebraically).

- (c) Show that there are loops in the graph (you may allow q to be of any form that is convenient for you).
- (d) It is known that there are q + 1 loops in this graph. Let G_{π} be the graph with the loops removed. Then G_{π} is a graph on $q^2 + q + 1$ vertices with q^2 vertices of degree q + 1 and q + 1 vertices of degree q.
- (e) Use part (b) and (d) to count the number of triangles in G_{π} .
- (f) It is known that for any $\epsilon > 0$, there is an M such that for $m \ge M$, there is a prime number in the interval $[m, (1 + \epsilon)m]$. Use this to show that $ex(n, C_4) \sim \frac{1}{2}n^{3/2}$.