Math 301: Homework 6

Due Wednesday Friday October 19 at noon

1. The goal of this problem is to prove the famous Szemerédi-Trotter Theorem. Given a set of points and lines in the Euclidean plane, an incidence is a point-line pair such that the point is on the line.

Theorem 1. Given n points and m lines in the plane, the number of point-line incidences is

$$
O\left(n^{2 / 3} m^{2 / 3}+n+m\right)
$$

First we need to prove a lemma. Given a graph G, the crossing number of G is the minimum number of edge-crossings possible among all drawings of the graph in the plane with the edges as straight line segments. The crossing number of a graph G is denoted by $\operatorname{cr}(G)$.

Lemma 1. Let G be a graph with e edges and n vertices. Then

$$
\operatorname{cr}(G) \geq \frac{e^{3}}{64 n^{2}}-n
$$

a Show that the lemma is trivially true if $e<4 n$, so we may assume $e \geq 4 n$.
b Assume that G is drawn in the plane so that it has $\operatorname{cr}(G)$ crossings.
c Select a subset of vertices $S \subset V(G)$ independently with probability p, and let H be the subgraph induced by the selected vertices. Define random variables $X=|S|$, $Y=|E(H)|$. Define c_{S} to be the number of crossings that are left in the drawing after S is selected. Note that c_{S} and $\operatorname{cr}(H)$ are random variables.
d We need an easy bound on the crossing number of any graph. Let F be a graph and let F^{\prime} be a planar subgraph of F with the maximum number of edges. Euler's formula says that $\left|E\left(F^{\prime}\right)\right| \leq 3|V(F)|-6$. Since F^{\prime} is maximal, adding any additional edge will create at least one crossing. Deduce that $\operatorname{cr}(F) \geq|E(F)|-3|V(F)|$ for any graph F.
e Deduce that

$$
Y-3 X \leq \operatorname{cr}(H) \leq c_{S}
$$

f From this, calculate the expected value of X, Y, and c_{S} and deduce that

$$
p^{2} e-3 p n \leq p^{4} \operatorname{cr}(G)
$$

g Choose $p=\frac{4 n}{e}$ (why is this a legitimate probability?) to finish the proof of the lemma.

Now we will prove the Szemerédi-Trotter Theorem.
a Let P and L be a set of n points and m lines. Construct a graph G with $V(G)=P$. Define adjacency in G by letting two points be adjacent if and only if they are consecutive on some line in L.
b Prove that $\operatorname{cr}(G)<m^{2}$.
c Let x be the number of incidences between P and L. Prove that the number of edges in G is at least $(x-m)$.
d Deduce that

$$
m^{2}>\frac{(x-m)^{3}}{64 n^{2}}-n
$$

and show that this implies the theorem.
Give a construction that shows that the Szemerédi-Trotter Theorem is best possible up to the implied constant.
2. Let G be a random graph on n vertices where each edge is selected independently with probability p. Let $\omega(n)$ be a function that tends to infinity with n arbitrarily slowly.
a Use Markov's inequality to show that if $p \leq \frac{1}{\omega(n) n^{2 / 3}}$ then G does not contain a K_{4} with probability tending to 1 .
b Use Chebyshev's inequality to show that if $p \geq \frac{\omega(n)}{n^{2 / 3}}$ then G contains a K_{4} with probability tending to 1 .
3. Let G be a random graph on n vertices with edge probability $1 / 2$. Let $\epsilon>0$ be arbitrary and let $k=(2+\epsilon) \ln n$.
(a) Use the Chernoff Bound to give an upper bound on the probability that any fixed set of k vertices forms an independent set.
(b) Use part (a) to show that $\alpha(G) \leq k$ with probability tending to 1 .

