## Math 301: Homework 2

## Due Friday September 14 at noon on Canvas

1. Let $\pi(n)$ denote the number of primes less than or equal to $n$. Show that $\pi(n)=$ $O(n / \log n)$. (Hint: first show that for $m$ a natural number, the product of the primes between $m$ and $2 m$ is bounded above by $\binom{2 m}{m}$ ).
2. How many natural numbers are there up to $10^{30}$ that are either perfect squares, perfect cubes, or perfect fifth powers?
3. $n$ married couples sit at a long table (of length $n$ with 2 sides). How many ways can they sit so that no couple sits across from each other? How many ways can they sit such that exactly $k$ couples sit across from each other?
4. $\left(^{*}\right)$ Let $n$ be large and choose two numbers from $[n]$ uniformly at random. What is the probability that they are coprime? For each fixed $n$ one may compute the probability $p_{n}$, and I am asking for the limit of $p_{n}$ as $n \rightarrow \infty$. (Hint: Use inclusion-exclusion and then a useful function is the Möbius function $\mu(n)$ which is -1 if $n$ is the product of an odd number of distinct primes, 1 if $n$ is the product of an even number of distinct primes, and 0 if a square divides $n$.)
