Math 301: Homework 1

Due at noon on Wednesday September 5 on Canvas

1. Determine the number of integral solutions there are to the equation

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=100
$$

which satisfy the constraints $x_{1}, x_{2}, x_{3} \geq 0, x_{4} \geq-2$ and $x_{5} \geq 10$. Your answer should not contain a sum.
2. We proved in class that $n!\leq e n\left(\frac{n}{e}\right)^{n}$.
(a) Prove that for all real $x, 1+x \leq e^{x}$.
(b) Use part (a) to give a second proof of the upper bound on n ! by induction on n.
(c) Prove that $e\left(\frac{n}{e}\right)^{n} \leq n$!.
(d) Prove that $n!\leq e \sqrt{n}\left(\frac{n}{e}\right)^{n}$.
3. (a) Let x and y be positive integers and let m be a positive integer. Prove the following identity:

$$
\binom{x+y}{m}=\sum_{k=0}^{m}\binom{x}{k}\binom{y}{m-k} .
$$

Is it true for all real x and y ? For a real number x we define $\binom{x}{k}:=\frac{x(x-1) \cdots(x-k+1)}{k!}$.
(b) Prove the same identity using a bijection with lattice paths.
(c) Prove that the number of even subsets of $[n]$ is equal to the number of odd subsets of $[n]$ in two ways: using a bijection and using the binomial theorem.

