
Math 21-301 Exam 2 November 2, 2018

Name:
Instructions: You have 50 minutes to complete this exam. Show your work and
justify all of your responses. No calculators, notes, or other external aids are allowed.
You may use the following theorems (you may also use any version of the Chernoff
bound you want):

Theorem 1 (Union Bound). Let A1, A2, · · · , An be events in a probability space.

P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai)

Theorem 2 (Markov’s Inequality). If X is a nonnegative random variable and λ > 0
is a real number, then

P(X ≥ λ) ≤ E(X)

λ
.

Theorem 3 (Chebyshev’s Inequality). Let X be a random variable with finite vari-
ance and λ > 0 a real number. Then

P(|X − E(X)| > λ) ≤ Var(X)

λ2
.

Theorem 4 (Chernoff Bound). Let X1, · · · , Xn be independent random variables
with P(Xi = 1) = p and P(Xi = 0) = 1 − p. Let S = X1 + · · · + Xn. Then for any
0 ≤ ε ≤ 1,

P (S ≤ (1− ε)pn) ≤ e−ε
2pn/2

P (S ≥ (1 + ε)pn) ≤ e−ε
2pn/3



21-301 Exam 2 Page 2 of 5

1. (10 points) Let A be a subset of integers in [n]. A is called a B3 set if for
x1, x2, x3, x4, x5, x6 ∈ A, if

x1 + x2 + x3 = x4 + x5 + x6,

then it implies that {x1, x2, x3} = {x4, x5, x6}. Show that there is a B3 subset
A ⊂ [n] with |A| = Ω

(
n1/5

)
(Hint: you may want to show that the total number

of solutions to x1+x2+x3 = x4+x5+x6 with x1, x2, x3, x4, x5, x6 ∈ [n] is O(n5)).

Solution: For any fixed x1, x2, x3, x4, x5 ∈ [n], there is at most one x6 ∈ [n]
such that x6 = x1+x2+x3−x4−x5. Therefore there are at most n5 solutions
to the equation x1 + x2 + x3 = x4 + x5 + x6.

Choose S ⊂ [n] randomly, putting each integer in S independently with
probability p. Let X = |S| and Y count the number of solutions to the
equation x1 +x2 +x3 = x4 +x5 +x6 with x1, x2, x3, x4, x5, x6 ∈ S. Given our
set S, we may make it a B3 set by removing at most one element of S for each
solution to the equation. Therefore, there is a B3 set of size at least X − Y
for every outcome of this random process. In particular, there is a B3 set of
size at least E(X − Y ) = pn − p6 · (the number of solutions) ≥ pn − p6n5.
Choosing p = 1

2
n−4/5 yields the result.
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2. Throw m2 distinct balls into m bins independently and uniformly at random.

(a) Fix a bin. Give an upper bound on the probability that the bin has more
than m+ logm

√
m balls in it.

(b) Show that no bin has more than m+ logm
√
m balls in it with probability

tending to 1.

Solution: Let Xi be the event that the i’th ball goes into the fixed bin and
let S =

∑
Xi. Since the Xis are independent, we may apply the Chernoff

Bound with p = 1
m

and n = m2. Then we have that for any ε ∈ [0, 1]

P(S ≥ (1 + ε)m) ≤ e−ε
2m/3.

Taking ε = m−1/2 logm gives

P(S ≥ m+
√
m logm) ≤ e−

1
3
log2m.

For the second part, by the union bound the probability that any bin has
more than m+

√
m logm balls in it is bounded above by

mP(a fixed bin has too many balls ≤ me−
1
3
log2m → 0.

Taking complementary events gives the result.
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3. (10 points) The k-color Ramsey number for C4, denoted rk(C4) is the minimum
n such that any k-coloring of E(Kn) contains a monochromatic C4.

(a) Show that rk(C4) = O(k2). (Hint: this is equivalent to showing that for
ε > 0 small enough, any coloring of Kn with εn1/2 colors must contain a
monochromatic C4)

(b) ∗ Give the best lower bound on rk(C4) that you can (equivalently, partition
the edge set of Kn into C4 free graphs using as few graphs as possible).

Solution: (a) If E(Kn) is colored by εn1/2 colors, then by the pigeonhole
principle one color must have at least(

n
2

)
εn1/2

edges. If ε is a small enough positive constant, this is larger than ex(n,C4) .
1
2
n3/2, and therefore this color class must contain a C4.

(b) Let q be a prime power and let Ai ⊂ Fq × Fq be defined by

Ai := {(x, x2 + i) : x ∈ Fq.

We proved in class that A0 is a Sidon set, and since any translate of a Sidon
set is a Sidon set, we have that all of the Ai are Sidon sets. We also note that
each has q elements. Next we claim that the Ai are disjoint. To see this, if
for some x, y, i, j ∈ Fq we have

(x, x2 + i) = (y, y2 + j),

then x = y which implies i = j. Since Ai and Aj are disjoint for distinct i, j,
and since each set has size q, we have that (by counting)⋃

i∈Fq

Ai = Fq × Fq.

Now let Kn be a complete graph with n = q2 and identify the vertex set with
Fq × Fq. We will color Kn with q colors such that no color class has no C4.
By the same density of primes argument in your homework, this implies that
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rk(C4) = Ω(k2). Let (x1, y1), (x2, y2) ∈ Fq × Fq be vertices in Kn. We color
the edge between them with color i where

(x1, y1) + (x2, y2) ∈ Ai.

Since the Ai are disjoint and cover the whole Fq × Fq this coloring is well-
defined. Further, since each color class is a Cayley sum graph with generating
set a Sidon set, each color class does not contain a C4.


