
Math 21-301 Exam 1 September 28, 2018

Name:
Instructions: You have 50 minutes to complete this exam. Show your work and
justify all of your responses. No calculators, notes, or other external aids are allowed.

1. (10 points) Let d be a fixed natural number. Give the best upper and lower
bounds you can for ex(n,K1,d+1).

Solution: Note that if n ≤ d + 1 then a complete graph is K1,d+1 free and
so ex(n,K1,d+1) =

(
n
2

)
, so from now on we will assume n > d + 1. Let G

be a graph which is K1,d+1 free. This means that the maximum degree of G
satisfies ∆ ≤ d (otherwise, a vertex with d+ 1 neighbors is a K1,d+1).

Then we have

2e(G) =
∑

v∈V (G)

d(v) ≤
∑

∆ ≤
∑

d = nd.

This shows that

ex(n,K1,d+1) ≤
nd

2
.

Note that if n and d are both odd we must have ex(n,K1,d+1) ≤ bnd2 c since
the Turán number is an integer.

The disjoint union of complete graphs on d+ 1 vertices is K1,d+1 free, so we
have

ex(n,K1,d+1) ≥
⌊

n

d+ 1

⌋(
d+ 1

2

)
.

This matches the upper bound if (d + 1)|n. If not, we must be a bit more
careful to get an exact answer. A construction matching the upper bound
must satisfy either

• Every vertex has degree d if n or d is even, or

• n− 1 vertices have degree d and one vertex has degree d− 1 if both n
and d are odd.

If d is even arrange the vertices of G on a circle and make a vertex adjacent
to the d/2 vertices on its left and right.
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If d is odd and n is even, arrange V (G) on a circle and make a vertex adjacent
to the bd/2c vertices on its left and right as well as the vertex antipodal to
it (there is such a vertex because n is even).

Now assume that d and n are both odd. Let H be the graph on d+2 vertices
given by (d − 1)/2 disjoint edges and a disjoint K1,2. Let H ′ be the graph
Kd+2 \ E(H). Then H ′ satisfies the property that all but one of its vertices
have degree d and the remaining vertex has degree d− 1. For n odd at least
than 2d+ 4, we may take a copy of H ′ and for the remaining (even number
of) vertices, do the above construction in the even number of vertices case.
It is left as an exercise to do the case analysis for n between d+ 2 and 2d+ 4.

Solution: (Alternate [better] lower bound): We will construct a graph with
bnd

2
c edges with maximum degree d. We will add edges subject to the condi-

tion that the maximum degree is at most d. Add an edge between the vertex
of smallest degree and that of second smallest degree (break ties arbitrarily).
At any point in the process, the minimum degree will be at most 1 smaller
than the second smallest degree. If the second smallest degree is strictly
smaller than d, then there is still an edge we may add. Therefore, when the
process terminates there is at most one vertex of degree strictly less than d,
and this vertex has degree d − 1. This is best possible if n and d are both
odd by the solution above. If either n or d is even, then by the handshaking
lemma we may not have n − 1 vertices of degree d and one of degree d − 1,
and therefore we obtain a d-regular graph.
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2. (10 points) Let G be a connected graph, regular of degree d. Show that the
eigenvalue d has multiplicity 1. (Hint: Use the eigenvalue-eigenvector equation
and look at the vertex with largest eigenvector entry).

Solution: Let A be the adjacency matrix of G. Since G is d-regular, every
row of A has exactly d 1s in it, and so

A


1
1
...
1

 = d


1
1
...
1

 .

So d is an eigenvalue. Next we show that any eigenvector for d is a constant
vector, and so is a multiple of the above eigenvector, showing that d is an
eigenvalue with multiplicity 1. Let Ax = dx and let

x =


x1
x2
...
xn

 .

Assume that x is normalized so that the maximum entry is equal to 1 and
let z be a vertex with xz = 1. The eigenvector-eigenvalue equation gives that

d = d · xz =
∑
i∼z

xi ≤
∑
i∼z

xz = d(z) = d.

Therefore we have equality in the inequality, which implies that for all i ∼ z,
we have xi = xz = 1. Repeating the argument shows that all of the vertices
that are neighbors of neighbors of z must have eigenvector entry 1 as well. If
we continually apply this argument, we will eventually see every vertex in the
graph since G is connected. Therefore, once normalized, every eigenvector
entry is 1.
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3. (10 points) A group of n adults check their hats and jackets at a restaurant.
How many ways are there to distribute back the hats and jackets such that no
person gets back their original outfit (that is, they can receive either their correct
hat OR their correct jacket OR neither, but they cannot receive their correct hat
and jacket)? Your answer may contain a sum.

Solution: Let Sn be the set of permutations on n elements. We represent
the ways that the adults can receive their hats and jackets back by Sn × Sn

(for (σ, τ) ∈ Sn × Sn, person i gets back person σ(i)’s hat and person τ(i)’s
jacket). Let X = Sn × Sn and let

Ai := {(σ, τ) ∈ X : σ(i) = τ(i) = i},

for 1 ≤ i ≤ n. Then the quantity we wish to count is exactly∣∣∣∣∣X \
(

n⋃
i=1

Ai

)∣∣∣∣∣ .
We do this by inclusion-exclusion:∣∣∣∣∣X \

(
n⋃

i=1

Ai

)∣∣∣∣∣ =
∑
S⊂[n]

(−1)|S|

∣∣∣∣∣⋂
i∈S

Ai

∣∣∣∣∣ .
Given a fixed S ⊂ [n], we have

⋂
i∈S Ai is exactly the set of pairs of permuta-

tions whose points are fixed on S, and therefore this set has size ((n−|S|)!)2.
Since this value depends only on the size of S and not on the set itself, we
have ∣∣∣∣∣X \

(
n⋃

i=1

Ai

)∣∣∣∣∣ =
n∑

k=0

(−1)k
(
n

k

)
((n− k)!)2.
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4. (10 points) A graph is called triangle saturated if it does not contain any tri-
angles but changing any non-edge to an edge creates a triangle. The extremal
number ex(n,K3) is the maximum number of edges in a triangle saturated graph
on n vertices. In this problem we will be interested in finding the minimum
number of edges in a triangle saturated graph. This quantity is denoted

sat(n,K3).

Give an exact formula for sat(n,K3) (ie, make a construction giving an upper
bound, and then prove that any triangle saturated graph on n vertices must have
at least that many edges).

Solution: Note that the star K1,n−1 is triangle saturated. This gives

sat(n,K3) ≤ n− 1.

To show the lower bound, we claim that a disconnected graph cannot be
triangle saturated. To prove this let G be a disconnected graph, and let
u, v ∈ V (G) with no path connecting them. In particular, there is no path
with 2 edges connecting them and uv is not already an edge. Then the
addition of the edge uv to G cannot create a triangle (because there was no
path of length 2 connecting u and v). Therefore, for any triangle saturated
graph G, G must be connected, and therefore it must have at least n − 1
edges, showing sat(n,K3) ≥ n− 1.


