Math 301: Optional Homework

Due Wednesday November 28

1. Let q be a prime power and $A \subset \mathbb{F}_{q} \times \mathbb{F}_{q}$ be a Sidon set with $|A|=q$. Is it true that A can always be represented as

$$
A=\left\{\left(p(x), q(x): x \in \mathbb{F}_{q}\right\}\right.
$$

where p and q are polynomials of degree at most 2 ?
2. Let $A \subset \mathbb{F}_{q} \times \mathbb{F}_{q}$ be a Sidon set with $|A|=q-1$. Is it always true that there exists an element $g \in\left(\mathbb{F}_{q} \times \mathbb{F}_{q}\right) \backslash A$ such that $A \cup\{g\}$ is also a Sidon set?
3. Can you cover 99% of an isosceles right triangle with fewer than 99 non-overlapping rectangles that have sides parallel/perpendicular to the short legs of the triangle (all completely within the triangle)?

