Lecture notes for 21-301: Combinatorics

Michael Tait

Fall 2018
Carnegie Mellon University

Contents

1 Introduction 1
2 Enumeration 3
2.1 Sequences and the Multiplication Principle 3
2.2 Permutations and Combinations 5
2.3 Bijections and Double Counting 7
2.4 Estimation 12
2.5 Inclusion-Exclusion 16
3 Basics of graph theory 21
3.1 Bipartite graphs 22
3.1.1 Trees 25
3.1.2 Planar graphs 26
4 Extremal Graph Theory 31
4.1 Introduction: Turán's Theorem 31
4.2 Bipartite Turán problems 37
4.3 Projective planes 38
4.4 Sidon sets 41
4.5 Constructing C_{4}-free graphs 42
4.6 Ramsey numbers 45
4.7 Combinatorial Number Theory 47
5 The Probabilistic Method 53
5.1 Preliminaries 53
5.2 The first moment method 55
5.2.1 Linearity of expectation 55
5.3 Alterations 58
5.4 Markov and Chebyshev 60
5.5 Chernoff Bound 65
5.6 Lovász Local Lemma 68
6 Algebraic methods in extremal combinatorics 75
6.1 Spectral Graph Theory 75
6.1.1 Linear Algebra Preliminaries 76
6.1.2 The adjacency matrix 79
6.1.3 Short proofs of old results using spectral graph theory 82
6.1.4 The Graham-Pollak Theorem 88
6.1.5 The Expander-Mixing Lemma 90
6.1.6 The Hoffman-Singleton Theorem 93
6.2 Extremal set theory 96
6.2.1 Erdős-Ko-Rado theorem 96
6.2.2 Oddtown 97
6.2.3 Triangular Principles 100
$6.3 s$-distance sets 102
6.4 Combinatorial Nullstellensatz 103

1

Introduction

The only way to learn mathematics is to do mathematics.

- Paul Halmos

These are lecture notes for Math 21-301: Combinatorics, taught during the Fall semester 2018 at Carnegie Mellon University. My goal for this course is to give you a reasonable introduction to several fundamental areas of combinatorics. My rough plan is to split the course into three modules each lasting about five weeks weeks. The three main topics covered will be (1) first principles of counting and basics of graph theory (2) extremal graph theory and (3) probabilistic and algebraic methods in combinatorics.

I have laid out an ambitious schedule for this course, and it will be hard. You should expect to spend many hours a week reading the texts, reworking your notes, or doing homework problems. You should expect that you will spend a long time on a single problem and possibly still not be able to solve it. This is ok! My goal is for you to learn as much math as possible, and the best way to learn mathematics is to do mathematics. Even though the course will be hard, as long as you show me that you have learned a lot of mathematics, I will grade reasonably.

Course announcements will be found at
http://www.math.cmu.edu/~mtait/301
and you should check this page regularly.

2

Enumeration

There is no problem in all mathematics that cannot be solved by direct counting.

\author{

- Ernst Mach
}

2.1 Sequences and the Multiplication Principle

As you may have realized in calculus, the study of sequences is quite important in mathematics, and this is where we will start our course. In this lecture, we will use the terms sequence, string, and word interchangeably. From calculus, you know that a sequence is just an ordered list of objects, and we will now make this definition precise.

We will use the notation $[n]$ as shorthand for the set of natural numbers from 1 to $n,\{1,2, \cdots, n\}$. A sequence (or string, or word) is defined to be a function $s:[n] \rightarrow X$ where X is some fixed set of objects. We will refer to the set X as the alphabet or the set of characters. That is, for each natural number we are associating to it a unique element of X. In calculus, X was generally the set of real numbers,
and a sequence was just an ordered list of real numbers (that is, you are associating a real number to 1 , a real number to 2 , a real number to 3 , etc).

We will sometimes write $s=s_{1} s_{2} s_{3} \ldots s_{n}$ rather than $s(1)=s_{1}, s(2)=s_{2}, \cdots$, $s(n)=s_{n}$. You should think of a string as an element of the n-fold cartesian product $X \times X \times \cdots \times X$.

We will be interested in fixing some property of our string that we are interested in, and then counting how many strings satisfy that property. If X is the set of lower case letters $\{a, b, c, \cdots, y, z\}$, then combinatorics, abcdefghijklm and $z z z z z z z z z z z z z$ are all examples of 13 letter words coming from the alphabet X. How many 13 letter words from X are there?

Multiplication Principle. The number of sequences $\left(s_{1}, s_{2}, \cdots, s_{n}\right)$ such that there are a_{i} choices for s_{i} after having chosen $s_{1}, s_{2}, \cdots, s_{i-1}$ for each $i=1,2, \cdots, n$ is exactly $a_{1} a_{2} \cdots a_{n}$. In particular, if $S_{1}, S_{2}, \cdots, S_{n}$ are finite sets, then

$$
\left|S_{1} \times S_{2} \times \cdots \times S_{n}\right|=\prod_{i=1}^{n}\left|S_{i}\right|
$$

By the Multiplication Principle, the number of 13 letter words coming from the alphabet of lower case letters is exactly 26^{13}. We note that the Multiplication Principle does not require that each entry comes from the same base set. In our original definition of a word, we had each entry coming from some alphabet which we called X. In practice, the interesting questions will arise when there is some restriction on what the entry in the i 'th position is allowed to be. For each i, we may be constrained to pick an element from a subset $X_{i} \subset X$, and in this case each word will be an element of

$$
X_{1} \times X_{2} \times \cdots \times X_{n}
$$

The Multiplication Principle allows us to count the number of words we are interested in in this case as well.

Example. How many strings of digits from 1-9 of length 5 have an odd number in the odd positions and an even number in the even positions?

We may split the digits 1-9 into odd and even, say $X_{o}=\{1,3,5,7,9\}$ and $X_{e}=$ $\{2,4,6,8\}$. Then the strings $s_{1} s_{2} s_{3} s_{4} s_{5}$ which satisfy the required property must have $s_{1}, s_{3}, s_{5} \in X_{o}$ and $s_{2}, s_{4} \in X_{e}$. By the Multiplication Principle, we have that the number of such strings is $\left|X_{o}\right|^{3}\left|X_{e}\right|^{2}=5^{3} \cdot 4^{2}$.

Sometimes it is tricky to count the number of sequences we are interested in all at once, but more straightforward once break the problem into smaller, disjoint pieces.

Example. Rob has 4 blue socks, 7 red socks, 5 white socks, and 3 black socks. Rob likes to wear either a red sock on his left foot with a blue sock on his right foot or a white sock on his left foot with a black sock on his right foot. How many ways are there for Rob to choose his socks?

By the Multiplication Principle, there are $4 \cdot 7=28$ ways for Rob to wear a blue and red sock, and there are $5 \cdot 3=15$ ways for him to wear a white and a black sock. How many are there total? It is clear that we should add 28 and 15.

Summation Principle. If $S_{1}, S_{2}, \cdots, S_{n}$ are finite disjoint sets, then

$$
\left|\bigcup_{i=1}^{n} S_{i}\right|=\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{n}\right| .
$$

2.2 Permutations and Combinations

What if we want a sequence of integers from $[n]$ of length k where all of the entries are distinct? There is no restriction for the first element of the string, ie there are n choices. When choosing the second element of the string we can choose any integer in $[n]$ except for the first number in the sequence, so there are $n-1$ choices. Continuing
this process we see that there are

$$
n(n-1)(n-2) \cdots(n-k+1)
$$

sequences in which all elements are distinct. We call such a sequence a permutation. For a positive integer n, we define n factorial, written n !, as

$$
n!:=n \cdot(n-1) \cdots 2 \cdot 1 .
$$

We denote the number of permutations of length k coming from alphabet $[n]$ as $P(n, k)$. By the above discussion

$$
P(n, k)=n(n-1) \cdots(n-k+1)=\frac{n!}{(n-k)!} .
$$

Example. A website requires that your password be a string of 7 lower case letters with no repeated letters. Then there are $P(26,7)=26 \cdot 25 \cdots 20$ possible passwords.

Note that when trying to figure out how many distinct passwords there are, the order of the characters matters. In general in a permutation the order of the letters of your string matters.

Example. A class of 100 students is electing a president, a vice president, and a treasurer. Then there are $P(100,3)$ ways that the leadership positions can be filled.

Again, here the order of the choices matters (ie if Bob is president and Alice is vice president, then it is a different leadership than if Alice is president and Bob is vice president). Let's look at two similar examples.

Example. You are playing Scrabble and there is exactly one of each letter left in the bag. You are about to draw 7 tiles. How many different hands can you draw?

Example. A class of 100 students is electing 3 students to fill a leadership committee. How many different ways can they choose their leadership?

In the Scrabble example, if I choose $\{A, B, C, D, E, F, G\}$ it is the same hand as if I choose $\{G, A, B, F, C, E, D\}$. In the leadership example, electing Alice, Bob, and Eve to the committee is the same as electing Eve, Alice, and Bob to the committee. That is, in contrast to the permutation examples, in these two cases the order of choices does not matter.

Let S be a finite set with $|S|=n$, and let k be a positive integer with $k \leq n$. We will use the notation $\binom{n}{k}$ (said: n choose k) to denote the number of ways to choose k (unordered) elements from S.

In the Scrabble example, we could take each unordered hand and turn it into many different 7 letter passwords of distinct letters. How many? By the Multiplication Principle we could order each set of 7 unordered letters into 7 ! ordered sequences. Similarly, there are 3! choices of President, Vice President, and Secretary for each unordered 3-person committee.

Using these ideas we can see that $\binom{n}{k} k!=P(n, k)$. To see this, note that if we were trying to count $P(n, k)$ we could first choose the k elements to be in our permutation, then we could order them. This gives us the formula

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

2.3 Bijections and Double Counting

My profit's so nice me and dog gon' count it twice.

- Rick Ross

We may look at the formula for $\binom{n}{k}$ and see that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}
$$

Can we explain why this is true in a way other than algebraic manipulation? That is, can we give a combinatorial reason why this should be true?

The binomial coefficient $\binom{n}{k}$ counts the number of ways to distinguish k elements in an n element set. When we are setting aside k elements which we are "choosing", we are also setting to the other side $n-k$ elements which we are "not choosing". Therefore, choosing k elements is equivalent to not choosing $n-k$ elements. Formally, what we have done is created a bijection between the set of all k-element subsets and the set of all $n-k$ element subsets, the function being defined by taking the complement. If there is a one-to-one correspondence between two finite sets, then they must have the same size. This is the Principle of Bijection.

Bijection Principle. If S and T are two finite sets and there is a bijection from S to T, then $|S|=|T|$.

Let's see a few examples of using the Bijection Principle. The first one is so natural that it is almost trivial.

Example. There is a natural bijection between binary strings of length n (ie sequences of length n coming from the alphabet $\{0,1\}$) and subsets of an n elements set. Specifically, let $X=\left\{x_{1}, \cdots, x_{n}\right\}$ be a set of n elements. Then given a binary string $s=s_{1} s_{2} \cdots s_{n}$, create a subset of $X^{\prime} \subset X$ by putting x_{i} in the subset if and only if $s_{i}=1 . s$ is sometimes called the characteristic vector for X^{\prime}.

This example shows that the number of binary strings of length n with exactly $k 1$ s is the same as the number of ways to choose k elements from an n-element set, $\binom{n}{k}$. Let's combine this with our first use of double counting.

Double Counting Principle. If two expressions count the same set, then they must be equal.

Example. Prove the following identity

$$
\sum_{k=0}^{n}\binom{n}{k}=2^{n}
$$

Let's count the number of binary strings of length n in two different ways. Going through each position of a binary string, there is a choice of whether that position should be a 0 or a 1 . Since there are n positions, by the Multiplication Principle there are 2^{n} binary strings of length n. Now let's count binary strings based on the number of 1 s there are. By the previous example there are $\binom{n}{k}$ binary strings with k 1s. A binary string can have between 0 and n 1s inclusive. By the Summation Principle there are $\sum_{k=0}^{n}\binom{n}{k}$ binary strings of length n.

Homework. Prove the identity

$$
\sum_{k=0}^{n}\binom{n}{k} 6^{k}=7^{n}
$$

Example.

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Proof. $\binom{2 n}{n}$ is the number of binary strings of length $2 n$ with exactly n 1s. Let's count these strings in another way. Note that if a binary string of length $2 n$ has exactly $n 1 \mathrm{~s}$, then if it has $k 1 \mathrm{~s}$ in the first n positions it must have exactly $n-k 1 \mathrm{~s}$ in the second k positions. Thus we can enumerate binary strings of length $2 n$ with exactly $n 1$ s by partitioning them according to how many 1 s are in the first n positions. By the Summation Principle, the number of them is exactly

$$
\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}
$$

By the identity $\binom{n}{k}=\binom{n}{n-k}$ we are done.

Theorem (Pascal's Identity). Define $\binom{n}{0}$ to be 1 . Then for $n, k \geq 0$

$$
\binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k}
$$

Proof. We can count k-subsets of an n element set in two different ways. Enumerating them directly gives $\binom{n}{k}$. Let the "first" element of the n-element set be distinguished. Then we can partition the k element subsets into subsets that have the first element and those that don't. There are $\binom{n-1}{k} k$-subsets which do not contain the first element and there are $\binom{n-1}{k-1} k$-subsets which do contain the first element.

Next we will consider another natural bijection between a combinatorial object and subsets. Consider an $(x \times y)$ integer lattice of points in \mathbb{Z}^{2}. Assume that the bottom left hand corner of the rectangle is the origin and the top right hand corner is the point (x, y). An (x, y) lattice path is a sequence of unit steps up and to the right, starting at the origin and ending at (x, y). We let $L(x, y)$ be the number of (x, y) lattice paths. It is clear that $L(x, 0)=L(0, y)=1$ for any natural numbers x and y, and we will define $L(0,0)$ to be 1 .

There is a natural bijection between (x, y) lattice paths and binary strings of length $x+y$. Namely, given an (x, y) lattice path, we construct a binary string of length $x+y$ where the i 'th position is R if the i 'th step of the path is to the right and U if the i 'th step of the path is up. By the Bijection Principle, this gives

$$
L(x, y)=\binom{x+y}{x}=\binom{x+y}{y}
$$

Example. Classifying lattice paths by whether their first step is up or to the right gives the recurrence $L(x, y)=L(x-1, y)+L(x, y-1)$. This is Pascal's identity.

Homework. How many (n, n) lattice paths are there that never go below the line $y=x ?$

Homework. How many subsets of $[n]$ are there with odd size?

We will now discuss compositions, which are counted by binomial coefficients despite not appearing to be counted by sets. A composition of n is a sequence of positive integers $\left(x_{1}, \cdots, x_{k}\right)$ which sum to n. Each x_{i} is called a part. How many compositions of n are there into k parts? One way to think of this is instead of choosing each part, you can choose what the partial sums are. Since the k parts must sum to n, once x_{1}, \cdots, x_{k-1} is chosen x_{k} is determined. Therefore the composition is determined by the first $k-1$ partial sums of the parts. Any $k-1$ distinct numbers in [$n-1$] are possible partial sums, and any $k-1$ partial sums can be reverse engineered into a unique list of $k-1$ parts. Therefore the number of compositions of n into k parts is exactly $\binom{n-1}{k-1}$.

Example. A mother has 23 one dollar bills that she wants to distribute between her 4 children such that each child receives at least 1 dollar. In how many ways can she do this?

We note that in this example we are assuming that the children are distinct (their order matters), but the one dollar bills are indistinguishable (their order does not matter). We can reformulate this problem into an integer programming problem. We want the number of integer solutions to

$$
x_{1}+x_{2}+x_{3}+x_{4}=23
$$

subject to the constraint $x_{i} \geq 1$. This is exactly a composition of 23 into 4 parts! So the number of ways is $\binom{22}{3}$. What if we drop the assumption that each child receives at least one dollar? Then we have changed the constraints to $x_{i} \geq 0$. To solve this problem we may create new variables $z_{i}=x_{i}+1$. Then the equation becomes

$$
\left(z_{1}-1\right)+\left(z_{2}-1\right)+\left(z_{3}-1\right)+\left(z_{4}-1\right)=23
$$

subject to constraints $z_{i} \geq 1$. The rest is left as an exercise.
We end this section with the Binomial Theorem.

Theorem (Binomial Theorem). Let n be a natural number.

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k} .
$$

Proof. Expand the left hand side, and classify according to the number of x 's taken from the factors.

Note that the binomial theorem immediately gives the identity $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$ by setting $x=y=1$. What other identities can you prove with it?

2.4 Estimation

$\log \log \log n$ is proven to go to infinity with n, but has never been observed to do so.

- Carl Pomerance

In the previous sections, we were able to count certain quantities exactly. This is the ideal scenario, but is not always possible. Sometimes it is too difficult to count something exactly (eg, for very large n, how many prime numbers are there between 1 and n ?). When this is the case, what we as mathematicians should try to do is obtain the best upper and lower bounds we can for the quantity in question.

Being able to estimate quantities quickly and effectively is an important skill in combinatorics. With time you will get a feel for when terms can be thrown away because they are not asymptotically important, for when care needs to be taken with error terms, for when it is appropriate to obtain a crude bound on a quantity rather than a precise one, etc. Often we estimate quantities by simple and often-used functions like log, polynomials, exponentials. When doing so, it is important to know "how fast" functions grow. For example, you may remember from calculus (say, using

L'Hopital's rule) that for any $\epsilon>0, n^{\epsilon}$ is "much bigger" than $\log n$ and for any $\alpha>1$, α^{n} is "much bigger" than any polynomial in n. This can be made precise using limits. In mathematics and computer science, we use "Big-Oh" notation to succinctly convey how large one function is compared to another.

Notation	Definition	Meaning
$f(n)=O(g(n))$	$\lim \sup _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ is finite	f not much bigger than g
$f(n)=\Omega(g(n))$	$g(n)=O(f(n))$	f not much smaller than g
$f(n)=\Theta(g(n))$	$f(n)=O(g(n))$	f and g have the same order of magnitude
	$f(n)=\Omega(g(n))$	f is much smaller than g
$f(n)=o(g(n))$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$	f and g grow at the same rate
$f(n) \sim g(n)$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$	

Let's try to estimate a nontrivial function that appears often in mathematics and computer science. Let

$$
H_{n}:=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k} .
$$

H_{n} is called the nth harmonic number. You learned in calculus that $H_{n} \rightarrow \infty$ as $n \rightarrow \infty$, but how fast does it go to infinity? One way is to group the terms as

$$
H_{n}=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\cdots
$$

That is, we are grouping together the numbers $\frac{1}{k}$ where

$$
\frac{1}{2^{i}}<\frac{1}{k} \leq \frac{1}{2^{i-1}}
$$

The number of terms in each subsequent set of parentheses will double and the number of total pairs of parentheses will be $1+\left\lfloor\log _{2} n\right\rfloor$. Next we notice that in the i 'th set of parentheses, there are 2^{i} terms each of which are at most $\frac{1}{2^{i}}$. This means that H_{n}
is bounded above by the number of pairs of parentheses. Similarly, besides perhaps the last set of parentheses, each set contains 2^{i} terms each of which are strictly greater than $\frac{1}{2^{i+1}}$. Therefore H_{n} is bounded below by $\frac{1}{2}$ times the number of pairs of parentheses minus 1 . We have shown

$$
\frac{1}{2}\left\lfloor\log _{2} n\right\rfloor<H_{n} \leq 1+\log _{2} n
$$

This shows that $H_{n}=\Theta(\log n)$, so we have determined its order of magnitude.
Homework. Use calculus to show that $H_{n} \sim \log _{2} n$.

Let's now try to estimate the factorial function. Some first attempts are as follows.

$$
2^{n-1}=\prod_{i=2}^{n} 2 \leq \prod_{i=1}^{n} i=n!=\prod_{i=1}^{n} i \leq \prod_{i=1}^{n} n=n^{n}
$$

So n ! is somewhere between 2^{n-1} and n^{n}. Is either of these estimates any good? Being a bit more careful (and ignoring ceilings and floors), we can see that

$$
n!=\prod_{i=1}^{n / 2} i \prod_{n / 2+1}^{n} i \leq\left(\frac{n}{2}\right)^{n / 2} n^{n / 2}=\frac{n^{n}}{2^{n / 2}}
$$

So $n!=o\left(n^{n}\right)$. On the other hand, for all $1 \leq i \leq \frac{n}{2}$ we have $i(n-i+1) \geq n$ (why?), which gives that (assume n is even for simplicity)

$$
n!=\prod_{i=1}^{n / 2} i(n-i+1) \geq n^{n / 2}
$$

Now $2^{n-1}=o\left(n^{n / 2}\right)$ (why?), so neither of our estimates is good so far. We can be much more precise:

Theorem. For $n \geq 1$ we have

$$
e\left(\frac{n}{e}\right)^{n} \leq n!\leq e n\left(\frac{n}{e}\right)^{n}
$$

Proof. You will prove the lower bound in your first homework. For the upper bound, we will consider $\ln n!$. By properties of the logarithm, we have

$$
\ln n!=\ln 1+\ln 2+\cdots+\ln n
$$

We note that this is a left Riemann sum for the function $f(x)=\ln x$ on the interval from 1 to $n+1$. Since $f(x)$ is increasing, the left Riemann sum underestimates the area under the curve. Therefore,

$$
\ln n!\leq \int_{1}^{n+1} \ln x d x=(n+1) \ln (n+1)-n
$$

Now

$$
n!=e^{\ln n!} \leq e^{(n+1) \ln (n+1)-n}=\frac{(n+1)^{n+1}}{e^{n}} .
$$

This is equivalent to the expression in the upper bound.
We use this to give simple but very useful upper and lower bounds for the binomial coefficient.

Theorem. For $n \geq 1$ and $1 \leq k \leq n$, we have

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{e n}{k}\right)^{k}
$$

Proof. Fix n and k with $k \leq n$. Calculus shows that the function $f(x)=\frac{n-x}{k-x}$ is nondecreasing. Therefore, for any $0 \leq i \leq k-1$, we have $\frac{n}{k} \leq \frac{n-i}{k-i}$. Then

$$
\binom{n}{k}=\frac{n}{k} \frac{n-1}{k-1} \cdots \frac{n-k+1}{k-k+1} \geq\left(\frac{n}{k}\right)^{k} .
$$

On the other hand

$$
\binom{n}{k} \leq \frac{n^{k}}{k!} .
$$

Using the previous theorem gives the upper bound.

2.5 Inclusion-Exclusion

In our section of Math 301, there are 32 students, 21 math majors, and 14 seniors. How many students are there that are neither math majors nor seniors? This is equivalent to counting the number of students who are either math majors or seniors (or both). It is clear that we do not have enough information to solve this problem. We can't simply add the number of math majors to the number of seniors, because we will over count those students that are senior math majors. However, it is clear that if we add 21 to 14 , then we have counted people who are either math majors or seniors but not both exactly once, and we have counted senior math majors exactly twice. Therefore, if we subtract the number of senior math majors from $21+14$ we will have found the number of students who fit into at least one of the two categories. Our class has 3 students who are senior math majors, which means that the number of students who are neither math majors nor seniors is

$$
32-(21+14-3)=2
$$

This example shows us how to count when there are two sets: if A and B are finite sets, then

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

What if there are three sets? Let A, B, and C be finite sets. Then

$$
|A|+|B|+|C|
$$

counts every element in $A \cup B \cup C$, but it counts elements that are in more than one set more than once. Similar to before we may try

$$
|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|
$$

Now any element in exactly one of the sets is counted exactly once, and any element in exactly two of the sets is counted exactly $2-1$ times. But if an element is in all three sets it is counted $3-3$ times. Therefore, we see that

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|
$$

Now try 4 sets and then 5 . You may see a pattern emerging. It will be more convenient for us to count the number of elements which are in none of the sets, which is the same as taking the number of elements in the union and taking the complement.

Theorem (Inclusion-Exclusion Theorem). Let A_{1}, \cdots, A_{m} be a collection of m subsets of a finite set X. Then

$$
\left|X \backslash\left(\bigcup_{i=1}^{m} A_{i}\right)\right|=\sum_{S \subset[m]}(-1)^{|S|}\left|\bigcap_{i \in S} A_{i}\right|
$$

where we define the intersection of zero sets to be X.

Proof. If an element of X is in none of the sets A_{1}, \cdots, A_{m}, then it is counted exactly once on the left hand side, and in the sum on the right hand side it is included exactly once, when $S=\emptyset$. Assume that an element of X is included in exactly n of the sets in A_{1}, \cdots, A_{m} where $n>0$. Then the number of subsets S with $|S|=k$ such that the element is included in $\bigcap_{i \in S} A_{i}$ is exactly $\binom{n}{k}$. Therefore, the number of times the element is counted in the sum on the right hand side is exactly

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}
$$

By the binomial theorem, this is equal to 0 .

Let's see some examples. The first three are classical.

Example (Counting Derangements). A sequence of length n from $[n]$ which is a bijection is called a permutation. We use the notation S_{n} to denote the set of all permutations of $[n]$. A permutation $\sigma \in S_{n}$ is called a derangement if $\sigma(i) \neq i$ for all $i=1,2, \cdots, n$. How many derangements of $[n]$ are there?

We can solve this problem by using the Inclusion-Exclusion Theorem. We will let the set $A_{i} \subset S_{n}$ be the set of permutations τ such that $\tau(i)=i$. Then a permutation σ is a derangement if it is not in any of the sets A_{i}. Let $S \subset[n]$ have size k. To apply the theorem we must be able to calculate the size of

$$
\bigcap_{i \in S} A_{i} .
$$

A permutation is in this intersection if and only if it is fixed on the set of k indices of S. The permutation may do anything else outside of those indices (on $n-k$ other positions). Therefore,

$$
\left|\bigcap_{i \in S} A_{i}\right|=(n-k)!
$$

The number of subsets of [n] of size k is exactly $\binom{n}{k}$, therefore the Inclusion-Exclusion Theorem gives us that

$$
\left|S_{n} \backslash\left(\bigcup_{i=1}^{n} A_{i}\right)\right|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!.
$$

This is a good result, but we should try to simplify the formula. Let \mathcal{D} be the set of all derangements.

$$
|\mathcal{D}|=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n-k)!=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}=n!\sum_{k=0}^{n}(-1)^{k} \frac{1}{k!} .
$$

Recalling from calculus that the Taylor series for e^{x} is

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!},
$$

We see that the sum is a truncated Taylor series for $\frac{1}{e}$. This tells us that as $n \rightarrow \infty$, the number of derangements of $[n]$ tends to $\frac{1}{e}$ of the total number of permutations of $[n]$.

Example (Counting Surjections). Let $m \leq n$. How many surjections are there $f:[n] \rightarrow[m] ?$

A function f is not a surjection if there is a $k \in[m]$ such that $f(i) \neq k$ for all $i \in[n]$. Therefore, let A_{k} be the set of functions $f:[n] \rightarrow[m]$ such that k is not in the range of f. Let \mathcal{F} be the set of all functions from $[n] \rightarrow[m]$. Then

$$
\left|\mathcal{F} \backslash\left(\bigcup_{k=1}^{m} A_{k}\right)\right|
$$

is exactly the number of surjections from $[n]$ to $[m]$ (let's call this set $S(n, m)$). Then Inclusion-Exclusion tells us

$$
|S(n, m)|=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}\left|\bigcap_{\substack{k \in S \\|S|=i}} A_{k}\right|
$$

We must count the size of

$$
\bigcap_{\substack{k \in S \\|S|=i}} A_{k}
$$

Functions in this intersection have a fixed set of i values in $[m$] which are not in the range of the function. Therefore, any function from $[n]$ to $[m] \backslash S$ is in the intersection. There are $(m-i)^{n}$ of these functions. So

$$
|S(n, m)|=\sum_{i=0}^{m}(-1)^{i}\binom{m}{i}(m-i)^{n}
$$

Example (The Euler ϕ function). Let $n \geq 2$ be a positive integer. The Euler totient function is defined by

$$
\phi(n)=|m \in \mathbb{N}: m \leq n, \operatorname{gcd}(m, n)=1|
$$

If n has prime factorization $n=p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}$, what is $\phi(n)$.

We want to count the number of natural numbers less than n which are coprime to n. If $n=p_{1}^{e_{1}} \cdots p_{m}^{e_{m}}$ then a number is coprime with n if and only if it is not divisible by p_{i} for any $i \in[m]$. Therefore, if we let A_{i} be the set of natural numbers in $[n]$ which are divisible by p_{i}, then

$$
\phi(n)=n-\left|\bigcup_{i=1}^{m} A_{i}\right| .
$$

To count

$$
\left|\bigcap_{i \in S} A_{i}\right|
$$

let $S=\left\{p_{i_{1}}, \cdots, p_{i_{k}}\right\}$. Then a number $r \in \bigcap_{i \in S} A_{i}$ if and only if $p_{i_{1}} \cdots p_{i_{k}} \mid r$. The number of $r \leq n$ which satisfy this property is exactly

$$
\frac{n}{p_{i_{1}} \cdots p_{i_{k}}}
$$

(viz, if $P=p_{i_{1}} \cdots p_{i_{k}}$ then they are exactly the integers $\left\{P, 2 P, \cdots,\left(n /\left(p_{i_{1}} \cdots p_{i_{k}}\right)\right) P\right\}$). Therefore, by Inclusion-Exclusion

$$
\phi(n)=\sum_{S \subset m}(-1)^{|S|} \frac{n}{\prod_{i \in S} p_{i}}=n \sum_{S \subset[m]} \frac{(-1)^{|S|}}{\prod_{i \in S} p_{i}}=n \prod_{i=1}^{m} \frac{p_{i}-1}{p_{i}}
$$

(Why is the last equality true?).

3

Basics of graph theory

Graph theory is the slums of topology.
Henry Whitehead

A graph G is a pair $(V(G), E(G))$ where $V(G)$ is a set and $E(G)$ is a subset of $\binom{V(G)}{2}$ (that is, $E(G)$ is a subset of the pairs of elements of $V(G)$). We call $V(G)$ the set of vertices and $E(G)$ the set of edges. If $\{u, v\} \in E(G)$ we say that u and v are adjacent and we write $u \sim v$. We will often write $u v \in E(G)$ instead of $\{u, v\} \in E(G)$. A good example of a graph is the Facebook graph: the vertex set is the set of users and two vertices are adjacent if the users are friends on Facebook. Note some properties of this definition:

- The edges are unordered. Removing this assumption yields what is called a directed graph. A good example of a directed graph is the Twitter graph or the Instagram graph. In contrast to Facebook where friendship must be mutual, one Twitter user can follow another without being followed back.
- Each edge is comprised of exactly 2 vertices. Generalizing this concept leads to hypergraphs, where edges may have arbitrary size. We will discuss this later.

An example of a hypergraph might be a Whatsapp graph, where the vertex set is the set of app users and a group of people form an edge if and only if they are in a group chat together (edges may have size 2, but may be larger as well).

- Each edge occurs at most once. That is, $E(G)$ is a subset of $\binom{V(G)}{2}$ and not a multiset.

The neighborhood of a vertex is the set of all vertices adjacent to it:

$$
\Gamma(v):=\{u \in V(G): u \sim v\}
$$

The degree of a vertex is the size of its neighborhood: $d_{v}:=|\Gamma(v)|$. Whenever it is not stated, n will represent the number of vertices in G and m will represent the number of edges.

Proposition 3.0.1 (Handshaking Lemma). Let G be a graph. Then

$$
\sum_{v \in V(G)} d_{v}=2 e(G)
$$

Proof. We define the set $S=\{(v, e): v \in V(G), e \in E(G), e \in v\}$ and count it in 2 ways. Counting from the perspective of the edges, each edge contains exactly 2 vertices, and so $|S|=2 e(G)$. Counting from the perspective of the vertices, each vertex v is contained in exactly d_{v} edges and so $|S|=\sum d_{v}$.

Corollary 3.0.2. The number of vertices in a graph with odd degree is even.

3.1 Bipartite graphs

A walk of length t in a graph is a sequence of vertices $\left(v_{1}, v_{2}, \cdots, v_{t+1}\right)$ where $v_{i} \sim v_{i+1}$ for all i. Note that a sequence is a function and need not be injective (ie, we may
repeat vertices). A walk is called closed if $v_{1}=v_{t+1}$. A walk is called a path if the vertices are distinct (ie the sequence is an injective function), and a path from u to v is a path there u and v are the first and last vertices respectively.

We say u and v are connected if there is a path from u to v and we say G is connected if every pair of vertices are connected. If u and v are connected we say that the distance from u to v is the length of the shortest path from u to v and denote this by $d(u, v)$. Note that the term distance is warranted, as this induces a metric on the vertex set (check for yourself that the triangle inequality holds!).

We say that a graph is bipartite if there is a partition of $V(G)$ into disjoint two parts $V=A \cup B$ such that no edge is contained entirely in one part. That is, $E(G) \subset A \times B$.

Proposition 3.1.1. A bipartite graph has at most $n^{2} / 4$ edges.
Proof. $E(G) \subset A \times B$, so $m \leq|A||B| \leq n^{2} / 4$ (why is the last inequality true?).
We say that H is a subgraph of G if $V(H) \subset V(G)$ and $E(H) \subset E(G)$. If H is a subgraph of G we say that G contains H. We now give an alternative definition of what it means to be bipartite in terms of what subgraphs it contains.

Theorem 3.1.2 (König). G is bipartite if and only if G contains no odd cycles.
Proof. First we assume G is bipartite. Let A and B be a partition of $V(G)$ such that $E(G) \subset A \times B$, and let C be a cycle that is a subgraph of G. We must show that C has an even number of vertices. Pick a vertex $v_{1} \in V(C)$ and without loss of generality assume that it is in A. Let $\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}$ be the vertices of the cycle indexed such that $v_{i} \sim v_{i+1}$ and $v_{1} \sim v_{t}$. Then since $E(G) \subset A \times B$, we must have $v_{2} \in B, v_{3} \in A$, etc. and so those vertices with even index must be in B and those with odd index must be in A. Since $v_{t} \sim v_{1}$ and $v_{1} \in A$ we must have $v_{t} \in B$ and so t is even.

For the reverse implication we need the following lemma

Lemma 3.1.3. If G contains an odd closed walk then G contains an odd cycle.

Proof. Let $\left(v_{1}, v_{2}, \cdots, v_{2 t+1}, v_{1}\right)$ be an odd closed walk. If the only repeated vertices on the walk are the first and last vertex, then the walk is a cycle and this is an odd cycle. So assume there is a pair $i<j$ such that $v_{i}=v_{j}$. Then of the pair of closed walks $\left(v_{i}, v_{i+1} \cdots, v_{j}\right)$ and $\left(v_{1}, \cdots, v_{i}, v_{j+1}, \cdots, v_{t}\right)$ exactly one must be odd and one must be even. We apply induction to the odd length walk.

Next assume that G has no odd cycles. First we claim that it suffices to consider the case where G is connected. If G is not connected, we may apply induction on both of the connected components, giving a partition of each component where all edges have one endpoint in each part. It is then straightforward to combine these into a partition of the whole graph where all edges have one endpoint in each part. If G is connected, we may define sets as follows: Let u be an arbitrary vertex and let

$$
\begin{aligned}
A & =\{v: d(u, v) \text { is even }\} \\
B & =\{v: d(u, v) \text { is odd }\} .
\end{aligned}
$$

We claim that all edges in G must be in $A \times B$. By way of contradiction assume that there is an edge $x y \in B$ (if it is in A the argument is similar). Since u and x are connected there is a path P_{x} from u to x of length $d(u, x)$, and similarly there is a path P_{y} from y to u of length $d(u, y)$. But then the walk $\left(P_{x}, P_{y}\right)$ has length $d(u, x)+$ $d(u, y)+1$, which is odd. By the lemma there is an odd cycle, a contradiction.

3.1.1 Trees

A graph is called a tree if it is connected and has no cycles. Since trees have no cycles, in particular they have no odd cycles and thus are bipartite. We give several ways to characterize trees.

Theorem 3.1.4. The following are equivalent.

1. G is a tree.
2. For all $x, y \in V(G)$ there exists a unique path from x to y.
3. G is connected and deleting any edge disconnects G.
4. G contains no cycle but adding any edge creates a cycle.
5. G is connected and $e(G)=n-1$.

We will not prove this theorem in full, but will show some of the steps.

- (2 implies 3): Assume there is a unique path between every pair of vertices. Let $e=\{x, y\}$ be an arbitrary edge in G. We must show that deleting e disconnects G. Since e is a path from x to y, by the hypothesis there is no other path in G between x and y. Thus if e is deleted then there is no path from x to y, and so G is disconnected.
- (2 implies 4): Let x, y be an arbitrary non-edge in G. We must show that adding the edge $x y$ creates a cycle. By the hypothesis, let $P_{x y}$ be a path from x to y. Then $P_{x y} \cup\{x, y\}$ is a cycle.
- (5 implies 1): Assume that G is a minimal counterexample. That is, assume that G is connected and has $n-1$ edges but is not a tree, but any smaller connected graph F on $|V(F)|-1$ edges is a tree. First note that any connected graph must have minimum degree at least 1 . Now

$$
\delta * n \leq \sum d_{v} \leq 2 e(G)=2 n-2
$$

Therefore $\delta \leq 2-2 / n$ and so $\delta=1$ since it is an integer. Let v be a vertex of degree 1 . Then $G \backslash v$ is a graph on $n-1$ vertices with $n-2$ edges and is connected. By minimality of $G, G \backslash v$ must be a tree. But adding a degree 1 vertex to a tree yields a connected graph with no cycles, ie a tree.

3.1.2 Planar graphs

Given a graph we often draw it in the plane. That is, we associate an (x, y) coordinate to each vertex and draw a continuous curve between adjacent vertices. We call this an embedding in the plane. Given an embedding in the plane, we may count the number of edge crossings. Given a graph G let the crossing number of G be the minimum number of crossings over all embeddings of G in the plane, and denote this by $\operatorname{cr}(G)$. We say that a graph is planar if $\operatorname{cr}(G)=0$.

Theorem 3.1.5 (Euler's Formula). Let G be a connected planar graph on n vertices with m edges. Let f be the number of faces in the plane in an embedding of G (including the outer face). Then

$$
n-m+f=2
$$

Proof. We prove by induction on m. If $m=0$, then there is a unique connected graph on 0 edges. It must have 1 vertex and so there is 1 face in any embedding in the plane.

We split the rest of the proof into two cases. First we assume that G is a tree. In this case, there are no cycles in the graph, so any embedding will have $f=1$. Since G is a tree we have $m=n-1$ and the formula holds.

Next assume that G is not a tree. Thus there must be a cycle in the graph, and so let e be an edge in this cycle. Let F_{1} and F_{2} be the faces which are incident with e in the embedding. Now consider the graph $G \backslash\{e\}$. Since e is part of a cycle, deleting e cannot disconnect the graph (any walk between vertices that used e could instead use the rest of the cycle). The graph $G \backslash\{e\}$ must also be planar since the embedding will still have no crossings. Therefore, we may apply the induction hypothesis. Note that when deleting e, every face remained the same except F_{1} and F_{2} became a single face. Since the formula holds on $G \backslash\{e\}$, and when we add in e the number of edges and the number of faces both increase by 1 , the formula also holds for G.

We use Euler's formula to show that planar graphs cannot have many edges.

Theorem 3.1.6. Let G be planar. Then $e(G) \leq 3 n-6$.

Proof. Without loss of generality, assume that G is connected since the disjoint union of planar graphs is planar. Now we will double count the set $S=\{(e, f): e \in$ $E(G), f$ is a face, $e \sim f\}$. Counting by edges, each edge is incident with at most 2 faces, and so $|S| \leq 2 m$. On the other hand, counting by faces, each face has size at least 3 and so $|S| \geq 3 f$. Now using Euler's formula $f=2-n+m$ on the inequality $3 f \leq 2 m$ gives

$$
3(2-n+m) \leq 2 m
$$

which simplifies to the inequality we want.

Corollary 3.1.7. K_{5} is not planar.

Corollary 3.1.8. $K_{3,3}$ is not planar.

We leave these proofs as homework. For the second one, note that $K_{3,3}$ is bipartite. This means in particular that it has no triangles, and so every face must have at least 4 edges.
H is called a minor of G if it can be obtained from G by deleting vertices and edges or by contracting edges. You should convince yourself that since K_{5} cannot be embedded in the plane without a crossing, one can also not embed a K_{5} minor in the plane without a crossing (and similarly for $K_{3,3}$). A difficult theorem which we won't prove in this class is that the converse is true as well.

Theorem 3.1.9 (Kuratowski's Theorem, 1930). A graph is planar if and only if it does not contain either K_{5} or $K_{3,3}$ as a minor.

We say that a graph is k-colorable if there is a function $f: V(G) \rightarrow[k]$ such that $u \sim v$ implies that $f(u) \neq f(v)$. The chromatic number of a graph is the minimum k for which G is k-colorable and is denoted $\chi(G)$. Note that this function is well-defined since any graph is n-colorable by mapping all of the vertices to distinct colors. Perhaps the most famous theorem in graph theory is the 4-color theorem. As a warmup we prove the following.

Proposition 3.1.10. Let G have maximum degree Δ. Then $\chi(G) \leq \Delta+1$.

Proof. Greedily color. Since there are $\Delta+1$ colors available and each vertex has at most Δ neighbors, there is always a color that we can use without creating a conflict.

Theorem 3.1.11 (Six color theorem). If G is planar then $\chi(G) \leq 6$.

Proof. We will prove by induction on n. Let δ be the minimum degree. Then

$$
\delta n \leq \sum d_{v}=2(G) \leq 3 n-6
$$

This means that $\delta \leq 6-\frac{6}{n}$ and so $\delta \leq 5$. Let v be a vertex of degree δ. Since $G \backslash\{v\}$ is planar, we may use the induction hypothesis and color it with 6 colors. Now we want to extend this coloring to a coloring of G. Since v has degree at most 5 , there is a color that we can use to create a proper coloring.

Theorem 3.1.12 (Five color theorem). If G is planar then $\chi(G) \leq 5$.
Proof. The proof is just slightly more sophisticated than the last one. Again we will prove by induction. Let v be a vertex of minimum degree. If v has degree at most 4, we may remove it apply the induction hypothesis, and color it greedily. Therefore without loss of generality assume that v has degree 5 and let $y_{1}, y_{2}, y_{3}, y_{4}$ be 4 of its neighbors. By the induction hypothesis, let $G \backslash\{v\}$ be colored with 5 colors. If y_{1}, \cdots, y_{4} do not receive distinct colors, then we may greedily color v, so without loss of generality assume that y_{i} receives color i. Now, fix $1 \leq i<j \leq 4$. Then consider the subgraph where the only edges present are those with endpoints colored by colors i and j. If y_{i} and y_{j} are in different components of this graph, then we may switch the colors on one of those components, giving y_{i} and y_{j} the same color, and then we may color v greedily. If they are in the same component of this subgraph, then there is a path from y_{i} to y_{j} alternating colors i and j. So without loss of generality, we may assume that either we can greedily color v and we are done or there exist alternating paths between each pair y_{i} and y_{j}. So assume this, and since this must be true for all pairs y_{i} and y_{j}, the vertices v, y_{1}, \cdots, y_{4} and the vertices on these paths create a K_{5} minor, a contradiction.

Theorem 3.1.13 (The four color theorem). If G is planar then $\chi(G) \leq 4$.

Proof. Outside the scope of this course...

4

Extremal Graph Theory

4.1 Introduction: Turán's Theorem

In this short note, I will restrict myself to Turán's work in graph theory, even though his main work was in analytic number theory and various other branches of real and complex analysis. Turán had the remarkable ability to write perhaps only one paper or to state one problem in various fields distant from his own; later others would pursue his idea and a new subject would be born.

In extremal graph theory, we are trying to optimize a graph invariant over a fixed family of graphs. This statement is deliberately broad, and an incredible number of interesting problems can be phrased this way. We have already seen several examples of extremal graph theory problems: a planar graph has at most $3 n-6$ edges, a planar graph has chromatic number at most 4 , a graph with no cycles has at most $n-1$ edges. We will mostly focus on two of the most well-studied extremal graph theory problems: Turán-type problems and Ramsey-type problems.

Throughout this chapter, G will always denote a graph on n vertices. For a vertex $v \in V(G), d(v)$ will denote the degree of v. We will use $e(G)$ to denote the number of edges in G.

Given a graph F, let ex (n, F) denote the maximum number of edges in an n vertex graph which does not contain a copy of F. Extremal graph theory was born more than a century ago with Mantel's Theorem.

Theorem 4.1.1 (Mantel's Theorem, 1907). Let G be a graph on n vertices which does not contain a triangle. Then $e(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ with equality if and only if G is a complete bipartite graph with partite sets of as equal size as possible.

In our notation, this says that $\operatorname{ex}\left(n, K_{3}\right) \leq \frac{n^{2}}{4}$. As you noticed in lecture, the extremal graph not only forbids K_{3} but actually does not contain any odd cycles! This means that $\operatorname{ex}\left(n, K_{3}\right)=\operatorname{ex}\left(n,\left\{K_{3}, K_{5}, K_{7}, \cdots\right\}\right)$.

First proof of Mantel's Theorem. Let $e(G)=m$. Note that for any edge $x y$, any other vertex can be adjacent to at most one of x or y (otherwise we would have a triangle). This means that for any edge $x y$ we have

$$
d(x)+d(y) \leq n
$$

Summing over all of the edges in the graph gives

$$
\sum_{x \sim y} d(x)+d(y) \leq m n
$$

On the other hand

$$
\sum_{x \sim y} d(x)+d(y)=\sum_{v \in V(G)}(d(v))^{2} .
$$

Now we may use Cauchy-Schwarz to see that

$$
\sum_{v \in V(G)}(d(v))^{2} \geq \frac{\left(\sum_{v \in V(G)} d(v)\right)^{2}}{n}=\frac{4 m^{2}}{n}
$$

Rearranging gives $m \leq \frac{n^{2}}{4}$. Go through the proof to see what must happen if we have equality!

Second proof of Mantel's Theorem. We prove by induction on n. If $n=1$ or $n=2$, then the theorem is trivial, so the base case is done. Now let $x y$ be an edge in G and let H be the graph induced by $V(G) \backslash\{x, y\}$. Then

$$
e(G)=d(x)+d(y)-1+e(H)
$$

As we noted in the first proof, $d(x)+d(y) \leq n$. By the induction hypothesis, $e(H) \leq$ $\frac{(n-2)^{2}}{4}$. So we have

$$
e(G) \leq n-1+\frac{(n-2)^{2}}{4}=\frac{n^{2}}{4}
$$

Turán generalized Mantel's theorem to graphs that do not contain a copy of K_{r}. It is easy to see that a complete $r-1$ partite graph cannot contain a copy of K_{r} : by the pigeonhole principle, for any r vertices there must be at least 2 in the same partite set, and therefore these two vertices will not have an edge between them, meaning that any set of r vertices cannot form a K_{r}. This gives a lower bound on ex $\left(n, K_{r}\right)$ that is roughly $\left(1-\frac{1}{r-1}\right)\binom{n}{2}$. Let $T(n, r-1)$ be the complete $(r-1)$-partite graph on n vertices with parts of sizes as equal as possible. Turán's theorem says that no graph that is K_{r} free has more edges than $T(n, r-1)$.

Theorem 4.1.2 (Turán). Let G be an n vertex graph with no copy of K_{r} as a subgraph. Then

$$
e(G) \leq e(T(n, r-1))
$$

There are many proofs of Turán's theorem. This one was told to me by Josh Tobin, and is due to Zykov.

First proof of Turán's theorem. Let G be a graph on n vertices with no K_{r} that has as many edges as possible. That is, assume $e(G)=\operatorname{ex}\left(n, K_{r}\right)$.

We define a relation on the vertex set of G. Let $x R y$ if x and y are not adjacent. We claim that this forms an equivalence relation on $V(G)$. It is clear that $x R x$ and that if $x R y$ and $y R x$, so to show that non-adjacency is an equivalence relation we need to show transitivity. (side note: we are only claiming this is an equivalence relation when G is maximal with respect to not having a K_{r}).

Let x, y, z be vertices with y not adjacent to either x or z. We assume x is adjacent to z and derive a contradiction. If $d(y)<d(x)$, then we may make a new graph where we remove y and make a clone of x. Note that this cannot create a K_{r}, and the new graph with have strictly more edges than G, contradicting that $e(G)=\operatorname{ex}\left(n, K_{r}\right)$. So we must have $d(y) \geq d(x)$. Similarly $d(y) \geq d(z)$. Now let $H=G \backslash\{x, y, z\}$. Note that

$$
e(G)=e(H)+d(x)+d(y)+d(z)-1
$$

where the 1 is subtracted because we assumed that $x z$ is an edge. Now create a new graph G^{\prime} by adding 3 copies of the vertex y to H. Then

$$
e\left(G^{\prime}\right)=e(H)+3 d(y) \geq e(H)+d(x)+d(y)+d(z)>e(G)
$$

Noting that G^{\prime} does not contain a K_{r} and has strictly more edges than G gives us a contradiction.

So we have shown that non-adjacency is an equivalence relation on $V(G)$. This means that the vertex set can be partitioned into equivalence classes, ie sets of vertices that are related to each other. This means that G must be a complete multipartite graph (a vertex must not be adjacent with anything in its equivalence class, and must be adjacent to everything not in its equivalence class). Since G is K_{r}-free, there must be at most $r-1$ parts, and to maximize the number of edges we must take $G=T(n, r-1)$.

Second Proof of Turán's theorem. Let v_{1}, \cdots, v_{n} be the vertices of G. Choose a permutation $\pi \in S_{n}$ uniformly at random. Create a subset $S \subset V(G)$ by putting $v_{\pi(i)}$ in S if $v_{\pi(i)}$ is adjacent to all of the members already in S. Therefore, S induces a clique, and so at the end of the process $|S| \leq r-1$. Let X_{i} be the indicator random variable that $v_{i} \in S$, so $|S|=\sum X_{i}$. Then

$$
r-1 \geq \mathbb{E}(|S|)=\sum_{i=1}^{n} \mathbb{P}\left(X_{i}\right) \geq \sum_{i=1}^{n} \frac{1}{n-d\left(v_{i}\right)}
$$

The last inequality is because a vertex v_{i} to be in S if it comes before all of its $n-d\left(v_{i}\right)-1$ non-neighbors in the permutation π. Now we use Cauchy-Schwarz with $u_{i}=\sqrt{n-d\left(v_{i}\right)}$ and $v_{i}=\frac{1}{\sqrt{n-d\left(v_{i}\right)}}$, which gives

$$
n^{2} \leq\left(\sum_{i=1}^{n} n-d\left(v_{i}\right)\right)\left(\sum_{i=1}^{n} \frac{1}{n-d\left(v_{i}\right)}\right) \leq(r-1)\left(\sum_{i=1}^{n} n-d\left(v_{i}\right)\right)
$$

Noting that $\sum d\left(v_{i}\right)=2 e(G)$ and rearranging gives

$$
e(G) \leq \frac{(r-2)}{2(r-1)} n^{2}
$$

So this is very good! When the graph we are forbidding is complete, Turán's theorem gives us an exact result. Exact results are rare in extremal graph theory, and so we are happy. What can we say more generally? What is ex (n, F) if F is not a complete graph? If we are willing to give up a small error term, in many cases we can say something surprisingly sharp.

Let's consider lower bounds first. The Turán graph with r parts was a good candidate to exclude a complete graph on $r+1$ vertices because of the pigeonhole principle: for any $r+1$ vertices, there must be a part with at least 2 of them, and so these 2 vertices cannot be adjacent. But if we think a little bit we realize that the

Turán graph is a good graph to exclude many other graphs as well. Say $\chi(F)=r+1$. Then we claim that F cannot be a subgraph of $T(n, r)$. Why? $T(n, r)$ is a complete r-partite graph. In particular, coloring each partite set with its own color gives a proper r-coloring of $T(n, r)$. This means that for any graph H which is a subgraph of $T(n, r)$, there is a proper coloring of H with r colors. Therefore, since F has chromatic number strictly greater than r, it cannot be a subgraph of $T(n, r)$. So when $\chi(F)=r+1$, we have shown

$$
\operatorname{ex}(n, F) \geq e(T(n, r)) \sim\left(1-\frac{1}{r}\right)\binom{n}{2}
$$

Is this lower bound best possible? The celebrated Erdős-Stone theorem says, up to a small error, yes.

Theorem 4.1.3 (Erdős-Stone theorem). Let F be a graph with $\chi(F)=r+1$. Then

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}
$$

where $o(1)$ goes to 0 as n goes to infinity.
We already certified the lower bound. In order to prove the upper bound, one has to show that for any $\epsilon>0$, there is an N such that for $n \geq N$, any graph with at least $\left(1-\frac{1}{r}+\epsilon\right)\binom{n}{2}$ edges contains a copy of F. The proof outline is roughly this:

1. Assume G is a graph with at least $\left(1-\frac{1}{r}+\epsilon\right)\binom{n}{2}$ edges. Our goal is to show that F is a subgraph of G.
2. By removing vertices of small degree, show that it suffices to consider the case where G has minimum degree at least $\left(1-\frac{1}{r}+\epsilon\right) n$. This part is the same idea as number 3 on Homework 3!
3. Show that for any constant C that we choose, G must contain a complete $(r+1)$ partite graph with C vertices in each part. This is the key step in the proof of
the theorem. The proof is by induction on r and is the same double counting and convexity technique that you will use to prove the Kővari-Sós-Turán theorem on a future homework.
4. Show that this implies the theorem. That is, once we have a compete $(r+1)$ partite subgraph of G, we can take C to be large enough to embed our copy of F (eg if we take $C>|V(F)|$ then we can certainly find a copy of F).

So this is a very satisfying result. In most cases, this gives us an asymptotic formula for ex (n, F). However, if F is bipartite, then the theorem simply says that $\operatorname{ex}(n, F)=o\left(n^{2}\right)$. In general, finding the Turán number for a bipartite graph is a very difficult problem. For most bipartite graphs, not even the order of magnitude is known. We will discuss this further later in the course.

4.2 Bipartite Turán problems

Theorem 4.2.1 (Kővari-Sós-Turán theorem). Let $t \geq s \geq 2$. Then there is a constant c such that

$$
\operatorname{ex}\left(n, K_{s, t}\right) \leq c n^{2-1 / s}
$$

Since any bipartite graph F is a subgraph of $K_{s^{\prime}, t^{\prime}}$ for some constants s^{\prime} and t^{\prime}, we have that $\operatorname{ex}(n, F) \leq \operatorname{ex}\left(n, K_{s^{\prime}, t^{\prime}}\right)=O\left(n^{2-1 / s^{\prime}}\right)$.

We will prove the theorem when $s=2$. You will give the proof of the full theorem in your homework.

Proof of KST theorem for $s=2$. Let G be an n vertex graph that has no copy of $K_{2, t}$. Then since G is $K_{2, t}$ free, it means that for any vertices x and y, they can have at most $t-1$ common neighbors. We write $d(x, y)$ to denote $|\Gamma(x) \cap \Gamma(y)|$, the number
of common neighbors of x and y. So

$$
\sum_{x, y} d(x, y) \leq(t-1)\binom{n}{2}
$$

On the other hand

$$
\sum_{x, y \in V(G)} d(x, y)=\sum_{v \in V(G)}\binom{d(v)}{2}=\frac{1}{2} \sum\left((d(v))^{2}-d(v)\right)=\left(\frac{1}{2} \sum(d(v))^{2}\right)-e(G)
$$

Now by Cauchy-Schwarz, we have

$$
\sum(d(v))^{2} \geq \frac{\left(\sum d(v)\right)^{2}}{n}=\frac{4(e(G))^{2}}{n}
$$

Combining, this gives

$$
\frac{2(e(G))^{2}}{n}-e(G) \leq(t-1)\binom{n}{2}
$$

Using the quadratic formula to solve for $e(G)$ gives

$$
e(G) \leq \frac{1+\sqrt{1+4(t-1)\binom{n}{2} \frac{2}{n}}}{\frac{2}{n}}=\frac{n+n \sqrt{1+4(n-1)(t-1)}}{2} \sim \sqrt{t-1} n^{3 / 2}
$$

The best lower bound we have see for $\operatorname{ex}\left(n, K_{2,2}\right)=\operatorname{ex}\left(n, C_{4}\right)$ is $\Omega\left(n^{4 / 3}\right)$. Which is right? We will see shortly.

4.3 Projective planes

The survival of finite geometry as an active fields of study depends on someone finding a finite projective plane of a non-prime-power order.

- Gary Ebert

In this section we foray into the field of finite incidence geometry. A point-line incidence structure (sometimes also called: a rank 2 geometry) is a set \mathcal{P} of points
and a set \mathcal{L} of lines, where each line is a subset of the point set. We say that a point p is incident with a line l if $p \in l$. We say the the point p is on l to mean the same thing.

Definition 4.3.1. A projective plane is a point line incidence structure that satisfies the following 3 axioms:

1. For every pair of points, there is a unique line which they are both on.
2. For every pair of lines, they intersect in a unique point.
3. The plane is non-degenerate.

There are two degenerate planes which trivially satisfy the first 2 axioms: if you have only one line in your geometry and all of the points are on it, or if you have only one point in your geometry and all of the lines go through it. It turns out that besides these two examples, the first 2 axioms determine many structural properties that a projective plane must have.

Theorem 4.3.2. Let Π be a finite projective plane. Then there is an integer q such that every point is on $q+1$ lines and every line contains $q+1$ points.

Proof. Let p be a point and l be a line which does not contain p. Then for every point $q \in l$, the first axiom tells us that there is a unique line $l_{p q}$ that goes through both p and q. Axiom 2 tells us that for every line going through p, it meets l in a unique point. Thus there is a bijection from the set of lines going through p to the set of points on l, and therefore the sizes of these sets must be the same. But p and l were arbitrary. Choosing different pairs of points and lines shows that all points have the same number of lines going through them and all lines have the same number of points on them, and that these numbers are the same. Call this number $q+1$.

We call q the order of the projective plane.
Theorem 4.3.3. If Π is a projective plane of order q, then it has $q^{2}+q+1$ points and $q^{2}+q+1$ lines.

Proof. Let p be a point. Consider the $q+1$ lines that go through p. These lines all meet at p, but besides this are disjoint (by axiom 2). Furthermore, any point in the projective plane must be on one of these lines. To see this, axiom 1 says that for any point q, there is a unique line going through p and q, and so q must be on one of the lines through p. Therefore, we can count the number of points in the projective plane to be:

$$
1+(q+1)(q+1-1)=q^{2}+q+1
$$

The proof for lines can be done similarly, or one can double count to show that the number of points must be the same as the number of lines.

We now show that a projective plane of order q exists whenever q is a prime power. It is the biggest open problem in finite geometry to determine whether or not this is the only time when a plane exists.

Theorem 4.3.4. Let q be a prime power. Then there is a projective plane of order q.

Proof. Let \mathbb{F}_{q} be the finite field of order q. Let V be a 3-dimensional vector space over \mathbb{F}_{q}. We define an incidence structure as follows:

- Let \mathcal{P} be the set of 1-dimensional subspaces of V.
- Let \mathcal{L} be the set of 2-dimensional subspaces of V.
- Define incidence by containment. ie a point (1-d subspace) is on a line (2-d subspace) if the 1-d subspace is contained in the 2-d subspace.

Since two distinct 1-dimensional subspaces span a unique 2-dimensional subspace, this structure satisfies the first axiom. Since V is 3-dimensional, any pair of 2-dimensional subspaces must meet in a 1-dimensional subspace, so the second axiom is also satisfied. It is easy to see that the plane is not degenerate.

4.4 Sidon sets

At the very beginning, there was Simon Sidon.

- Alain Plagne

Recall from your second exam that if Γ is an abelian group, and $A \subset \Gamma$ is called a Sidon set if it has only trivial solutions to the Sidon equation

$$
a+b=c+d
$$

That is, if $a, b, c, d \in A$ and $a+b=c+d$, then it implies that $\{a, b\}=\{c, d\}$. Note that if A is a Sidon set, then all of the sums are distinct, but also all of the nonzero differences are distinct. This implies that if $A \subset \Gamma$ is a Sidon set, then

$$
|A|(|A|-1) \leq|\Gamma|-1
$$

Finding the maximum size of a Sidon set in $[n]$ is a 500 USD Erdős problem:

Denote by $f(n)$ the largest integer k for which there is a sequence $1 \leqslant a_{1}<\cdots<a_{k} \leqslant n$ so that all the sums $a_{i}+a_{j}$ are distinct. Turán and I conjectured about 40 years ago [5] that

$$
\begin{equation*}
f(n)=n^{1 / 2}+\mathrm{O}(1) \tag{1}
\end{equation*}
$$

The conjecture seems to be very deep and I offered long ago a prize of 500 dollars for a proof or disproof of (1). The sharpest known results in the direction of (1) state [5]

$$
\begin{equation*}
n^{1 / 2}-n^{1 / 2-c}<f(n)<n^{1 / 2}+n^{1 / 4}+1 \tag{2}
\end{equation*}
$$

We show that there are Sidon sets of size asymptotic to the upper bound:

Theorem 4.4.1. Let p be an odd prime. There is a Sidon subset of $\mathbb{F}_{p} \times \mathbb{F}_{p}$ of size p.

Proof. Let

$$
A=\left\{\left(x, x^{2}\right): x \in \mathbb{F}_{p}\right\} .
$$

It is clear that $|A|=p$. We now show that A is a Sidon set. Assume that

$$
\left(a, a^{2}\right)+\left(b, b^{2}\right)=\left(c, c^{2}\right)+\left(d, d^{2}\right)
$$

with $a, b, c, d \in \mathbb{F}_{p}$. We must show that $\{a, b\}=\{c, d\}$. Without loss of generality, assume that $a \neq c$. Then we have the following system of equations

$$
\begin{gathered}
a+b=c+d \\
a^{2}+b^{2}=c^{2}+d^{2}
\end{gathered}
$$

which is equivalent to

$$
\begin{gathered}
a-c=d-b \\
a^{2}-c^{2}=d^{2}-b^{2} .
\end{gathered}
$$

Since $a \neq c$ and we are working in a field, we may divide through the second equation by $a-c=d-b$ to find that

$$
a+c=d+b
$$

But this along with $a-c=d-b$ implies that $2 a=2 d$ which means that $a=d$ (since p is odd), and $b=c$.

4.5 Constructing C_{4}-free graphs

Why did we talk about projective planes and Sidon sets? It turns out one can use them to construct C_{4}-free graphs.

Let Π be a projective plane of order q. We will make the bipartite incidence graph of Π as follows (also called the Levi graph): Let \mathcal{P} and \mathcal{L} be the points and lines of Π. We define our graph G by $V(G)=\mathcal{P} \cup \mathcal{L}$ and for $p \in \mathcal{P}, l \in \mathcal{L}$ we have $p l \in E(G)$ if and only if $p \in l$ in Π. Why is this graph C_{4}-free? We must show that for any pair of vertices, they have at most 1 neighbor in common. If one vertex is a point, and one vertex is a line, then the pair have no neighbors in common since G is bipartite. Now, if I have two vertices which are points, how many neighbors do they have in common? The neighborhood of a point in G is the set of lines that it is on in Π. By the axioms of a projective plane, a pair of points are on a unique common line. This means that in G, any pair of points have exactly one neighbor in common. Similarly, any pair of lines meet in a unique point. In G, the neighborhood of a line is the set of points on it. Therefore, any two lines in G have a unique common neighbor. So G is a $q+1$ regular graph on $2\left(q^{2}+2+1\right)$ points which is C_{4}-free. Since we showed that projective planes of order q exist if q is a prime power, we have the following corollary:

Corollary 4.5.1. If q is a prime power, then

$$
\operatorname{ex}\left(2\left(q^{2}+q+1\right), C_{4}\right) \geq(q+1)\left(q^{2}+q+1\right)
$$

Using a density of primes argument that is the same as in your homework, this implies that

$$
\operatorname{ex}\left(n, C_{4}\right) \gtrsim \frac{1}{2 \sqrt{2}} n^{3 / 2}
$$

So we have determined the order of magnitude of $\operatorname{ex}\left(n, C_{4}\right)$. In your homework, you will show that you can remove the constant multiple of $\sqrt{2}$ difference in the upper and lower bounds by smashing together the two partite sets of the above graph in a nice way.

Next we use Sidon sets to show an alternate way to get rid of the $\sqrt{2}$ factor. Given an abelian group Γ and a set $A \subset \Gamma$, we can construct a Cayley sum graph. Let $V(G)=\Gamma$, and let $x \sim y$ in G if and only if $x+y \in A$. Note that this graph may have loops (if $x+x \in A$), but if we remove the loops then the graph has minimum degree $|A|-1$. We claim that if A is a Sidon set, this graph is C_{4}-free. To see this, consider a purported C_{4}. That is, let $x, y, w, z \in \Gamma$ and assume $x y, y w, w z, z x \in E(G)$. Then there are $a, b, c, d \in A$ such that

$$
\begin{aligned}
& x+y=a \\
& y+w=b \\
& w+z=c \\
& z+x=d
\end{aligned}
$$

But then we have

$$
x+y+w+z=a+c=b+d
$$

where $a, b, c, d \in A$. Since A is a Sidon set, we must have $\{a, c\}=\{b, d\}$. If $a=b$ then $x=w$ and if $a=d$ then $y=z$. In either case, $x y w z$ is not a C_{4} in the graph. By the construction of a Sidon set of size p in the group $\mathbb{F}_{p} \times \mathbb{F}_{p}$, we have constructed a graph on p^{2} vertices with minimum degree at least $p-1$. Therefore we have, for p a prime:

$$
\operatorname{ex}\left(p^{2}, C_{4}\right) \geq \frac{1}{2} p^{2}(p-1)
$$

By a density of prime numbers argument, we have the asymptotic formula ex $\left(n, C_{4}\right) \sim$ $\frac{1}{2} n^{3 / 2}$.

4.6 Ramsey numbers

Recall that given graphs G and H, the Ramsey number $R(G, H)$ is the minimum n such that any red/blue coloring of the edges of K_{n} contains a copy of G with all red edges or a copy of H with all blue edges. We write $R(s, t)$ for $R\left(K_{s}, K_{t}\right)$. Giving a lower bound that $R(s, t)>m$ means coloring the edges of K_{m} such that there is no red K_{s} or blue K_{t}. The first construction one might think of is to take $t-1$ disjoint copies of K_{s-1} which are colored red, and color the edges in between blue. This gives

$$
R(s, t)>(s-1)(t-1)
$$

For a while, it was thought that maybe this was the right order of magnitude. We saw using the probabilistic method that one can do much, much better. The first moment method gives

$$
R(t, t)>2^{t / 2-1}
$$

and the Lovász Local Lemma gives

$$
R(t, t) \geq(1-o(1)) \frac{\sqrt{2} s}{e} 2^{s / 2}
$$

This is still the best general lower bound. Let's turn to upper bounds.

Theorem 4.6.1. Let $s, t \geq 2$. Then

$$
R(s, t) \leq\binom{ s+t-2}{t-1}
$$

Proof. We prove this by induction. The statement is clear for $R(s, 2)$ and $R(2, t)$. Now consider a red-blue coloring of the edges of K_{n} and assume there is no red K_{s} or blue K_{t}. We must show that $n<\binom{s+t-2}{t-1}$. Consider a vertex v and consider its red neighborhood and its blue neighborhood. By induction, if the number of red edges incident with v is at least $\binom{(s-1)+t-2}{t-1}$, then in the graph induced by its red
neighborhood contains either a red K_{s-1} or a blue K_{t}, and so the complete graph has either a red K_{s} or a blue K_{t}. So the red neighborhood may have size at most $\binom{s+t-3}{t-1}-1$. Similarly, the blue neighborhood of v may have size at most $\binom{s+t-3}{t-2}-1$. Therefore the number of vertices in the graph is at most

$$
1+\left(\binom{s+t-3}{t-1}-1\right)+\left(\binom{s+t-3}{t-2}-1\right)=\binom{s+t-2}{t-1}-1
$$

This gives as a corollary that

$$
R(t, t)=O\left(\frac{4^{t}}{t}\right)
$$

The best known bound is due to David Conlon, who showed

$$
R(t, t) \leq t^{-\Omega\left(\frac{\log t}{\log \log t}\right)} 4^{t}
$$

We would also like to define multicolor Ramsey numbers. Define

$$
R_{k}\left(s_{1}, \cdots, s_{k}\right)
$$

to be the minimum n such that any k coloring of the edge set of K_{n} contains a monochromatic copy of $K_{s_{i}}$ in color i. A priori, it is not even clear that these numbers should be finite!

Theorem 4.6.2. For any integers s_{1}, \cdots, s_{k},

$$
R_{k}\left(s_{1}, \cdots, s_{k}\right)<\infty
$$

Proof. We prove by induction on k. We have already proved the base case when $k=2$. Now let K_{n} be colored with k colors. Given this coloring we create a red/blue coloring of K_{n} where we color an edge red if it was colored with color 1 , and we color and
edge blue if it was colored with colors between 2 and k. Note that by the induction hypothesis $R_{k-1}\left(s_{2}, \cdots, s_{k}\right)$ is a finite number. So if $n=R\left(s_{1}, R_{k-1}\left(s_{2}, \cdots, s_{k}\right)\right)$, then by the base case there exists either a red $K_{s_{1}}$ or a blue $K_{R_{k-1}\left(s_{2}, \cdots, c_{k}\right)}$. If there is a red $K_{s_{1}}$ that means there is a clique of size s_{1} in color 1 and we are done. If there is a blue $K_{R_{k-1}\left(s_{2}, \cdots, c_{k}\right)}$ then there is a clique on $R_{k-1}\left(s_{2}, \cdots, s_{k}\right)$ vertices using only colors $2, \cdots, k$. By the induction hypothesis, this clique contains a clique of size s_{i} in color i for some i between 2 and k.

4.7 Combinatorial Number Theory

Ramsey-type theorems do not just have to be on graphs:

Theorem 4.7.1 (Schur's Theorem). For any k, there exists an integer n such that for any k coloring of the integers $\{1, \cdots, n\}$, there are three integers $x, y, z \in[n]$ with the same color such that $x+y=z$.

Proof. Choose $n=R_{k}(3,3, \cdots, 3)$, and assume $[n]$ is colored with k colors by the function $\chi:[n] \rightarrow[k]$. We define an edge coloring of K_{n} by coloring the edge $i j$ with the color $\chi(|i-j|)$. Then by the graph Ramsey theorem, there must be a monochromatic triangle in this graph. Consider a monochromatic triangle $i j k$ in K_{n} and assume $i<j<k$. Then we have

$$
\chi(j-i)=\chi(k-i)=\chi(k-j) .
$$

Letting $x=j-i, y=k-j$ and $z=k-i$ gives three integers in [n] with the same color such that $x+y=z$.

We use Schur's Theorem to prove that Fermat's Last Theorem does not hold over finite fields:

Theorem 4.7.2. For each n, there exists a p_{0} such that for any prime $p \geq p_{0}$ the equation

$$
x^{n}+y^{n} \equiv z^{n} \quad(\bmod p)
$$

has a solution.

Proof. Note that the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic, and so there is a generator g such that $(\mathbb{Z} / p \mathbb{Z})^{*}=\left\{g^{0}, g^{1}, g^{2}, \cdots, g^{p-2}\right\}$. For each $x \in(\mathbb{Z} / p \mathbb{Z})^{*}$ define k_{x} and i_{x} so that

$$
x=g^{k_{x} n+i_{x}} .
$$

Now we define a coloring of the integers $c:\{1, \cdots, p\} \rightarrow[n]$ where $c(x)=i_{x}$ (note that I am thinking of x as both an integer as an element of the group simultaneously). For p large enough, Schur's theorem guarantees a monochromatic solution to $x^{\prime}+y^{\prime}=z^{\prime}$. By the way that we have defined our coloring, this means that there exists an i so that

$$
g^{k_{x^{\prime}} n+i}+g^{k_{y^{\prime}} n+i} \equiv g^{k_{z^{\prime}} n+i} \quad(\bmod p)
$$

Dividing through by g^{i} and taking $x=g^{k_{x^{\prime}}}, y=g^{k_{y^{\prime}}}$ and $z=g^{k_{z^{\prime}}}$ gives the result.

We now discuss van der Waerden numbers.

Definition 4.7.3. Define $w(r, k)$ to be the minimum n such that any r coloring of the integers $\{1, \cdots, n\}$ contains a monochromatic k term arithmetic progression.

The coloring

$$
12345678
$$

shows that $w(2,3)>8$. We will now show that $w(2,3) \leq 325$. Assume the integers [325] are colored red and blue. Partition [325] into 65 blocks B_{1}, \cdots, B_{65} as

$$
\{1,2,3,4,5\}\{6,7,8,9,10\} \cdots\{321,322,323,324,325\} .
$$

Since there are 32 ways to color a block of 5 integers, there are two blocks in B_{1}, \cdots, B_{33} that have the same coloring. That is, there is a $0 \leq b_{i}<b_{i+d} \leq 32$ such that $5 b_{i}+k$ and $5 b_{i+d}+k$ have the same color for $k \in\{1, \cdots, 5\}$. By the pigeonhole principle again, at least 2 of $5 b_{i}+1,5 b_{i}+2,5 b_{i}+3$ have the same color. Without loss of generality assume that the color is red and that the elements are a and $a+e$ (where $e \in\{1,2\}$). Then we know that $\{a, a+e, a+5 d, a+5 d+e\}$ are all colored red. $a+2 e$ or $a+5 d+2 e$ is red, then we have a red 3 term AP and we are done, so assume that both of these are blue.

But then what color is $a+10 d+2 e$? If it is red then $\{a, a+5 d+e, a+10 d+2 e\}$ are red and if it is blue then $\{a+2 e, a+5 d+2 e, a+10 d+2 e\}$ are blue. In general, Gowers has the best upper bound for $w(r, k)$ with

$$
w(r, k) \leq 2^{2^{2^{2^{k^{k+9}}}}}
$$

Graham conjectures (and offers 1000 USD for)

$$
w(2, k) \leq 2^{k^{2}}
$$

The Lovász Local Lemma gives

$$
w(r, k) \geq(1-o(1)) \frac{r^{k-1}}{4 k}\left(1-\frac{1}{k}\right)
$$

and Szabó improved this slightly. Berlekamp showed that for p a prime

$$
w(2, p+1)>2^{p+1}
$$

and Blankenship, Cummings, and Taranchuk generalized this to colorings with r colors.

Here we give an upper bound for $W(r, k)$ that is worse than even a tower.
Theorem 4.7.4. For all $r, k, w(r, k)<\infty$.

Proof. We prove by double induction on r and k. The base cases $w(1, k)=k$ for all k and $w(r, 2)=r+1$ for all r are easy. Next we will assume $w(r, k-1)$ exists for all r and show that $w(r, k)$ exists for all r.

We define a sunflower with m petals of length $k-1$ to be a collection of m arithmetic progressions of length $k-1$,

$$
\begin{array}{rlll}
a+d_{1} & a+2 d_{1} & \cdots & a+(k-1) d_{1} \\
a+d_{2} & a+2 d_{2} & \cdots & a+(k-1) d_{2} \\
\vdots & & \vdots & \\
a+d_{m} & a+2 d_{m} & \cdots & a+(k-1) d_{m}
\end{array}
$$

where each AP is monochromatic but different APs have distinct colors. Note that if there is a sunflower with m petals of length $k-1$, then if a is colored with any of those m colors, we have created a monochromatic k term AP. The theorem then follows after the following lemma.

Lemma 4.7.5. Suppose $w(r, k-1)$ exists for all r. Then for any m, there exists an $n=w(r, m, k-1)$ such that any r coloring of $[n]$ contains either a monochromatic k-term AP or a sunflower with m petals of length $k-1$.

We prove this by induction on m. The base case follows by the assumption that $w(r, k-1)<\infty$. Now assume the statement is true for $m-1$ and let $n_{1}=$ $w(r, m-1, k-1)$ and $n_{2}=2 w\left(r^{n_{1}}, k-1\right)$. Color $\left[n_{1} n_{2}\right.$] and consider $\left[n_{1} n_{2}\right]$ as split into n_{2} blocks of length n_{1}. Since there are only $r^{n_{1}}$ possible colorings of each block, then by the definition of n_{2}, there is a j and a d with $n_{2} / 2 \leq j<j+(k-1) d$ such that all of the blocks $B_{j+i d}$ have the same coloring for $0 \leq i \leq k-1$. Let $c=d n_{1}$.

By the induction hypothesis and the definition of n_{1}, each of these blocks contains either a k-term AP or a sunflower with $m-1$ petals of length $k-1$. If there is a
k-term AP we are done, so assume the latter. Since the $k-1$ blocks are colored identically, we have for each color $k-1$ APs each of length $k-1$ which are "evenly spaced". That is, in color 1 we see

$$
\begin{array}{rlll}
a+d_{1} & a+2 d_{1} & \cdots & a+(k-1) d_{1} \\
a+d_{1}+c & a+2 d_{1}+c & \cdots & a+(k-1) d_{1}+c \\
\vdots & & \vdots & \\
a+d_{1}+(k-1) c & a+2 d_{1}+(k-1) c & \cdots & a+(k-1) d_{1}+(k-1) c
\end{array}
$$

In color 2 we see

$$
\begin{array}{rlll}
a+d_{2} & a+2 d_{2} & \cdots & a+(k-1) d_{2} \\
a+d_{2}+c & a+2 d_{2}+c & \cdots & a+(k-1) d_{2}+c \\
\vdots & & \vdots & \\
a+d_{2}+(k-1) c & a+2 d_{2}+(k-1) c & \cdots & a+(k-1) d_{2}+(k-1) c
\end{array}
$$

etc, with color $m-1$ seeing

$$
\begin{array}{rlll}
a+d_{m-1} & a+2 d_{m-1} & \cdots & a+(k-1) d_{m-1} \\
a+d_{m-1}+c & a+2 d_{m-1}+c & \cdots & a+(k-1) d_{m-1}+c \\
\vdots & & \vdots & \\
a+d_{m-1}+(k-1) c & a+2 d_{m-1}+(k-1) c & \cdots & a+(k-1) d_{m-1}+(k-1) c
\end{array}
$$

Now if a has any of the first $m-1$ colors, then we have a k term AP. If a has a different color, then there is a sunflower with m petals of length $k-1$ centered at $a+(k-1) c$.

5

The Probabilistic Method

The probabilistic method is best described by examples.

In this chapter we will learn how to use the probabilistic method to solve combinatorial problems. The rough idea of the method is the following. Say we want to know whether a certain combinatorial configuration exists. For example, we may be given a graph and want to know whether it can be properly colored using 4 colors. One way to show that a configuration with the desired properties exists is to construct a probability space and show that a randomly chosen configuration in this space has the desired properties with non-zero probability.

5.1 Preliminaries

A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$ that has

- Ω is a set.
- \mathcal{F} is a subset of the power set of Ω that contains \emptyset and that is closed under
complementation and countable unions and intersections (this is called a σ-field or σ-algebra).
- \mathbb{P} is a function $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ such that $\mathbb{P}(\Omega)=1$ and for $A, B \in \mathcal{F}$ that are disjoint, $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$.

Most of the time we will be interested in the case where Ω will be a finite set and \mathcal{F} will just be the power set of Ω. The elements of Ω are called elementary events and the subsets in \mathcal{F} are called events. Given an event A, we say that $\mathbb{P}(A)$ is the probability of A.

It is easy to show with this definition that probability is subadditive:
Lemma 5.1.1. If A_{1}, \cdots, A_{n} are events in a probability space, then

$$
\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)
$$

Proof. By induction, it suffices to show that $\mathbb{P}\left(A_{1} \cup A_{2}\right) \leq \mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right)$. Let $B_{1}=A_{1}$ and $B_{2}=A_{2} \backslash A_{1}$. Note that B_{1} and B_{2} are disjoint, and so $\mathbb{P}\left(B_{1} \cup B_{2}\right)=\mathbb{P}\left(B_{1}\right)+$ $\mathbb{P}\left(B_{2}\right)$. Also note that A_{2} is the disjoint union of B_{2} and $A_{1} \cap A_{2}$, and therefore

$$
\mathbb{P}\left(A_{2}\right)=\mathbb{P}\left(B_{2}\right)+\mathbb{P}\left(A_{1} \cap A_{2}\right)
$$

Since \mathbb{P} is a nonnegative function, we have $\mathbb{P}\left(B_{2}\right) \leq \mathbb{P}\left(A_{2}\right)$. Since $A_{1} \cup A_{2}=B_{1} \cup B_{2}$, we have

$$
\mathbb{P}\left(A_{1} \cup A_{2}\right)=\mathbb{P}\left(B_{1} \cup B_{2}\right)=\mathbb{P}\left(B_{1}\right)+\mathbb{P}\left(B_{2}\right) \leq \mathbb{P}\left(A_{1}\right)+\mathbb{P}\left(A_{2}\right)
$$

Two events A and B are said to be independent if $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$. Events A_{1}, \cdots, A_{n} are independent if for any subset $S \subset[n]$ of the events we have

$$
\mathbb{P}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} A_{i}
$$

If A_{1}, \cdots, A_{n} are independent, it implies that any pair A_{i} and A_{j} are independent, but the converse of this statement is not true (ie, there can be A_{1}, A_{2} and A_{3} that are pairwise independent but such that A_{1}, A_{2}, A_{3} are not independent).

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable is a function $X: \mathcal{F} \rightarrow \mathbb{R}$ that is measurable (measurable means that for any real number t, the probability that $X \leq t$ is well-defined. In our setting Ω is finite, and any function X will be measurable).

5.2 The first moment method

In a finite probability space, given a random variable X, we define the expected value of X to be

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega)=\sum x \mathbb{P}(X=x)
$$

(In an infinite probability space, the expected value is defined by an integral). The expected value of a random variable X is often called the first moment of X.

5.2.1 Linearity of expectation

One very powerful fact is that expectation is linear, ie if X and Y are random variables and a and b are constants, then

$$
\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y)
$$

The proof of this follows because integrals are linear (which follows because limits are linear). For example, this means that for random variables X_{1}, \cdots, X_{n}, we have

$$
\mathbb{E}\left(X_{1}+\cdots+X_{n}\right)=\mathbb{E}\left(X_{1}\right)+\cdots+\mathbb{E}\left(X_{n}\right)
$$

and this is true no matter how the X_{i} 's are related, even if they are not independent! Let's see how powerful linearity of expectation can be:

The Ramsey number $R(s)$ is defined to be the minimum n such that any graph on n vertices contains either a complete graph on s vertices or an independent set on s vertices. To show that $R(s) \leq N$ it means that no matter how I color the edges of K_{N} with red and blue, there will be a monochromatic clique on s vertices. To show that $R(s)>N$ it means that there exists a graph on N vertices that does not have either an independent set of a clique on s vertices.

Theorem 5.2.1. For $s \geq 3$, we have $R(s)>2^{s / 2-1}$.
Proof. Let us consider a graph on n vertices where for every pair of vertices we flip a coin and with probability $1 / 2$ we put an edge. This determines a probability space (the space of all labeled graphs with the uniform probability distribution). Let X be the random variable that counts the number of sets of s vertices such that either all of the $\binom{s}{2}$ edges are present or none of them are. For any fixed set of s vertices, the probability that it forms a clique in this random graph is $(1 / 2)^{\binom{s}{2}}$ and the probability that it forms an independent set is also $(1 / 2)^{\binom{s}{2}}$.

Given a subset S of s vertices, let X_{S} denote the number of cliques or independent sets of size s on those s vertices (ie X_{S} is 1 if S forms a clique or independent set and 0 otherwise). Then for each S, we have
$\mathbb{E}\left(X_{S}\right)=1 \cdot \mathbb{P}(S$ is a clique $)+1 \cdot \mathbb{P}(S$ is an independent set $)+0 \cdot \mathbb{P}(S$ is neither $)=2^{1-\binom{s}{2}}$.

Now

$$
X=\sum_{S \in\binom{[n]}{s}} X_{S}
$$

and so

$$
\mathbb{E}(X)=\binom{n}{s} 2^{1-\binom{s}{2}}
$$

If the expected number of cliques or independent sets in the graph is less than 1 , then there must exist a graph that has 0 cliques or independent sets (why?). We have

$$
\mathbb{E}(X)=2\binom{n}{s} 2^{-\binom{s}{2}}<2 n^{s} 2^{-s(s-1) / 2}
$$

This is less than 1 if

$$
2 n^{s} \leq 2^{s(s-1) / 2}
$$

and so we may take $n=2^{(s-1) / 2}$.

Indeed, the same proof proves a more general theorem about off-diagonal Ramsey numbers. The Ramsey number $R(s, t)$ is defined to be the minimum n such that any red/blue coloring of the edges of K_{n} contains either a red K_{s} or a blue K_{t}. If s and t are not equal, we should not flip coins in our probabilistic construction with probability $1 / 2$ for each color. Coloring an edge blue with probability p and red with probability $1-p$ and following the proof above yields the following theorem (check the details on your own!).

Theorem 5.2.2. If $p \in[0,1]$ satisfies the inequality

$$
\binom{n}{s}(1-p)^{\binom{s}{2}}+\binom{n}{t} p^{\binom{t}{2}}<1
$$

Then $R(s, t)>n$.
Homework. Use the above theorem to show that $R(4, t)=\Omega\left(\left(\frac{t}{\log t}\right)^{3 / 2}\right)$.
Let's see another application, signing unit vectors:

Theorem 5.2.3. Given any unit vectors $v_{1}, \cdots, v_{n} \in \mathbb{R}^{n}$, there exists a signing $\epsilon_{i} \in\{-1,1\}$ such that

$$
\left|\epsilon_{1} v_{1}+\cdots+\epsilon_{n} v_{n}\right| \leq \sqrt{n}
$$

Note that any signing of an orthonormal set of basis vectors in \mathbb{R}^{n} will have norm \sqrt{n}, so this is best possible.

Proof. Choose ϵ_{i} independently at random with probability $1 / 2$ for each sign. Let $v=\sum \epsilon_{i} v_{i}$. Let X be the random variable defined by $|v|^{2}$. Note that

$$
\langle v, v\rangle=\sum_{i, j} \epsilon_{i} \epsilon_{j}\left\langle v_{i}, v_{j}\right\rangle
$$

Note that $\left\langle v_{i}, v_{j}\right\rangle$ is a constant. Also note that the signing was chosen independently, so for $i \neq j$, we have

$$
\mathbb{E}\left(\epsilon_{i} \epsilon_{j}\right)=\mathbb{E}\left(\epsilon_{i}\right) \mathbb{E}\left(\epsilon_{j}\right)=0
$$

By linearity of expectation, the expected value of X is

$$
\mathbb{E}(X)=\mathbb{E}\left(\sum_{i, j} \epsilon_{i} \epsilon_{j}\left\langle v_{i}, v_{j}\right\rangle\right)=\sum_{i j}\left\langle v_{i}, v_{j}\right\rangle \mathbb{E}\left(\epsilon_{i} \epsilon_{j}\right)=\sum_{i}\left|v_{i}\right|^{2} \mathbb{E}\left(\epsilon_{i}^{2}\right)=n
$$

Since the expected norm of v is \sqrt{n}, there must exist a signing such that the norm of v is at most \sqrt{n}.

5.3 Alterations

The most basic version of the first moment method says to construct a combinatorial object randomly and then to show that with positive probability it has the properties that we want. We now consider what to do in the situation where our randomly constructed object is close to having the desired properties but does not yet. In this situation, we may delete part of or alter our object so that it does have the properties that we want. This is called the alteration method. Let's see two examples.

Theorem 5.3.1. For any $p \in[0.1]$, we have

$$
R(s, t)>n-\binom{n}{s} p^{\binom{s}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}} .
$$

Proof. Color the edges of K_{n} randomly and independently, red with probability p and blue with probability $(1-p)$. Then

$$
\binom{n}{s} p^{\binom{s}{2}}+\binom{n}{t}(1-p)^{\binom{t}{2}}
$$

is the expected number of red K_{s} plus blue K_{t}, and so there is a coloring with at most this many. Fix such a coloring. Now, from each red K_{s} or blue K_{t}, remove one vertex. After this deletion occurs, our graph no longer has any red K_{s} or blue K_{t} and has at least

$$
n-\binom{n}{s} p^{\binom{s}{2}}-\binom{n}{t}(1-p)^{\binom{t}{2}}
$$

vertices.
Homework. Use this to show that $R(4, t)=\Omega\left(\left(\frac{t}{\log t}\right)^{2}\right)$.
An independent set in a graph G is a set S such that $u, v \in S$ implies $u v$ is not an edge in G. The independence number of a graph G is the size of the largest independent set in G and is denoted by $\alpha(G)$.

Theorem 5.3.2. Let $d \geq 1$ and let G be a graph with $\frac{n d}{2}$ edges. Then $\alpha(G) \geq \frac{n}{2 d}$.
Proof. Choose a set S randomly by putting each vertex in S independently with probability p. We will choose p later. Let X be the size of S and let Y be the number of edges of G that have both endpoints in S. Then the probability that a vertex is in S is p and the probability that an edge is in S is p^{2} (because vertices are put in S independently).

Given S, we may choose a subset of S of size at least $X-Y$ that is an independent set by removing one vertex from each edge in S. That is, we take the original X vertices in S, we remove at most Y vertices from S (one endpoint of each edge), and by removing these vertices we destroy all edges in S. Therefore

$$
\alpha(G) \geq \mathbb{E}(X-Y)=\mathbb{E}(X)-\mathbb{E}(Y)=p n-p^{2} \frac{d n}{2}
$$

(note that we have used linearity of expectation multiple times). Choosing $p=\frac{1}{d}$ yields the result.

5.4 Markov and Chebyshev

Chebyshev said it, but I'll say it again: there's always a prime between n and $2 n$.

- Nathan Fine

Next we will develop some tools from probability. The first theorem, Markov's inequality, has a straightforward proof but is useful.

Theorem 5.4.1 (Markov's Inequality). Let X be a nonnegative random variable and $\lambda>0$ a real number. Then

$$
\mathbb{P}(X \geq \lambda) \leq \frac{\mathbb{E}(X)}{\lambda}
$$

Proof. The definition of the expected value of X gives

$$
\begin{aligned}
\mathbb{E}(X) & =\sum x \mathbb{P}(X=x) \\
& =\sum_{0 \leq x<\lambda} x \mathbb{P}(X=x)+\sum_{x \geq \lambda} x \mathbb{P}(X=x) \geq \lambda \sum_{x \geq \lambda} \mathbb{P}(X=x)=\lambda \mathbb{P}(X \geq \lambda) .
\end{aligned}
$$

We use Markov's inequality to prove a famous theorem of Erdős. The chromatic number of a graph G is the minimum number of colors needed to color the vertices so that no edge has the same color endpoints. The chromatic number of a graph depends on local structure in the graph, eg, if there is a clique of size k in G then that clique will need to use k distinct colors. The following theorem also shows that the chromatic number can depend on the global structure of a graph. The girth of a
graph G is the length of its shortest cycle. If a graph has high girth then locally it is very sparse.

Theorem 5.4.2. For every pair of number g, k there is a graph G with chromatic number greater than k and girth greater than g.

Proof. We take a graph on n vertices with each edge included independently with probability $p=\frac{n^{\gamma}}{n}$ where $0<\gamma<1 / g$. For any t vertices, the probability that $\left(v_{1}, v_{2}, \cdots, v_{t}\right)$ forms a cycle is p^{t}. Let X be the random variable that counts the number of cycles of length at most g in G. Then

$$
\mathbb{E}(X)=\sum_{3 \leq t \leq g} n(n-1)(n-2) \cdots(n-t+1) \frac{p^{t}}{2 t} \leq g n^{g \gamma}=o(n)
$$

Therefore, by Markov's inequality, $\mathbb{P}(X>n / 2) \rightarrow 0$ as $n \rightarrow \infty$. Set $a=\left\lceil\frac{3}{p} \ln n\right\rceil$ and let Y be the random variable that counts the number of independent sets of size a in G. Then

$$
\mathbb{E}(Y)=\binom{n}{a}(1-p)^{\binom{a}{2}} \leq n^{a} e^{-p\binom{a}{2}}=\exp (a(\ln n-p(a-1) / 2))
$$

This term also goes to 0 as $n \rightarrow \infty$. By Markov's inequality

$$
\mathbb{P}(\alpha(G) \geq a)=\mathbb{P}(Y \geq 1) \leq \frac{\mathbb{E}(Y)}{1} \rightarrow 0
$$

Therefore, for n large enough, there is a G such that the number of cycles of length at most g is less than $n / 2$ and there is no independent set of size a. Using the alteration method, we delete one vertex for each of the cycles to obtain a graph G^{\prime} on at least $n / 2$ vertices that has girth g and independence number at most a. Then

$$
\chi\left(G^{\prime}\right) \geq \frac{n / 2}{a}=\Omega\left(n^{\gamma}\right)
$$

This is larger than k for n large enough.

Sometimes just knowing the expected value of a random variable is not enough. When the first moment fails, try the second moment!

Definition. Let X be a random variable. The variance of X is defined to be

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]
$$

Expanding the definition and using linearity of expectation, one sees that

$$
\operatorname{Var}[X]=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

The standard deviation of a random variable X is the square root of its variance and is denoted by σ.

One of the most useful properties of expectation is that it is linear, which allowed us to compute the expectation of a sum of random variables by computing their expectations individually, knowing nothing about their possible dependencies. We will not have this luxury with variance. Let X and Y be random variables, and let's try to compute the variance of their sum:

$$
\begin{aligned}
\operatorname{Var}[X+Y] & =\mathbb{E}\left[(X+Y)^{2}\right]-(\mathbb{E}[X+Y])^{2} \\
& =\left(\mathbb{E}\left[X^{2}\right]+2 \mathbb{E}[X Y]+\mathbb{E}\left[Y^{2}\right]\right)-\left((\mathbb{E}[X])^{2}+2 \mathbb{E}[X] \mathbb{E}[Y]+(\mathbb{E}[Y])^{2}\right) \\
& =\operatorname{Var}[X]+\operatorname{Var}[Y]+2(\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y])
\end{aligned}
$$

This extra term $\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$ is called the covariance of X and Y and is denoted by $\operatorname{Cov}[X, Y]$. You should check that this calculation extends to summing over any number of random variables.

Theorem. Let X_{1}, \cdots, X_{n} be random variables. Then

$$
\operatorname{Var}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[X_{i}, X_{j}\right]
$$

The variance of a random variable gives us a new tool to obtain concentration results: Chebyshev's Inequality.

Theorem (Chebyshev's Inequality). Let X be a random variable with $\operatorname{Var}[X]<\infty$. Then for any $\lambda>0$, we have

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq \lambda] \leq \frac{\operatorname{Var}[X]}{\lambda^{2}}
$$

Proof. Given X define a random variable Y by $Y=(X-\mathbb{E}[X])^{2}$. Then Y is a non-negative random variable, and so by Markov's Inequality we have

$$
\mathbb{P}\left[Y \geq \lambda^{2}\right] \leq \frac{\mathbb{E}[Y]}{\lambda^{2}}=\frac{\operatorname{Var}[X]}{\lambda^{2}}
$$

Noting that that $Y \geq \lambda^{2}$ is equivalent to $|X-\mathbb{E}[X]| \geq \lambda$ proves the result.

We will use Chebyshev's inequality to prove two theorems.

Theorem 5.4.3. Let G be a graph on n vertices with each edge included independently with probability p. Let $\omega(n)$ be any function that goes to infinity arbitrarily slowly. Then
i If $p<\frac{1}{\omega(n) \cdot n}, G$ contains a triangle with probability tending to 0 .
ii If $p>\frac{\omega(n)}{n}$, then G contains a triangle with probability tending to 1.

Proof. Let T be the random variable which counts the number of triangles in G and for each set of 3 vertices, let $T_{1}, \cdots, T_{\binom{n}{3}}$ be the indicator random variable that that set of vertices forms a triangle. So $\mathbb{P}\left(T_{i}=1\right)=p^{3}$ and $\left.\mathbb{P}\left(T_{i}\right)=0\right)=1-p^{3}$. Then $T=\sum T_{i}$, so $\mathbb{E}(T)=p^{3}\binom{n}{3}$. If $p<\frac{1}{\omega(n) n}$, then $\mathbb{E}(T)=o(1)$ and so by Markov's inequality,

$$
\mathbb{P}(T \geq 1) \leq \frac{\mathbb{E}(T)}{1}=o(1)
$$

and the first part is proved. For the second part, we must compute the variance of T.

$$
\operatorname{Var}[T]=\operatorname{Var}\left[\sum T_{i}\right]=\sum_{i=1}^{\binom{n}{3}} \operatorname{Var}\left[T_{i}\right]+\sum_{i \neq j} \operatorname{Cov}\left[T_{i}, T_{j}\right]
$$

T_{i}^{2} is a random variable which takes value 1 with probability p^{3} and 0 with probability $1-p^{3}$. Therefore $\operatorname{Var}\left[T_{i}\right]=p^{3}-p^{6}$. For T_{i} and T_{j}, calculating $\operatorname{Cov}\left[T_{i}, T_{j}\right]$ depends on how T_{i} and T_{j} intersect. If T_{i} and T_{j} are edge-disjoint, then they are independent random variables and so their covariance is 0 . If T_{i} and T_{j} are not edge-disjoint and $i \neq j$, then they must share exactly one edge. In this case, $T_{i} T_{j}$ is a random variable which takes value 1 with probability p^{5} and 0 with probability $1-p^{5}$. So in this case $\operatorname{Cov}\left[T_{i}, T_{j}\right]=p^{5}-p^{6}$. There are less than n^{4} pairs T_{i} and T_{j} which intersect on one edge, so

$$
\operatorname{Var}[T] \leq n^{3} p^{3}+n^{4} p^{5}
$$

By Chebyshev's inequality

$$
\mathbb{P}[T=0] \leq \mathbb{P}[|T-\mathbb{E}[T]| \geq \mathbb{E}[T]] \leq \frac{\operatorname{Var}[T]}{(\mathbb{E}[T])^{2}}<\frac{p^{3} n^{3}+p^{5} n^{4}}{p^{6} n^{6}} \leq \frac{\omega(n)^{3}+\omega(n)^{4} / n}{\omega(n)^{6}} \rightarrow 0
$$

For the second application of Chebyshev's inequality, the basic question is this: what is the largest subset A of $[n]$ such that all of the subsets of A have distinct sums. If A has size k, then A has 2^{k} subsets, all of which must have distinct sums. Further, all of these sums must be less than $k n$, and so we must have $2^{k}<k n$, which simplifies to $k<\log _{2} n+\log _{2} \log _{2} n+1$. We use Chebyshev to improve the second term. It is a 500 USD Erdős question to improve the upper bound to $\log _{2} n+O(1)$.

Theorem 5.4.4. If $A \subset[n]$ is such that all of its subsets have distinct sums, then $|A| \leq \log _{2} n+\frac{1}{2} \log _{2} \log _{2} n+2$.

Proof. Let $A=\left\{x_{1}, \cdots, x_{k}\right\} \subset[n]$. For all i we will flip a coin and set $\gamma_{i}=0$ with probability $1 / 2$ and $\gamma_{i}=1$ with probability $1 / 2$. Define a random variable

$$
X=\sum_{i=1}^{k} \gamma_{i} x_{i}
$$

Then $\mathbb{E}[X]=\frac{1}{2} \sum x_{i}$ and

$$
\operatorname{Var}[X]=\frac{1}{4} \sum_{i=1}^{k} x_{i}^{2}<\frac{k n^{2}}{4}
$$

Then by Chebyshev's inequality, we have

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq n \sqrt{k} / \sqrt{2}] \leq \frac{1}{2}
$$

which is the same as saying $\mathbb{P}[|X-\mathbb{E}[X]|<n \sqrt{k} / \sqrt{2}] \geq \frac{1}{2}$.
Now comes a key step in the proof: the point where we use the assumption that A has distinct subset sums. Fix any integer x. Then either x is the sum of one of the subsets of A or it is not. If it is not, then $\mathbb{P}[X=x]=0$. If it is, then because the subset sums of A are distinct, there is a unique choice of γ s such that $X=x$, and therefore $\mathbb{P}[X=x]=2^{-k}$. So for any integer x, the probability that $X=x$ is either 2^{-k} or 0 . Therefore
$\mathbb{P}[|X-\mathbb{E}[X]|<n \sqrt{k} / \sqrt{2}]=\mathbb{P}[X$ lies in a specific set of $\sqrt{2} n \sqrt{k}$ inegers $] \leq 2^{-k} \sqrt{2} n \sqrt{k}$, which combined with the above lower bound gives

$$
\frac{1}{2}<2^{-k} \sqrt{2 k} n
$$

This is equivalent to the upper bound.

5.5 Chernoff Bound

Chebyshev's inequality gives an upper bound on the probability that a random variable deviates from its mean. Recall that σ, the standard deviation, is the square root
of the variance. If X has standard deviation σ, Chebyshev's inequality says

$$
\mathbb{P}[|X-\mathbb{E}[X]| \geq k \sigma] \leq \frac{\operatorname{Var}[X]}{k^{2} \sigma^{2}}=\frac{1}{k^{2}}
$$

So Chebyshev gives us that the probability that a random variable is k standard deviations away from its mean goes to 0 polynomially in k. Often we need even better concentration than this. In general we cannot ask for a better bound, but in many situations we can do much better.

Let X_{1}, \cdots, X_{n} be independent and identically distributed as $X_{i}=-1$ with probability $1 / 2$ and $X_{i}=1$ with probability $1 / 2$. Let $X=X_{1}+\cdots+X_{n}$. Note that the expected value of S is 0 .

Theorem 5.5.1. For any $k \geq 0$, we have

$$
\mathbb{P}(X \geq k \sqrt{n})<e^{-k^{2} / 2} \quad \text { and } \quad \mathbb{P}(X \leq-k \sqrt{n})<e^{-k^{2} / 2}
$$

Note that the standard deviation of S is \sqrt{n}, so this says that the probability of being k standard deviations away from the mean is exponentially small in k.

Proof. We prove just the upper tail, and the lower tail can be seen by taking complementary events (or symmetry). Let $t>0$ be a real number which we will optimize later. Then

$$
\begin{aligned}
\mathbb{P}(X \geq k \sqrt{n}) & =\mathbb{P}\left(e^{t X} \geq e^{t k \sqrt{n}}\right) \\
& \leq \frac{\mathbb{E}\left(e^{t X}\right)}{e^{t k \sqrt{n}}}
\end{aligned}
$$

where the upper bound is by Markov's inequality. Now $e^{t X}=e^{t X_{1}} e^{t X_{2}} \cdots e^{t X_{n}}$, and since X_{1}, \cdots, X_{n} are independent, we have

$$
\mathbb{E}\left(e^{t X}\right)=\prod_{i=1}^{n} \mathbb{E}\left(e^{t X_{i}}\right)=\left(\mathbb{E}\left(e^{t X_{1}}\right)\right)^{n}
$$

since the X_{i} 's are identically distributed. Now $e^{t X_{1}}$ takes value e^{t} with probability $1 / 2$ and e^{-t} with probability $1 / 2$. Combining, we have

$$
\mathbb{P}(X>k \sqrt{n}) \leq \frac{\left(\left(e^{t}+e^{-t}\right) / 2\right)^{n}}{e^{t k \sqrt{n}}} \leq \frac{e^{n t^{2} / 2}}{e^{t k \sqrt{n}}} .
$$

The last inequality is using that $\left(e^{t}+e^{-t}\right) / 2 \leq e^{t^{2} / 2}$ which can be seen by comparing the Taylor series of each side term by term. Choosing $t=\frac{k}{\sqrt{n}}$ yields the result.

This is called Chernoff's Bound and there are several other slightly messier but more general versions. One general version that is pretty easy to use is the following:

Theorem 5.5.2. Let X_{1}, \cdots, X_{n} be independent $\{0,1\}$ random variables and let $X=X_{1}+\cdots+X_{n}$. Let $\mu=\mathbb{E}(X)$ and let ϵ be any real number with $0 \leq \epsilon \leq 1$. Then

$$
\mathbb{P}(X \leq(1-\epsilon) \mu) \leq e^{-\epsilon^{2} \mu / 2} \quad \text { and } \quad \mathbb{P}(X \geq(1+\epsilon) \mu) \leq e^{-\epsilon^{2} \mu / 3}
$$

Given a set v_{1}, \cdots, v_{n} of n teams, a tournament is an assignment for every i, j that either v_{i} beats v_{j} or v_{j} beats v_{i}. A ranking of the teams is a permutation $\sigma \in S_{n}(\mathrm{eg}$ σ maps team i to their ranking. So if $\sigma(j)=i$, then team j is the best ranked team, and if $\sigma(k)=n$ then team k is the worst ranked team). An upset given a tournament and a ranking is when v_{i} beats v_{j} but $\sigma(j)<\sigma(i)$. Can we rank any tournament so that there are not very many upsets? Shockingly the answer is no and not by a long shot. We use the Chernoff bound to prove this.

Theorem 5.5.3 (Erdős and Moon 1963). Given a tournament on n vertices, for each $\sigma \in S_{n}$ let D_{σ} be the difference in between the number of upsets and non-upsets with the ranking σ. Then there exists a tournament T such that for all $\sigma, D_{\sigma}<n^{3 / 2} \sqrt{\log n}$.

Since the total number of games is $\binom{n}{2}$, this means that there are tournaments where we cannot give a ranking that predicts 50.0001 percent of the games correctly.

Proof. Let σ be a fixed ranking. In the game between v_{i} and v_{j} we determine the winner randomly and independently, each with probability $1 / 2$. For each edge $i j$, let $X_{i} j=1$ if σ correctly predicts the outcome and $X_{i j}=-1$ if the game is an upset. Then

$$
D_{\sigma}=\sum X_{i j}
$$

D_{σ} has mean 0 and standard deviation $\sqrt{\binom{n}{2}}$. Then the Chernoff bound gives that

$$
\mathbb{P}\left(\left|D_{\sigma}\right|>k \sqrt{\binom{n}{2}}\right) \leq 2 e^{-k^{2}} 2
$$

Choosing $k=\sqrt{2 n \log n}$ gives

$$
\mathbb{P}\left(\left|D_{\sigma}\right|>n^{3 / 2} \sqrt{\log n}\right)<2 e^{-n \log n}=2 n^{-n}
$$

Since the total number of rankings σ is n !, the probability that D_{σ} exceeds $n^{3 / 2} \sqrt{\log n}$ for any of them is at most $n!\left(2 n^{-n}\right) \rightarrow 0$.

5.6 Lovász Local Lemma

We are often trying to show that a certain combinatorial configuration exists by showing that with positive probability, some list of "bad" events does not occur. For example, we showed proved a lower bound for Ramsey numbers by showing that we could color randomly and with positive probability, none of the sets of t vertices in the graph formed a monochromatic clique. Let A_{1}, \cdots, A_{n} be a set of "bad" events. We would like to show that

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right)>0 .
$$

One way to do this is the union bound: If

$$
\sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)<1
$$

then with positive probability none of the events occur. Unfortunately, we are not always able to conclude that this sum will be less than 1 . We can also get the conclusion if the events are independent, for in that case

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right)=\left(1-\mathbb{P}\left(A_{1}\right)\right)\left(1-\mathbb{P}\left(A_{2}\right)\right) \cdots\left(1-\mathbb{P}\left(A_{n}\right)\right) .
$$

Unfortunately, the events we are interested in are usually not independent.The Lovász Local Lemma gives us a way to get to our conclusion if the events are not "too dependent". Let $S \subset[n] \backslash\{i\}$. We say that A_{i} is independent of all of the events $\left\{A_{j}: j \in S\right\}$ if for any subset $S^{\prime} \subset S$, we have

$$
\mathbb{P}\left(A_{i} \cap \bigcap_{j \in S^{\prime}} A_{j}\right)=\mathbb{P}\left(A_{i}\right) \cdot \mathbb{P}\left(\bigcap_{j \in S^{\prime}} A_{j}\right) .
$$

For events A_{1}, \cdots, A_{n} we define a dependency graph $D=(V, E)$ where $V(D)=\left\{A_{i}\right\}$ and for each i, A_{i} is independent of all of the events it is not adjacent to. (Note that this graph is not unique).

Theorem 5.6.1 (Lovász Local Lemma). Let A_{1}, \cdots, A_{n} be events in a probability space and let D be a dependency digraph for the A_{i} with maximum degree d. Then if there exists a $\gamma \in[0,1)$ such that for all i

$$
\mathbb{P}\left(A_{i}\right) \leq \gamma(1-\gamma)^{d}
$$

then

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right) \geq(1-\gamma)^{n}>0
$$

The theorem follows from a lemma:

Lemma 5.6.2. For any i, and any set $S \in[n] \backslash i$, we have

$$
\mathbb{P}\left(A_{i} \mid \bigcap_{j \in S} A_{j}^{c}\right) \leq \gamma
$$

Proof of Theorem. To prove the theorem from the lemma, note that

$$
\begin{aligned}
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right) & =\mathbb{P}\left(A_{1}^{c}\right) \mathbb{P}\left(A_{2}^{c} \mid A_{1}^{c}\right) \mathbb{P}\left(A_{3}^{c} \mid A_{1}^{c} \cap A_{2}^{c}\right) \cdots \mathbb{P}\left(A_{n}^{c} \mid \cap_{i=1}^{n-1} A_{i}^{c}\right) \\
& =\prod_{i=1}^{n} \mathbb{P}\left(A_{i}^{c} \mid \bigcap_{j<i} A_{j}^{c}\right)>(1-\gamma)^{n} .
\end{aligned}
$$

Proof of Lemma. We prove this by induction on $|S|$. For the base case $|S|=0$, $\mathbb{P}\left(A_{i} \mid \cap_{j \in S} A_{j}\right)=\mathbb{P}\left(A_{i}\right) \leq \gamma(1-\gamma)^{d}$ by the hypotheses. This is clearly at most γ. Now we will show it is true for $|S|=k$ and assume it is true for any S^{\prime} with $\left|S^{\prime}\right|<k$. Fix S and let $I=\{j: j \in S,(k, j) \notin E(D)\}$ and $D=\{j: j \in S,(k, j) \in E(D)\}$. ie I are the set of events in S that A_{i} is independent on and D is the set of events in S that A_{i} may be dependent on. We make two notes: first that if D is empty then we are done, so we may assume D is not empty, and second that

$$
\mathbb{P}\left(A_{i} \mid \bigcap_{j \in S} A_{j}^{c}\right)=\mathbb{P}\left(A_{i} \mid \bigcap_{j \in I \cup D} A_{j}^{c}\right) .
$$

By Bayes' Theorem we have

$$
\mathbb{P}\left(A_{i} \mid \bigcap_{j \in I \cap D} A_{j}^{c}\right)=\frac{\mathbb{P}\left(\left(A \cap \bigcap_{j \in D} A_{j}^{c}\right) \mid \bigcap_{j \in I} A_{j}^{c}\right)}{\mathbb{P}\left(\bigcap_{j \in I} A_{j}^{c} \mid \bigcap_{j \in D} A_{j}^{c}\right)}
$$

We will upper bound the numerator and lower bound the denominator. For the numerator, we see

$$
\mathbb{P}\left(A_{i} \cap D \mid I\right) \leq \mathbb{P}\left(A_{i} \mid I\right)=\mathbb{P}\left(A_{i}\right) \leq \gamma(1-\gamma)^{d}
$$

For the denominator, let $I=\left\{A_{i_{1}}, \cdots A_{i_{t}}\right\}$ (note that $t<k$). We use the induction hypothesis and have
$\mathbb{P}\left(\bigcap_{j \in I} A_{j}^{c} \mid \bigcap_{j \in D} A_{j}^{c}\right)=\mathbb{P}\left(A_{i_{1}}^{c} \mid \bigcap_{j \in D} A_{j}^{c}\right) \mathbb{P}\left(A_{i_{2}}^{c} \mid A_{i_{1}}^{c} \cap \bigcap_{j \in D} A_{j}^{c}\right) \cdots \mathbb{P}\left(A_{i_{t}}^{c} \mid \bigcap_{j \in S \backslash\left\{A_{i_{t}}\right\}} A_{j}^{c}\right) \geq(1-\gamma)^{d}$.

The last inequality follows since D has at most d elements.

We give a corollary of this symmetric version as well as the following more general version, the Lopsided Lovász Local Lemma. Both proofs are your homework!

Corollary 5.6.3. Let A_{1}, \cdots, A_{n} be events in a probability space and let their dependency graph have maximum degree d. Assume that there is a p such that $\mathbb{P}\left(A_{i}\right) \leq p$ for all i. Then if $\operatorname{ep}(d+1) \leq 1$, we have

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right)>0 .
$$

Theorem 5.6.4 (LLLL). Let A_{i}, \cdots, A_{n} be events in a probability space and let D be a dependency graph for them. Assume that there exist real number $x_{1}, \cdots, x_{n} \in[0,1)$ such that for all i

$$
\mathbb{P}\left(A_{i}\right) \leq x_{i} \prod_{(i, j) \in E(D)}\left(1-x_{j}\right)
$$

Then

$$
\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}^{c}\right)>0 .
$$

We exhibit the power of the local lemma by proving two theorems.

Theorem 5.6.5. Let $k \geq 9$ and G be a k-regular graph. Then there is a vertex coloring of G with two colors such that every vertex v has neighbors of each color.

Proof. Color the vertices uniformly and independently, each color with probability $1 / 2$. Let A_{i} be the event that vertex i sees only one color (ie that its neighborhood is monochromatic). Then if any of these events occurs, our coloring is bad, but if all events do not occur simultaneously, then each vertex has a neighbor of each color. We note that

$$
\mathbb{P}\left(A_{i}\right)=\frac{1}{2^{k-1}}
$$

Further, each A_{i} is dependent only on events from vertices that are at distance 2 from i. That is, if a vertex u does not share a neighbor with a vertex v, then knowing A_{u} (or even knowing all of the colors of the neighbors of u), does not give us any information about whether A_{v} will occur. Since G is k-regular, the event A_{v} is independent of a set of at least $|V(G)|-k^{2}$ events, and so our dependency graph has degree at most k^{2}. We can check that for $k \geq 9$, we have

$$
e \cdot \frac{1}{2^{k-1}} \cdot k^{2}<1
$$

and so the local lemma applies to show

$$
\mathbb{P}\left(\bigcap_{i \in V(G)} A_{i}^{c}\right)>0
$$

Theorem 5.6.6. The Ramsey number $R(t)$ satisfies

$$
R(t) \geq(1-o(1)) \frac{\sqrt{2}}{e} t 2^{t / 2}
$$

where the o(1) goes to 0 as $t \rightarrow \infty$.

Recall that showing a lower bound $R(t) \geq m$ means showing that there exists an edge coloring of K_{m} such that there is no monochromatic K_{t}. This is still the best lower bound that is known.

Proof. Color the edges of K_{n} randomly where $n=(1-o(1)) \frac{\sqrt{2}}{e} t 2^{t / 2}$. Let $A_{1}, \cdots, A_{\binom{n}{t}}$ be events where we have ordered the t-subsets of the vertex set in any way and A_{i} denotes the event that the i 'th such set induces a monochromatic K_{t}. Then

$$
\mathbb{P}\left(A_{i}\right)=2^{1-\binom{t}{2}}
$$

Two events A_{i} and A_{j} are independent unless they share at least one edge. If two distinct cliques share at least one edge, then they share between 2 and $t-1$ vertices. Therefore the maximum degree of the dependency graph is

$$
\sum_{k=2}^{t-1}\binom{t}{k}\binom{n-t}{t-k}
$$

Using standard estimates on binomial coefficients shows $e p(d+1)<1$.

6

Algebraic methods in extremal combinatorics

6.1 Spectral Graph Theory

The founders of Google computed the Perron-Frobenius eigenvector of the web graph and became billionaires.

- Andries Brouwer and Willem Haemers

In this section we will introduce spectral graph theory. Broadly speaking, the goal of spectral graph theory is to associate a matrix with a graph, and then use properties of the matrix to deduce properties of the graph. If you like linear algebra, you are in luck! Spectral graph theory is a lot of linear algebra. If you don't like linear algebra, you are also in luck! The matrices that we associate with a graph are all "very nice" and satisfy all of the properties that you would want a matrix to satisfy. This means that if you can remember that the matrices we are using satisfy certain nice properties, you can forget all of the other messy linear algebra that one
needs for general matrices.

6.1.1 Linear Algebra Preliminaries

In this chapter, we will use properties of "nice" matrices frequently. Everything that you need to know is proved in a course like 241 or 242 , and so I will not prove theorems about matrices here. Rather, we will take some basic linear algebra facts as a blackbox and use them frequently (the proofs are not hard, but it takes some set up). First, we will only be interested in matrices with entries that are real numbers. $\mathbb{R}^{n \times m}$ will denote the set of such matrices that have n rows and m columns. Given a matrix A we will write $A_{i j}$ to denote the entry in the i 'th row and j 'th column.

A vector is a matrix with only 1 column. Given a set of vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$, for any $c_{1}, \cdots, c_{k} \in \mathbb{R}$, we say that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{k}
$$

is a linear combination of the vectors. We say that the Span of a set of vectors is the set of all linear combinations of those vectors

$$
\operatorname{Span}\left(\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{k}}\right\}\right)=\left\{\sum c_{i} \mathbf{v}_{\mathbf{i}}: c_{i} \in \mathbb{R}\right\}
$$

We call a set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \cdots, \mathbf{v}_{\mathbf{k}}\right\}$ linearly independent if

$$
\sum c_{i} \mathbf{v}_{\mathbf{i}}=\mathbf{0}
$$

implies that $c_{i}=0$ for all i. That is, none of the vectors can be written as a linear combination of the other ones. Given a subspace S of \mathbb{R}^{n}, a basis for S is a set of linearly independent vectors whose Span is all of S.

Proposition 6.1.1. If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ is a basis for S, then every vector in S can be written as a unique linear combination of vectors in $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$.

Proof. If $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ is a basis for S, then any vector in S can be written as a linear combination of vectors in $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ by the definition of Span. Therefore, the only thing to show is that this representation is unique. Let $\mathbf{u} \in S$ and assume

$$
\sum c_{i} \mathbf{v}_{i}=\sum b_{i} \mathbf{v}_{i}=\mathbf{u}
$$

Then we have

$$
\sum\left(c_{i}-b_{i}\right) \mathbf{v}_{i}=\mathbf{0} .
$$

Since $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{k}\right\}$ are linearly independent, this implies that $\left(c_{i}-b_{i}\right)=0$ for all i, ie the two representations of \mathbf{u} are the same.

All bases for a set S have the same size (this is something you learn in 241), and the number of vectors in a basis for S is called the dimension of S.

A matrix in $\mathbb{R}^{n \times n}$ is a function from \mathbb{R}^{n} to \mathbb{R}^{n}. ie, it takes a vector in \mathbb{R}^{n} and spits out another vector in \mathbb{R}^{n}. Furthermore, it is a consequence of matrix multiplication that this function is linear. That is, for vectors \mathbf{v} and \mathbf{u} we have

$$
A(\mathbf{v}+\mathbf{u})=A \mathbf{v}+A \mathbf{u}
$$

and for any scalar $c \in \mathbb{R}$ we have

$$
A(c \mathbf{u})=c(A \mathbf{u}) .
$$

Since A is a function, we may ask about its range. The co-domain is \mathbb{R}^{n}, but perhaps not all of the vectors are actually outputs of the function. Let S be the range of the function, that is

$$
S=\left\{A \mathbf{v}: \mathbf{v} \in \mathbb{R}^{n}\right\} .
$$

We define the rank of a matrix A to be the dimension of S. You learn in 241 that this is the same as the dimension of the Span of the rows of A (or of the columns).

For two vectors

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

we define their dot product to be

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}=\mathbf{u}^{T} \mathbf{v}
$$

Two vectors are said to be orthogonal if their dot product is 0 (in \mathbb{R}^{n}, this means that the two vectors are perpendicular to each other). Matrix multiplication can be defined via the dot product: for $A, B \in \mathbb{R}^{n \times n}$, we have

$$
(A B)_{i j}=(i \text { 'th row of } A) \cdot(j \text { 'th column of } B)
$$

Now we define something we will use constantly in this chapter, eigenvalues and eigenvectors. Given a matrix A, a nonzero vector \mathbf{x} is said to an eigenvector for A if there is a real number λ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

λ is called an eigenvalue of A. Another important fact (learned in 241) is that if a matrix is symmetric, then it has a set of n linearly independent eigenvectors (in fact, we can assume that the vectors are pairwise orthogonal). We say that the trace of a matrix A is the sum of its diagonal entries. If A is symmetric, then there is a set of eigenvectors and eigenvalues such that

$$
A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}
$$

for $1 \leq i \leq n$. In this case (another fact from 241), we have $\operatorname{trace}(A)=\sum_{i=1}^{n} \lambda_{i}$.

6.1.2 The adjacency matrix

Can one hear the shape of a drum?

- Mark Kac

Can you hear the shape of a graph?

We now study the most common matrix associated with a graph, the adjacency matrix. Given a graph G on n vertices we define a matrix $A=A(G)$ which is an n by n matrix. It's rows and columns are indexed by the vertex set (in the same order for the rows as the columns), and the entries of A are given by

$$
A_{i j}= \begin{cases}1 & v_{i} \text { is adjacent to } v_{j} \\ 0 & v_{i} \text { is not adjacent to } v_{j}\end{cases}
$$

Note that A is a symmetric matrix, since v_{i} is adjacent to v_{j} if and only if v_{j} is adjacent to v_{i}. Therefore, there is an orthogonal set of eigenvectors $\mathbf{x}_{\mathbf{1}}, \cdots, \mathbf{x}_{\mathbf{n}}$ corresponding to eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$. We will always order the indices so that

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Given a graph G, we call the multiset of its eigenvalues the spectrum of G

$$
\operatorname{Spec}(G)=\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}
$$

Further, if G has no loops, then the diagonal entries of A are all 0 , and so trace $(A)=$ $\sum \lambda_{i}=0$. Now we come to the central question in spectral graph theory:

Question 1. Given the spectrum of a graph G, what properties of G can we determine?

In particular, given the spectrum of a graph, can you determine what the graph is? This is what is meant by "hearing the shape of a graph". One graph property that we can immediately determine from the spectrum is the number of vertices in the graph. eg, if I tell you that I have a graph and its spectrum is

$$
\{-1,-1,-1,-1,4\}
$$

then you can immediately tell me that my graph has 5 vertices. What else can we say about it? First we need to investigate the adjacency matrix a bit more:

Theorem 6.1.2. The matrix A^{k} counts walks of length k in the graph. Specifically $\left(A^{k}\right)_{i j}$ is the number of walks of length k from vertex v_{i} to vertex v_{j}.

Proof. The proof is by induction on k. The number of walks of length 1 from v_{i} to v_{j} is 1 if i and j are adjacent and is 0 otherwise. By the definition of A, the base case is proved. Now assume it is true for A^{k}. Then

$$
\left(A^{k+1}\right)_{i j}=\left(A^{k} A\right)_{i j}=\left(\text { the } i \text { 'th row of } A^{k}\right) \cdot\left(\text { the } j^{\prime} \text { 'th column of } A\right)=\sum_{w=1}^{n}\left(A^{k}\right)_{i w} A_{w j}
$$

Now if v_{w} is not adjacent to v_{i} then the summand is 0 . Otherwise by induction, this summand is equal to the number of walks of length k from v_{i} to v_{w}. Since in this case $v_{w} \sim v_{j}$, for each k walk from v_{i} to v_{w}, there is a $k+1$ walk from v_{i} to v_{j}. Since we sum over the whole vertex set, this counts all of the k-walks.

We claim that this theorem tells us other information about the graph given its spectrum. Note that if λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k}. Therefore, if the spectrum of A is $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$, then the spectrum of A^{2} is $\left\{\lambda_{1}^{2}, \cdots, \lambda_{n}^{2}\right\}$. But the matrix A^{2} counts walks of length 2 in the graph, and so for any i we have $\left(A^{2}\right)_{i i}=$ number of walks of length 2 from v_{i} to itself $=d\left(v_{i}\right)$. And so

$$
\operatorname{trace}\left(A^{2}\right)=\sum_{i=1}^{n} d\left(v_{i}\right)=2 e(G)
$$

Therefore, knowing the spectrum of G determines the number of edges in G. So given a graph with spectrum $\{-1,-1,-1,-1,4\}$ we know that it has 5 vertices and

$$
\frac{1}{2}\left((-1)^{2}+(-1)^{2}+(-1)^{2}+(-1)^{2}+4^{2}\right)=10
$$

edges. What graph is it?
It is often useful to use the following characterization of λ_{1} :
Theorem 6.1.3 (Rayleigh Principle).

$$
\lambda_{1}=\max _{x^{T} x \neq 0} \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}
$$

Proof. Let $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ for all i and let these eigenvectors be normalized so that $\mathbf{x}_{\mathbf{i}}{ }^{T} \mathbf{x}_{i}=1$. Assume that the eigenvectors are pairwise orthogonal. First note that $\lambda_{1}=\frac{\mathbf{x}_{1}^{T} A \mathbf{x}_{1}}{\mathbf{x}_{1}^{T} \mathbf{x}_{1}}$ and so

$$
\max _{x^{T} x \neq 0} \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}} \geq \lambda_{1}
$$

Next let \mathbf{y} be an arbitrary nonzero vector. We may write \mathbf{y} as a linear combination of the eigenvectors:

$$
\mathbf{y}=\sum_{i=1}^{n} \alpha_{1} \mathbf{x}_{\mathbf{i}}
$$

where $\sum \alpha_{i}^{2}=\mathbf{y}^{T} \mathbf{y}$ (the Pythagorean theorem). Then

$$
\frac{\mathbf{y}^{T} A \mathbf{y}}{\mathbf{y}^{T} \mathbf{y}}=\frac{\sum \alpha_{i}^{2} \lambda_{i}}{\mathbf{y}^{T} \mathbf{y}} \leq \frac{\sum \alpha_{i}^{2} \lambda_{1}}{\mathbf{y}^{T} \mathbf{y}}=\lambda_{1}
$$

Since \mathbf{y} was arbitrary, we have that $\lambda_{1} \geq \max _{x^{T} x \neq 0} \frac{\mathbf{x}^{T} A \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}$.
Using this we can show that the spectral radius of a graph is between its average degree and its maximum degree.

Theorem 6.1.4. Let G be a graph with maximum degree Δ and average degree $\bar{d}=$ $\frac{2 e(G)}{n}$. Then

$$
\bar{d} \leq \lambda_{1} \leq \Delta
$$

Proof. Since

$$
\lambda_{1}=\max _{x^{T} x \neq 0} \frac{x^{T} A x}{x^{T} x} .
$$

we have

$$
\lambda_{1} \geq \frac{\mathbf{1}^{T} A \mathbf{1}}{\mathbf{1}^{T} \mathbf{1}}
$$

where 1 represents the all ones vector. But

$$
\frac{\mathbf{1}^{T} A \mathbf{1}}{\mathbf{1}^{T} \mathbf{1}}=\frac{2 e(G)}{n}
$$

so the lower bound is proved. To see the upper bound, let $A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$. Let

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

and assume that x_{z} is the largest entry (if there is more than one largest entry, choose of those arbitrarily). Then $A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$ is a system of equations, and looking at the one that corresponds to vertex z we have

$$
\lambda_{1} x_{z}=\sum_{v \sim z} x_{v} \leq \sum_{v \sim z} x_{z}=x_{z} d(z) \leq x_{u} \Delta
$$

And so $\lambda_{1} \leq \Delta$.

6.1.3 Short proofs of old results using spectral graph theory

In this section we use the previous set up to give short proofs of several old results. Using the inequality $\lambda_{1} \geq \frac{2 e(G)}{n}$ will recover and sometimes strengthen these results. We use the same set up as before: G will be a graph and A will be its adjacency matrix. A will have eigenvaluses $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{n}$ and \mathbf{x} will be an eigenvector corresponding to λ_{1}. We will normalize \mathbf{x} so that it has infinity norm 1 (ie its maximum entry is

1), and we will let z be a vertex chosen so that $\mathbf{x}_{z}=1$. The eigenvector eigenvalue equation gives that for any vertex u,

$$
\lambda_{1} \mathbf{x}_{u}=\sum_{v \sim u} \mathbf{x}_{v} .
$$

Multiplying both sides of this equation by λ_{1} and applying the above equation again gives

$$
\lambda_{1}^{2} \mathbf{x}_{u}=\sum_{v \sim u} \lambda_{1} \mathbf{x}_{v}=\sum_{v \sim u} \sum_{w \sim v} \mathbf{x}_{w} .
$$

In particular, applying the above equation for $u=z$ and noting that $\mathbf{x}_{w} \leq 1$ gives

$$
\begin{equation*}
\lambda_{1}^{2}=\sum_{v \sim z} \sum_{w \sim v} \mathbf{x}_{w}=\sum_{v \sim z} \sum_{\substack{w \sim v \\ w \in N(z)}} \mathbf{x}_{w}+\sum_{v \sim z} \sum_{\substack{w \widetilde{ } \\ w \notin N(z)}} \mathbf{x}_{w} \leq 2 e(N(z))+e(N(z), V(G) \backslash N(z)) \tag{6.1}
\end{equation*}
$$

where the last inequality follows because each eigenvector entry is at most 1 , and because each eigenvector entry appears at the end of a walk of length 2 from z : each edge with both endpoints in $N(z)$ is the second edge of a walk of length 2 from z exactly twice and each edge with only one endpoint in $N(z)$ is the second edge of a walk of length 2 from z exactly once. Using this setup we give short proofs of the following known results:

- Mantel's Theorem.
- Stanley's Bound (1987): if G is a graph with m edges and λ_{1} is the spectral radius of its adjacency matrix, then $\lambda_{1} \leq \frac{1}{2}(-1+\sqrt{1+8 m})$.
- A long-standing conjecture of Erdős (1975) is that every triangle-free graph may be made bipartite with the removal of at most $n^{2} / 25$ edges. We show that the conjecture is true for graphs with at least $n^{2} / 5$ edges, first proved by Erdős, Faudree, Pach, and Spencer (1988).
- If G is a $K_{2, t}$-free graph and the spectral radius of its adjacency matrix is λ_{1}, then $\lambda_{1} \leq 1 / 2+\sqrt{(t-1)(n-1)+1 / 4}$. This was originally proved by Nikiforov (2010) and is a spectral strengthening of the Kővari-Sós-Turán Theorem applied to ex $\left(n, K_{2, t}\right)$.
- An improvement of the Stanley Bound (Hong, 1998) and some variants of it when one forbids cycles of length 3 and 4 (Nikiforov 2007 and Nosal 1970).
- An upper bound on the spectral radius of a graph based on local structure, first proved by Favaron, Mahéo, and Saclé (1993).

Theorem 6.1.5 (Mantel's Theorem). Let G be a triangle-free on n vertices. Then G contains at most $\left\lfloor n^{2} / 4\right\rfloor$ edges. Equality occurs if and only if $G=K_{\lfloor n / 2\rfloor\lceil n / 2\rceil}$.

Proof. If G is triangle-free, then $e(N(z))=0$. Using $\lambda_{1} \geq \frac{2 e(G)}{n}$ and (6.1) gives

$$
\frac{4(e(G))^{2}}{n^{2}} \leq e(N(z), V(G) \backslash N(z)) \leq\left\lceil\frac{n}{2}\right\rceil\left\lfloor\frac{n}{2}\right\rfloor
$$

Equality may occur only if $e(N(z), V(G) \backslash N(z))=\left\lfloor n^{2} / 4\right\rfloor$. The only bipartite graph with this many edges is $K_{\lfloor n / 2\rfloor\lceil n / 2\rceil}$, and thus $K_{\lfloor n / 2\rfloor\lceil n / 2\rceil}$ is a subgraph of G. But G is triangle-free, and so $G=K_{\lfloor n / 2\rfloor\lceil n / 2\rceil}$.

Theorem 6.1.6 (Stanley's Bound). Let G have m edges. Then

$$
\lambda_{1} \leq \frac{1}{2}(-1+\sqrt{1+8 m})
$$

Equality occurs if and only if G is a clique and isolated vertices.
Proof. Using (6.1) gives

$$
\lambda_{1}^{2}=\sum_{z \sim v} \sum_{\substack{\sim \sim w \\ w \neq z}} \mathbf{x}_{w}+\sum_{v \sim z} 1 \leq 2\left(m-d_{z}\right)+d_{z} \leq 2 m-\lambda_{1}
$$

where the last inequality is because $\lambda_{1} \leq d_{z}$. The result follows by the quadratic formula. Examining (6.1) shows that equality holds if and only if $E(G)$ is contained in the closed neighborhood of $z, d_{z}=\lambda_{1}$, and for each $w \sim z, \mathbf{x}_{w}=1$. Since z was chosen arbitrarily amongst vertices of eigenvector entry 1 , any vertex of eigenvector entry 1 must contain $E(G)$ in its closed neighborhood. Thus G is a clique plus isolated vertices.

Theorem 6.1.7 (Erdős-Faudree-Pach-Spencer). Let G be a triangle-free graph on n vertices with at least $n^{2} / 5$ edges. Then G can be made bipartite by removing at most $n^{2} / 25$ edges.

Proof. Let G be triangle-free with m edges, and let $\operatorname{MaxCut}(G)$ denote the size of a maximum cut in G. So we are trying to show that $m-\operatorname{MaxCut}(G) \leq n^{2} / 25$. Since G is triangle-free, $N(z)$ induces no edges. Thus by (6.1)

$$
\frac{4 m^{2}}{n^{2}} \leq \lambda_{1}^{2} \leq e(N(z), V(G) \backslash N(z)) \leq \operatorname{MaxCut}(G)
$$

Let $g(m)=m-\frac{4 m^{2}}{n^{2}}$. The function $g(m)$ is decreasing for $m \geq \frac{n^{2}}{8}$, and $g\left(n^{2} / 5\right)=$ $n^{2} / 25$, which implies the result.

Theorem 6.1.8 (Nikiforov). Let G be a $K_{2, t}-$ free graph of order n and spectral radius λ_{1}. Then

$$
\lambda_{1} \leq 1 / 2+\sqrt{(t-1)(n-1)+1 / 4}
$$

Noting that $\lambda_{1} \geq \frac{2 e(G)}{n}$ implies the Kövari-Sós-Turán Theorem applied to $\operatorname{ex}\left(n, K_{2, t}\right)$.

Proof. Let w be a vertex not equal to z. Since G is $K_{2, t}$ free, there are at most $t-1$
walks of length 2 from z to w. Therefore, by (6.1)

$$
\begin{aligned}
& \lambda_{1}^{2}=d_{z}+\sum_{v \sim z} \sum_{\substack{w \widetilde{v} \\
w \in N(z)}} \mathbf{x}_{w}+\sum_{\substack{v \sim z\\
}}^{\substack{w \sim v \\
w \notin N(z) \\
w \neq z}} \mid \\
& \mathbf{x}_{w} \\
& \leq d_{z}+(t-1) \sum_{w \in N(z)} \mathbf{x}_{w}+(t-1) \sum_{\substack{w \notin N(z) \\
w \neq z}} \mathbf{x}_{w} \\
&=d_{z}+\sum_{w \in N(z)} \mathbf{x}_{w}+(t-2) \sum_{\substack{w \in N(z)}} \mathbf{x}_{w}+(t-1) \sum_{\substack{w \notin N(z) \\
w \neq z}} \mathbf{x}_{w} \\
&=d_{z}+\lambda_{1}+(t-2) \sum_{w \in N(z)} \mathbf{x}_{w}+(t-1) \sum_{\substack{w \notin N(z) \\
w \neq z}} \mathbf{x}_{w} \\
& \leq d_{z}+\lambda_{1}+(t-2) d_{z}+(t-1)\left(n-d_{z}-1\right) .
\end{aligned}
$$

Applying the quadratic formula yields the result.

The next three theorems are variants of Stanley's edge bound.

Theorem 6.1.9 (Nosal (1970)). If G is triangle free with m edges and spectral radius λ_{1}, then $\lambda_{1} \leq \sqrt{m}$.

Proof. If G is triangle-free, then $e(N(z))=0$. (6.1) implies

$$
\lambda_{1}^{2} \leq e(N(z), V(G) \backslash N(z)) \leq m
$$

Theorem 6.1.10 (Nikiforov (2007)). Let G be an n-vertex graph of girth at least 5 and spectral radius λ_{1}. Then $\lambda_{1} \leq \sqrt{n-1}$.

Proof. Since G is triangle and quadrilateral-free, $e(N(z))=0$ and for any $w \in V(G) \backslash$ $\{z \cup N(z)\}|N(w) \cap N(z)| \leq 1$. Therefore $e(N(z), V(G) \backslash N(z)) \leq d_{z}+\left(n-d_{z}-1\right)$. (6.1) gives $\lambda_{1}^{2} \leq n-1$.

Using $\lambda_{1} \leq \Delta(G)$, we have for G of girth at least $5, \lambda_{1} \leq \min \{\Delta, \sqrt{n-1}\}$. Nikiforov (2007) characterizes the cases of equality. We leave the characterization of equality using our proof to the reader.

Theorem 6.1.11 (Hong). Let G be a connected graph on m edges with spectral radius λ_{1}, then

$$
\lambda_{1} \leq \sqrt{2 m-n+1}
$$

Equality occurs if and only if G is either a complete graph or a star.

Proof. Since G is connected, every vertex in $V(G) \backslash\{z \cup N(z)\}$ has degree at least 1 . Therefore, at least $n-d_{z}-1$ edges contribute at most 1 to the sum in (6.1). This gives

$$
\lambda_{1}^{2} \leq d_{z}+2 e(N(z))-\left(n-d_{z}-1\right) \leq 2 m-n+1
$$

Equality occurs if and only if for all $u \in V(G) \backslash\{z \cup N(z)\}, d_{u}=1$ and for any walk of length 2 starting at z and ending at $u, \mathbf{x}_{u}=1$. These conditions together imply that $V(G)=z \cup N(z)$. Now, if there are any edges in $N(z)$, then both endpoints must have eigenvector entry 1. If $\mathbf{x}_{w}=1$ and $N(w) \subset\{z \cup N(z)\}$, then $N(w)$ must equal $V(G) \backslash\{w\}$. Therefore G is either a clique or a star.

Finally, we note that some of the above theorems are corollaries of the following bound by Favaron, Mahéo, and Saclé. We prove (a stronger version of) their theorem immediately from (6.1)

Theorem 6.1.12 (Favaron-Mahéo-Saclé). Let G be a graph with spectral radius λ_{1}. For $i \in V(G)$ let s_{i} be the sum of the degrees of the vertices adjacent to i. Then

$$
\lambda_{1} \leq \max _{i} \sqrt{s_{i}}
$$

Proof. Since $2 e(N(z))+e(N(z), V(G) \backslash N(z))=s_{z}$, we have immediately from (6.1)

$$
\lambda_{1}^{2} \leq s_{z} \leq \max _{i \in V(G)} s_{i}
$$

6.1.4 The Graham-Pollak Theorem

Beautiful graphs are rare. And so are gems like this proof.

- Babai and Frankl

Originally motivated by a problem of loop switching in networks, Graham and Pollak became interested in partitioning the edge set of a multigraph by complete bipartite subgraphs (henceforth bicliques). If G is a finite, loopless multigraph, the biclique partition number, denoted $\operatorname{bp}(G)$, is the minimum number of bicliques whose edge sets partition $E(G)$. Since every edge is a biclique, this parameter is well-defined and finite. Graham and Pollak showed that a problem on loop switching is equivalent to partitioning a multigraph, and in the process proved their celebrated theorem.

Theorem 6.1.13 (Graham-Pollak Theorem). The edge set of the complete graph on n vertices cannot be partitioned into fewer than $n-1$ complete bipartite subgraphs.

As the edges of K_{n} can be partitioned into $n-1$ bicliques using edge-disjoint stars (there are also many other ways, exponentially many in fact), the Graham-Pollak Theorem gives the result $\mathrm{bp}\left(K_{n}\right)=n-1$. Since Graham and Pollak's result, many other proofs of this fact have been discovered. Though the result is purely combinatorial, most of the proofs are algebraic, including proofs by G.W. Peck, Tverberg, and Vishwanathan. Vishwanathan also discovered a proof that replaces linear algebraic techniques by using the pigeon-hole principle in a way that does not necessitate the use of an underlying field. However, his proof mimics Gaussian elimination and uses
intermediate structures of large size (on the order of n^{n}). He asked whether there was a "better" combinatorial proof.

We now describe a beautiful result, attributed Witsenhausen [?], which gives the Graham-Pollak Theorem as a corollary.

Theorem 6.1.14 (Witsenhausen, 1980s). Let G be a finite, loopless graph, and A its adjacency matrix. Then, if $n_{+}(A)$ and $n_{-}(A)$ denote the number of positive eigenvalues and negative eigenvalues of A respectively,

$$
\operatorname{bp}(G) \geq \max \left(n_{+}(A), n_{-}(A)\right)
$$

Since K_{n} has eigenvalue -1 with multiplicity $n-1$, the Graham-Pollak Theorem is a corollary.

Proof. Assume the edge set of a graph G is partitioned into $\operatorname{bp}(G)$ bicliques. If S is a subset of the vertices of G, then the characteristic vector of S is the n-dimensional $(0,1)$ column vector whose i-th position equals 1 if vertex i is in S and equals 0 otherwise. Denote by u_{i} and v_{i} the characteristic vectors of the partite sets of the i-th biclique of our decomposition. Define $D_{i}=u_{i} v_{i}^{T}+v_{i} u_{i}^{T}$. Then D_{i} is the adjacency matrix of the i-th biclique as a subgraph of G, and $A=\sum_{i=1}^{\mathrm{bp}(G)} D_{i}$. Let

$$
\begin{aligned}
& W=\operatorname{Span}\left\{w \in \mathbb{R}^{n} \mid w^{T} u_{i}=0, \forall 1 \leq i \leq \mathrm{bp}(G)\right\} \\
& P=\operatorname{Span}\{\text { Eigenvectors of the positive eigenvalues of } A\}
\end{aligned}
$$

Since W is made up of n-dimensional vectors that are all orthogonal to $\operatorname{bp}(G)$ vectors, we have that $\operatorname{dim}(W) \geq n-\operatorname{bp}(G)$. On the other hand, since $p^{T} A p>0$ for all nonzero $p \in P$, we have that $W \cap P=\{0\}$. Therefore

$$
\operatorname{dim}(W) \leq n-\operatorname{dim}(P)=n-n_{+}(A)
$$

It follows that $n-\operatorname{bp}(G) \leq \operatorname{dim}(W) \leq n-n_{+}(A)$ which implies that $\mathrm{bp}(G) \geq n_{+}(A)$. The argument for $n_{-}(A)$ follows similarly. Thus $\operatorname{bp}(G) \geq \max \left\{n_{+}(A), n_{-}(A)\right\}$.

The two most interesting open problems, in the opinion of the author, are the following.

Open Problem 1. What is the minimum number of bicliques necessary to cover every edge of K_{n} at least once and at most twice? That is, what is $\operatorname{bp}_{2}\left(K_{n}\right)$?

The best known bounds for this problem are given by $\sqrt{n-1} \leq \operatorname{bp}_{2}\left(K_{n}\right) \leq$ $\lceil\sqrt{n}\rceil+\lfloor\sqrt{n}\rfloor-2($ cf Alon 1997).

Open Problem 2. What is the minimum number of complete r-partite r-uniform hypergraphs necessary to partition the edge set of the complete r-uniform hypergraph?

This question seems to be extremely difficult, and the best bounds, due to Cioabă, Kündgen, and Verstraëte in 2009 and Leader and Tan in 2017, are far apart. It would be nice to use an eigenvalue approach here as well, but the eigenvalue theory for higher order tensors is still not fully developed.

6.1.5 The Expander-Mixing Lemma

In this section we discuss how the second and last eigenvalue of a graph can tell us about the structure of the graph. We already saw how the first eigenvalue can tell us about the maximum and average degree. Let's say a graph is d regular: this property can be deduced from the spectrum (if and only if $d=\lambda_{1}=\frac{1}{n} \sum \lambda_{i}^{2}$). But there are many very different looking graphs which are all d regular, say two disjoint copies of $K_{n / 2}$ versus a $K_{n / 2, n / 2}$. Both of these are also very different from a "random regular graph with degree $n / 2$ " (whatever that means). Can we detect these structural differences from the spectrum? The answer is yes.

Given subsets $S, T \subset V(G)$, we define

$$
e(S, T)=|\{(u, v): u \in S, v \in T, u v \in E(G)\}|
$$

That is, $e(S, T)$ denotes the number of edges between S and T where if S and T overlap and there is an edge with both endpoints in both of them, it is counted twice. If G is a d-regular graph and we were to choose S of size $|S|$ and T of size $|T|$ uniformly at random, then the probability for a vertex to be in S is $\frac{|S|}{n}$ and for it to be in T is $\frac{|T|}{n}$, and therefore by linearity of expectation we have

$$
\mathbb{E}[e(S, T)]=\sum_{u v \in E(G)} \frac{|S|}{n} \frac{|T|}{n}+\frac{|T|}{n} \frac{|S|}{n}=\frac{d n}{2} \cdot \frac{2|S||T|}{n^{2}}=\frac{d|S||T|}{n} .
$$

The Expander-Mixing Lemma gives us a bound on how far away two sets in a graph can be from this average:

Theorem 6.1.15 (Expander Mixing Lemma: Alon, Chung). Let G be a d-regular graph and $S, T \subset V(G)$. Then
$\lambda_{n} \sqrt{|S||T|\left(1-\frac{|S|}{n}\right)\left(1-\frac{|T|}{n}\right)} \leq e(S, T)-\frac{d|S||T|}{n} \leq \lambda_{2} \sqrt{|S||T|\left(1-\frac{|S|}{n}\right)\left(1-\frac{|T|}{n}\right)}$
Proof. We prove the lower bound here. The upper bound is the same proof. Let A be the adjacency matrix of G and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be its eigenvalues. Assume that $A \mathbf{x}_{i}=\lambda_{i} \mathbf{x}_{i}$ and that the eigenvectors are orthonormal, ie $\mathbf{x}_{i}^{T} \mathbf{x}_{j}=0$ if $i \neq j$ and 1 if $i=j$.

Let $S, T \subseteq V(G)$, and let $1_{S}\left(1_{T}\right)$ denote the characteristic vector of S (of T). Then $\mathbf{1}_{S}, \mathbf{1}_{T} \in \mathbb{R}^{n}$ and we will now show that $e(S, T)=\mathbf{1}_{S}^{T} A \mathbf{1}_{T}$.

$$
x^{T} A y=x^{T}(A y)=\sum_{i} x_{i}(A y)_{i}=\sum_{i} x_{i} \sum_{j} A_{i j} y_{j}=\sum_{i, j} A_{i j} x_{i} y_{j}
$$

In the above equation, $A_{i j} \neq 0$ precisely when $i \sim j$ (in this case $A_{i j}=1$), hence $\mathbf{1}_{S}^{T} A \mathbf{1}_{T}$ counts precisely the number of edges between S and T.

We can write $\mathbf{1}_{S}=\sum \alpha_{i} x_{i}$ where $\alpha_{i}=\mathbf{1}_{S}^{T} x_{i}$, and similarly $\mathbf{1}_{T}=\sum \beta_{i} x_{i}$ where $\beta_{i}=\mathbf{1}_{T}^{T} x_{i}$. Note that $\sum \alpha_{i}^{2}=\mathbf{1}_{S}^{T} \mathbf{1}_{S}=|S|$ and $\sum \beta_{i}^{2}=\mathbf{1}_{T}^{T} \mathbf{1} T=|T|$. Since G is
d-regular, $x_{1}=\frac{1}{\sqrt{n}} \mathbf{1}$. Therefore $\alpha_{1}=\mathbf{1}_{S}^{T} x_{1}=\frac{1}{\sqrt{n}}|S|$ and $\beta_{1}=\mathbf{1}_{T}^{T} x_{1}=\frac{1}{\sqrt{n}}|T|$. Then we have the following:

$$
\begin{aligned}
e(S, T)=\mathbf{1}_{S}^{T} A \mathbf{1}_{T} & =\left(\sum_{i} \alpha_{i} x_{i}\right)^{T} A\left(\sum_{j} \beta_{j} x_{j}\right) \\
& =\left(\sum_{i} \alpha_{i} x_{i}\right)^{T}\left(\sum_{j} \beta_{j} A x_{j}\right) \\
& =\sum_{i, j}\left(\alpha_{i} x_{i}\right)\left(\beta_{j} \lambda_{j} x_{j}\right) \\
& =\sum_{i} \lambda_{i} \alpha_{i} \beta_{i} \\
& =\lambda_{1} \alpha_{1} \beta_{1}+\sum_{i=2}^{n} \lambda_{i} \alpha_{i} \beta_{i} \\
& =d \cdot \frac{1}{n}|S||T|+\sum_{i=2}^{n} \lambda_{i} \alpha_{i} \beta_{i}
\end{aligned}
$$

Hence we have

$$
e(S, T)-d \frac{|S||T|}{n}=\sum_{i=2}^{n} \lambda_{i} \alpha_{i} \beta_{i} \geq \lambda_{n} \sum_{i=2}^{n} \alpha_{i} \beta_{i} \geq \lambda_{n} \sum_{i=2}^{n}\left|\alpha_{i}\right|\left|\beta_{i}\right|
$$

where the last inequality follows because $\lambda_{n}<0$. Now, using Cauchy-Schwarz gives

$$
e(S, T)-d \frac{|S||T|}{n} \geq \lambda_{n}\left(\sum_{i=2}^{n} \alpha_{i}^{2}\right)^{1 / 2}\left(\sum_{i=2}^{n} \beta_{i}^{2}\right)^{1 / 2}=\lambda_{n}\left(|S|-\frac{|S|^{2}}{n}\right)\left(|T|-\frac{|T|^{2}}{n}\right)
$$

Rearranging gives the result.

As a corollary we have the very useful Hoffman Ratio bound:
Theorem 6.1.16 (Hoffman ratio bound). If G is a d regular graph then

$$
\alpha(G) \leq n \frac{-\lambda_{n}}{d-\lambda_{n}} .
$$

Proof. If S is an independent set in G then $e(S, S)=0$. Therefore, by the expander mixing lemma we have

$$
-d \frac{|S|^{2}}{n} \geq \lambda_{n}|S|\left(1-\frac{|S|}{n}\right)
$$

Rearranging gives $|S| \leq n \frac{-\lambda_{n}}{d-\lambda_{n}}$.

6.1.6 The Hoffman-Singleton Theorem

In this section we ask the following optimization question: minimize the number of vertices in a graph subject to the constraints that it is regular of a fixed degree and has a fixed girth (length of the shortest cycle).

Five is a magic number, so let us consider regular graphs of girth five.

- Babai and Frankl

Let's say a graph G is d-regular and has girth 5 . Since it has no cycles of length 3 or 4 , then when we do a breadth first search from a vertex, all of the paths of length 2 from the root must lead to distinct vertices. Since the graph is d-regular, we have at least

$$
1+d+d(d-1)=d^{2}+1
$$

vertices in the graph. So we must have $n \geq d^{2}+1$. This idea generalizes to arbitrary girth:

Theorem 6.1.17 (The Moore Bound). Let G be a d-regular graph on n vertices with girth at least $2 k+1$. Then

$$
n \geq 1+\sum_{i=0}^{k-1} d(d-1)^{i}
$$

Graphs attaining equality in this bound are called Moore graphs. Do Moore graphs exist? If $d=2$ then a cycle of length $2 k+1$ is a Moore graph. If $k=1$, then the complete graph is a Moore graph with girth 3 and degree $n-1$. After this it gets
harder: the Petersen graph is a 3 regular graph on $3^{2}+1$ vertices with girth 5 and so it is a Moore graph. Hoffman and Singleton constructed a graph on $7^{2}+1$ vertices which is regular of degree 7 and has girth 5 . Their graph is similar in some sense to the Petersen graph, and so one may think that there is an infinite family of Moore graphs of girth 5. The following incredible theorem says that this is not true.

Theorem 6.1.18 (Hoffman and Singleton, 1960). If G is a d-regular graph with girth 5 on $d^{2}+1$ vertices, then $d \in\{2,3,7,57\}$.

Proof. First we show that the graph is more regular than we might expect. Take a pair of vertices u and v. If $u \sim v$ then their common neighborhood must be empty, otherwise G would have a triangle. What if $u v \notin E(G)$? If we go back to the breadth first search argument, then since $n=d^{2}+1$, we must have that all of the vertices are in a breadth first search two steps away from the root. Letting u be the root, since we assumed that $u \nsim v$, then v must be in the bottom layer of the tree. This means that there is a unique path of length 2 from u to v and so their common neighborhood has size 1.

Now, the adjacency matrix has a 1 in position $u v$ if and only if $u \sim v$. By the above discussion, A^{2} has a 1 in position $u v$ if and only if $u \nsim v$. Therefore we have

$$
A^{2}+A=(d-1) I+J
$$

where J is the all ones matrix. Now, since G is regular, we have that the all ones vector is an eigenvector for it corresponding to eigenvalue d. Furthermore, we can assume that all of the other eigenvectors are orthogonal to this all ones vector. Let $A \mathbf{x}=\lambda \mathbf{x}$ where \mathbf{x} is one of the other eigenvectors. Then we have

$$
\lambda^{2} \mathbf{x}+\lambda \mathbf{x}-(d-1) \mathbf{x}=\left(A^{2}+A-(d-1) I\right) \mathbf{x}=J \mathbf{x}=\mathbf{0}
$$

Multiplying both sides by \mathbf{x} gives that $\lambda^{2}+\lambda-(d-1)=0$ and therefore $\lambda=\frac{-1 \pm \sqrt{4 d-3}}{2}$. Note that this holds for any eigenvalue that does not have the all ones eigenvector, so
this means that G has eigenvalue d with multiplicity 1 and the other two eigenvalues with some multiplicities m_{1} and m_{2}. Now the total number of eigenvalues is the number of vertices and so

$$
1+m_{1}+m_{2}=d^{2}+1 .
$$

Also, the trace of A is 0 , so we must have

$$
d+m_{1}\left(\frac{-1+\sqrt{4 d-3}}{2}\right)+m_{2}\left(\frac{-1-\sqrt{4 d-3}}{2}\right)=0
$$

Rearranging gives

$$
2 d-\left(m_{1}+m_{2}\right)+\left(m_{1}-m_{2}\right) \sqrt{4 d-3}=2 d-d^{2}+\left(m_{1}-m_{2}\right) \sqrt{4 d-3}=0
$$

Now, $4 d-3$ is an integer, and so $\sqrt{4 d-3}$ is either an integer or irrational. If $\sqrt{4 d-3}$ is irrational, then we must have $m_{1}=m_{2}$ (since 0 is the right hand side of the equation and is rational). In this case, we have $2 d-d^{2}=0$ and so $d=2$.

For the remainder of the proof, assume that $\sqrt{4 d-3}$ is an integer, call it s. Then

$$
d=\frac{s^{2}+3}{4}
$$

Substituting this expression for d gives

$$
2\left(\frac{s^{2}+3}{4}\right)-\left(\frac{s^{2}+3}{4}\right)^{2}+\left(m_{1}-m_{2}\right) s=0
$$

or equivalently

$$
8 s^{2}+24-\left(s^{4}+6 s^{2}+9\right)+16\left(m_{1}-m_{2}\right) s=0
$$

Rearranging gives

$$
s\left(s^{3}-2 s-16\left(m_{1}-m_{2}\right)\right)=15 .
$$

Since s and m_{1}, m_{2} are integers, this means that s must divide 15 , and so $s \in$ $\{1,3,5,15\}$. Therefore in this case $d=\left(s^{2}+3\right) / 4$ must satisfy $d \in\{1,3,7,27\}$. If $d=1$ then the graph is a matching, and so we throw it away, finishing the proof of the theorem.

To end this section, we mention that it is an open problem to determine if the Moore graph of degree 57 exists!

6.2 Extremal set theory

6.2.1 Erdős-Ko-Rado theorem

Let $2^{[n]}$ denote the set of subsets of $[n]$. A family of subsets $\mathcal{F} \subset 2^{[n]}$ is called intersecting if for all $F, F^{\prime} \in \mathcal{F}, F \cap F^{\prime} \neq \emptyset$. The subset of $2^{[n]}$ of subsets which contain n is an intersecting (each pair intersects at at least the integer n) family of size 2^{n-1}. If n is odd, then the set of subsets of size at least $n / 2$ is also an intersecting family of size 2^{n-1}.

Theorem 6.2.1. If \mathcal{F} is an intersecting family, then $|\mathcal{F}| \leq 2^{n-1}$.

Proof. If \mathcal{F} is an intersecting family and $F \in \mathcal{F}$, then F^{c} is not in \mathcal{F}. Therefore, there is an injection from sets in \mathcal{F} to sets not in \mathcal{F}, which means that \mathcal{F} can have at most half of the possible subsets of $[n]$.

What if we restrict our sets to have a fixed size? This is the famous Erdős-Ko-Rado Theorem.

Theorem 6.2.2 (Erdős-Ko-Rado 1961). Fix a natural number k. If $n \geq 2 k$, and \mathcal{F} is an intersecting family where each element of \mathcal{F} has size k, then

$$
|\mathcal{F}| \leq\binom{ n-1}{k-1}
$$

Choosing every k element subset which contains a fixed element shows that this is best possible. Furthermore, if $n<2 k$, then one may take every subset of size k and the family will be intersecting.

Proof. Choose $\pi \in S_{n}$ uniformly at random. Place the integers [n] in a circle in the order prescribed by π. For a set $F \in \mathcal{F}$, let A_{F} be the event that the integers in F form an interval on this circle (ie, that they are all in a row next to each other). Since \mathcal{F} is intersecting, the number of sets F for which A_{F} can occur simultaneously is at most k (the maximum number of intervals of length k that can intersect is k). Let 1_{F} be the indicator that A_{F} occurs. Then for any outcome of the random process we have

$$
\sum_{F \in \mathcal{F}} 1_{F} \leq k
$$

Therefore,

$$
\mathbb{E}\left(\sum_{F \in \mathcal{F}} 1_{F}\right)=\sum_{F \in \mathcal{F}} \mathbb{P}\left(A_{F}\right) \leq k
$$

But for any F, the probability of A_{F} is exactly

$$
\frac{n \cdot k!\cdot(n-k)!}{n!}=\frac{n}{\binom{n}{k}} .
$$

Therefore

$$
|\mathcal{F}| \frac{n}{\binom{n}{k}} \leq k
$$

6.2.2 Oddtown

Theorem 6.2.3 (Odd Town Problem). Let $A_{1}, A_{2}, \ldots, A_{k}$ be distinct subsets of $[n]=$ $\{1,2, \ldots, n\}$ such that for $1 \leq i, j \leq n$

$$
\left|A_{i} \cap A_{j}\right|=\left\{\begin{array}{cc}
\text { odd, } & i=j \\
\text { even, } & i \neq j
\end{array}\right.
$$

Then $k \leq n$.

Below we give four proofs that are all based on the idea of characteristic vectors. A vector v_{i} in an n-dimensional vector space over some field (typically \mathbb{F}_{2} or \mathbb{Q}) is called the characteristic vector of A_{i} if

$$
v_{i}(l)= \begin{cases}1, & \text { if } l \in A_{i} \\ 0, & \text { if } l \notin A_{i}\end{cases}
$$

Observe that $v_{i} \cdot v_{j}=\left|A_{i} \cap A_{j}\right|$.
Proof 1. We claim that the vectors v_{1}, \ldots, v_{k} as vectors of the space \mathbb{F}_{2}^{n} are linearly independent. Assume that for some scalar $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}_{2}$ we have $\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}=0$. Note that in \mathbb{F}_{2}^{n}

$$
v_{i} \cdot v_{j}= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

Fix i between 1 and k. Then $v_{i} \cdot\left(\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right)=v_{i} \cdot 0=0$. That is

$$
0=\sum_{j=1}^{k} \lambda_{j}\left(v_{i} \cdot v_{j}\right) \mathbb{R} i g h t a r r o w\left(v_{i} \cdot v_{i}\right) \mathbb{R} i g h t a r r o w \lambda_{i}=0
$$

This shows that the vectors v_{1}, \ldots, v_{k} are linearly independent. But then

$$
k=\operatorname{dim}_{\mathbb{F}_{2}^{n}}\left(\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}\right) \leq \operatorname{dim} \mathbb{F}_{2}^{n}=n
$$

Proof 2. Similarly to the previous arguments we claim that the vectors v_{1}, \ldots, v_{k} considered over \mathbb{Q}^{n} are linearly independent. Assume that for some scalars $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{Q}$ we have

$$
\begin{equation*}
\lambda_{1} v_{1}+\ldots \lambda_{k} v_{k}=\sum_{i} \lambda_{i} v_{i} \tag{6.2}
\end{equation*}
$$

Without loss of generality assume further that all λ_{i} 's are integers and $\operatorname{gcd}\left(\left\{\lambda_{1}, \ldots \lambda_{k}\right\}: \lambda_{i} \neq\right.$ $0)=1$ (otherwise divide by it). Here we assume by contradiction that nonzero λ_{i} 's
exist. But then at least one of them, say λ_{j}, must be odd. Multiplying (6.2) by v_{j} we get

$$
0=\sum_{\lambda_{i} \neq 0} \lambda_{i} \cdot v_{i} \cdot v_{j}=\sum_{\substack{\lambda_{i} \neq 0 \\ i \neq j}} \lambda_{i} \cdot v_{i} \cdot v_{j}+\lambda_{j} \cdot v_{j} \cdot v_{j}
$$

By the way the dot product of v_{i} 's is defined the first term on the left is even while the second is only even if λ_{j} is even. The desired contradiction is obtained since we have that each λ_{j} is even contradicting the assumption that their gcd was 1 . The system v_{1}, \ldots, v_{k} are linearly independent and we have

$$
k=\operatorname{dim}_{\mathbb{Q}}\left(\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}\right) \leq \operatorname{dim} \mathbb{Q}^{n}=n
$$

Proof 3. Let $M \in M_{k, n}\left(\mathbb{F}_{2}\right)$ be a matrix whose i-th row is v_{i}. Note that $\left(M M^{T}\right)_{i, j}=$ $v_{i} \cdot v_{j}$ and so $M M^{T}=I_{k} \in M_{K}\left(\mathbb{F}_{2}\right)$. Therefore

$$
k=\operatorname{rank} M M^{T} \leq \operatorname{rank} M=n
$$

M is called the incidence matrix of the system $A_{1}, A_{2}, \ldots, A_{n} ; M M^{T}$ is called the intersection matrix of the system $A_{1}, A_{2}, \ldots, A_{n}$.

Proof 4. Here we explore the idea of the previous proof considering the entries of $M M^{T}$ as rational numbers. Analogously to the previous arguments we have

$$
\left(M M^{T}\right)_{i, j}=a_{i j}=v_{i} \cdot v_{j}= \begin{cases}\text { odd, } & i=j \\ \text { even, } & i \neq j\end{cases}
$$

To conclude that $\operatorname{rank} M M^{T}=k$ we need to show that $\operatorname{det} M M^{T} \neq 0$. Consider

$$
\operatorname{det} M M^{T}=\sum_{\sigma \in S_{k}}(-1)^{|\sigma|} a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{k \sigma(k)}
$$

where $\sigma:[k] \rightarrow[k]$ is an element of S_{k} - the symmetric group of order $k,|\sigma|$ is the parity of the permutation σ. The sum above has $k!$ terms of which all but one (the one that correspond to the trivial permutation - the product of the diagonal entries of $M M^{T}$ - is odd) are even. That is to say $\operatorname{det} M M^{T} \neq 0$ and the result follows.

Theorem 6.2.4 (Eventown Problem). Let A_{1}, \ldots, A_{k} be nonempty distinct subsets of $[n]$ such that $\left|A_{i} \cap A_{j}\right|$ is even for all $1 \leq i, j \leq k$. Then $k \leq 2^{\lfloor n / 2\rfloor}$.

Proof. Let $S=\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \mathbb{F}_{2}^{n}$ be the incidence vectors of the sets A_{i} 's. Then $v_{i} \cdot v_{j}=0$ for all $1 \leq i, j \leq k$, that is every pair of vectors in S are perpendicular, i.e. $S \leq S^{\perp}$. Let $W=\operatorname{Span}(S)$. It is easy to see that $W \leq W^{\perp}=S^{\perp}$. We will show that $\operatorname{dim} U \leq\lfloor n / 2\rfloor$. Define matrix $M \in M_{k, n}\left(\mathbb{F}_{2}\right)$ to be a matrix whose i-th row is v_{i}. Then clearly ker $M=\{x: M x=0\}=W^{\perp}$, and image $M=W$. By the ranknullity theorem we have $n=\operatorname{ker} M+\operatorname{image} M=\operatorname{dim}_{\mathbb{F}_{2}} W^{\perp}+\operatorname{dim}_{\mathbb{F}_{2}} W$. Therefore, $\operatorname{dim} W \leq\lfloor n / 2\rfloor$, and so, $k \leq|W|=2^{\operatorname{dim} W} \leq 2^{\lfloor n / 2\rfloor}$.

In this section, we showed that functions are linearly independent in specific situations, but the methods were quite general. The following may be useful in other applications:

Theorem 6.2.5 (Diagonal Principle). Let f_{1}, \ldots, f_{k} be functions in n variables $\left(x_{1}, \ldots, x_{n}\right)$ over a field \mathbb{F}, and let v_{1}, \ldots, v_{k} be vectors in \mathbb{F}^{n}. If

$$
f_{i}\left(v_{j}\right)= \begin{cases}\neq 0 & \text { if } i=j \tag{6.3}\\ =0 & \text { if } i \neq j\end{cases}
$$

for all i and j, then f_{1}, \ldots, f_{k} are linearly independent.

6.2.3 Triangular Principles

The two versions of the Triangular Principle are stronger then the Diagonal Principle as they have simpler constraints.

Theorem 6.2.6 (Triangular Principle 1). Let f_{1}, \ldots, f_{k} be functions in n variables $\left(x_{1}, \ldots, x_{n}\right)$ over a field \mathbb{F}, and let v_{1}, \ldots, v_{k} be vectors in \mathbb{F}^{n}. If

$$
f_{i}\left(v_{j}\right)= \begin{cases}\neq 0 & \text { if } i \neq j \tag{6.4}\\ =0 & \text { if } i<j\end{cases}
$$

then f_{1}, \ldots, f_{k} are linearly independent.
Proof. By way of contradiction, assume f_{1}, \ldots, f_{k} are linearly dependent. Thus, there exist constants $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{F}$, not all zero, such that $\lambda_{1} f_{1}+\ldots+\lambda_{k} f_{k}=0$. Let

$$
j=\max \left\{i \mid 1 \leq i \leq k, \lambda_{i} \neq 0\right\}
$$

Using the maximality of j and the property that $f_{i}\left(v_{j}\right)=0$ for all $i<j$, we find that

$$
\begin{aligned}
0 & =\left(\lambda_{1} f_{1} \ldots \lambda_{k} f_{k}\right)\left(v_{j}\right) \\
& =\lambda_{1} f\left(v_{j}\right)+\ldots+\lambda_{j} f_{j}\left(v_{j}\right)+\ldots+\lambda_{k} f_{k}\left(v_{j}\right) \\
& =0+\lambda_{j} f_{j}\left(v_{j}\right)+0 \\
& =\lambda_{j} f_{j}\left(v_{j}\right)
\end{aligned}
$$

Since $f_{j}\left(v_{j}\right) \neq 0$, we thus infer that $\lambda_{j}=0$, contradicting the definition of j. Therefore, we conclude that f_{1}, \ldots, f_{k} are linearly independent.

Theorem 6.2.7 (Triangular Principle 2). Let f_{1}, \ldots, f_{k} be functions in n variables $\left(x_{1}, \ldots, x_{n}\right)$ over a field \mathbb{F}, and let v_{1}, \ldots, v_{k} be vectors in \mathbb{F}^{n}. If

$$
f_{i}\left(v_{j}\right)= \begin{cases}\neq 0 & \text { if } i \neq j \tag{6.5}\\ =0 & \text { if } i>j\end{cases}
$$

then f_{1}, \ldots, f_{k} are linearly independent.
The proof of Triangular Principle 2 follows similarly to that of Triangular Principle 1.

$6.3 s$-distance sets

In this section we study sets of points in \mathbb{R}^{n}. A set of points P_{1}, \cdots, P_{k} is called an s-distance set if there are positive real numbers d_{1}, \cdots, d_{s} such that $d\left(P_{i}, P_{j}\right) \in$ $\left\{d_{1}, \cdots, d_{s}\right\}$ for all $i \neq j$. Here $d(\cdot, \cdot)$ denotes standard Euclidean distance. We will focus on 2-distance sets. Let $m(n)$ denote the maximum number of points that may be placed in \mathbb{R}^{n} such that the distance between any two distinct points must take one of only two prescribed values ${ }^{1}$.

Theorem 6.3.1. Let $m(n)$ be as given. Then

$$
m(n) \leq \frac{(n+1)(n+4)}{2}
$$

Proof. Let n be arbitrary, and assume $P_{1}, \ldots, P_{m} \in \mathbb{R}^{n}$ satisfy the condition that $d\left(P_{i}, P_{j}\right) \in\left\{\delta_{1}, \delta_{2}\right\}$ for all $i, j \in[m]$, with $i \neq j$.

We then define the functions f_{1}, \ldots, f_{m} mapping from \mathbb{R}^{n} to \mathbb{R} via the rule

$$
f_{i}(x)=\left(\left\|x-P_{i}\right\|^{2}-\delta_{1}^{2}\right)\left(\left\|x-P_{i}\right\|^{2}-\delta_{2}^{2}\right)
$$

From the distance constraints on the points P_{1}, \ldots, P_{m}, it follows that for all $i, j \in[m]$, we have

$$
f_{i}\left(P_{j}\right)=\left(\left\|P_{j}-P_{i}\right\|^{2}-\delta_{1}^{2}\right)\left(\left\|P_{j}-P_{i}\right\|^{2}-\delta_{2}^{2}\right)= \begin{cases}0, & \text { if } i \neq j \\ \delta_{1}^{2} \delta_{2}^{2} \neq 0, & \text { if } i=j\end{cases}
$$

Thus, by the diagonal principle, we have that f_{1}, \ldots, f_{m} are linearly independent. Furthermore, we know that these functions may be viewed as in the space

$$
V=\operatorname{Span}\left\{\left(\sum_{t=1}^{n} x_{t}^{2}\right)^{2},\left(\sum_{t=1}^{n} x_{t}^{2}\right) x_{j}, x_{i} x_{j}, x_{j}, 1: 1 \leq j \leq n, 1 \leq i \leq j\right\}
$$

[^0]But we know that the dimension of V satisfies

$$
\operatorname{dim}(V) \leq(1)+(n)+\left[\binom{n}{2}+n\right]+(n)+(1)=\frac{(n+1)(n+4)}{2}
$$

Thus since $f_{1}, \ldots, f_{m} \in V$ are linearly independent, we have that

$$
\begin{equation*}
\left|\left\{f_{1}, \ldots, f_{m}\right\}\right|=m \leq \operatorname{dim}(V) \leq \frac{(n+1)(n+4)}{2} \tag{6.6}
\end{equation*}
$$

which completes the proof.

Blokhuis improved this result to

$$
m(n) \leq \frac{(n+1)(n+4)}{2}-(n+1)
$$

by showing that one can add $n+1$ more linearly independent polynomials to those described above all of which live in the same space.

6.4 Combinatorial Nullstellensatz

For \mathbb{F} a field, let $\mathbb{F}\left[X_{1}, \cdots, X_{k}\right]$ be the ring of polynomials in k variables with coefficients from \mathbb{F}. Polynomial division implies that a polynomial in 1 variable that has d distinct roots must have degree at least d. We prove a generalization of this fact to multivariable polynomials, due to Alon, called the combinatorial nullstellensatz.

Theorem 6.4.1 (Combinatorial Nullstellensatz). Let $f \in F\left[X_{1}, \cdots, X_{k}\right]$ and be a polynomial and let $X_{1}^{t_{1}} \cdots X_{k}^{t_{k}}$ be a monomial in f of maximal total degree whose coefficient is non-zero. If S_{1}, \cdots, S_{k} are subsets of \mathbb{F} satisfying $\left|S_{i}\right|>t_{i}$ for all i, then there is an $\left(x_{1}, \cdots, x_{k}\right) \in S_{1} \times \cdots \times S_{k}$ such that $f\left(x_{1}, \cdots, x_{k}\right) \neq 0$.

Proof. We prove this by induction on k. The base case $k=1$ is true by polynomial division as stated above. Now assume the statement is true for $k=n-1$ and let
$f \in \mathbb{F}\left[X_{1}, \cdots, X_{n}\right]$ and S_{1}, \cdots, S_{n} be sets satisfying the hypotheses of the theorem. We write f as a polynomial in X_{n}

$$
f=\sum_{i=0}^{t_{n}} f_{i}\left(X_{1}, \cdots, X_{n-1}\right) X_{n}^{i}
$$

We will prove by contradiction. Assume that f vanishes on $S_{1} \times \cdots \times S_{n}$. For arbitrary fixed $x_{1}, \cdots, x_{n-1} \in S_{1} \times \cdots \times S_{n-1}$, let $\alpha_{i}=f_{i}\left(x_{1}, \cdots, x_{n-1}\right)$. Then by assumption, the polynomial $g\left(X_{n}\right)=\sum_{i=0}^{t_{n}} \alpha_{i} X_{n}^{i}$ has roots at every point of S_{n}. By the base case, g is a polynomial of degree at most t_{n} with at least $\left|S_{n}\right|>t_{i}$ roots and so it must be identically 0 . Therefore,

$$
f_{i}\left(x_{1}, \cdots, x_{n-1}\right)=0
$$

for all i. Since x_{1}, \cdots, x_{n-1} were arbitrary points in $S_{1} \times \cdots \times S_{n-1}$, the polynomials f_{i} all vanish on this set, contradicting the induction hypothesis.

We now will see some applications of the Combinatorial Nullstellensatz.
Theorem 6.4.2. Let p be prime and $A, B \subset \mathbb{Z} / p \mathbb{Z}$. Then

$$
|A+B| \geq \min \{|A|+|B|-1, p\}
$$

Proof. We will prove by contradiction. Let $A=\left\{a_{1}, \cdots, a_{r}\right\}$ and $B=\left\{b_{1}, \cdots, b_{s}\right\}$. If $|A+B|=p$ then $A+B=\mathbb{Z}_{p}$ and we are done. So suppose $|A+B|=t \leq r+s-2, p-1$. Let C be any set of size $r+s-2$ which contains $A+B$ and consider the polynomial

$$
f(x, y)=\prod_{c \in C}(x+y-c)
$$

This is a polynomial of degree $r+s-2$ and the coefficient of $x^{r-1} y^{s-1}$ is $\binom{t}{r-1} \neq 0$. By the combinatorial nullstellensatz, there must be an $(x, y) \in A \times B$ such that $f(x, y) \neq 0$. But this is a contradiction because $f(x, y)$ vanishes on $A \times B$.

For the next two applications we need Fermat's Little Theorem:

Lemma 6.4.3. Let p be prime. Then for any $a \in \mathbb{N}$ we have $a^{p} \equiv a(\bmod p)$.

Theorem 6.4.4 (Chevalley-Warning Theorem 1935). Let p be prime and $P_{1}, \cdots, P_{m} \in$ $\mathbb{F}_{p}\left[X_{1}, \cdots, X_{n}\right]$ be homogenous polynomials. If

$$
n>\sum_{i=1}^{m} \operatorname{deg}\left(P_{i}\right)
$$

then there is a $\left(x_{1}, \cdots, x_{n}\right) \neq \mathbf{0}$ such that $P_{i}\left(x_{1}, \cdots, x_{n}\right)=0$ for all i.

Proof. Consider the polynomials

$$
\begin{aligned}
& f=\prod_{i=1}^{k}\left(1-P_{i}^{p-1}\right) \\
& g=\prod_{i=1}^{n}\left(1-X_{i}^{p-1}\right) .
\end{aligned}
$$

Note that $\operatorname{deg}(f)=(p-1) \sum \operatorname{deg}\left(P_{i}\right)<(p-1) n=\operatorname{deg}(g)$ by assumption. This implies that $f-g$ is not the zero polynomial. But by Fermat's little theorem, we have that $f\left(x_{1}, \cdots, x_{n}\right)=0$ if there is any i such that $P_{i}\left(x_{1}, \cdots, x_{n}\right) \neq 0$ and $g\left(x_{1}, \cdots, x_{n}\right)=0$ except when $x_{1}=x_{2}=\cdots=x_{n}=0$. Therefore, since $f-g$ is not identically 0 , we must have that there is an $\left(x_{1}, \cdots, x_{n}\right) \neq \mathbf{0}$ such that $P_{i}\left(x_{1}, \cdots, x_{n}\right)=0$ for all i.

Theorem 6.4.5 (Alon-Friedland-Kalai). For any prime p, any loopless (multi)graph with average degree greater than $2 p-2$ and maximum degree $2 p-1$ contains a p-regular subgraph.

Proof. Let e be the number of edges in G. By assumption we have $e>(2 p-2) n / 2=$ $(p-1) n$. For each edge $u v$ create a variable $X_{u v}$ and consider the polynomial in e variables,

$$
f=\prod_{v \in V(G)}\left(1-\left(\sum_{u \sim v} X_{u v}\right)^{p-1}\right)-\prod_{u v \in E(G)}\left(1-X_{u v}\right) .
$$

The degree of f is e and the coefficient of $\prod_{u v \in E(G)} X_{u v}$ is either 1 or -1 . For each $u v$ define a set $S_{u v}=\{0,1\}$. Then by the combinatorial nullstellensatz there is a $\left(x_{1}, \cdots, x_{e}\right) \in\{0,1\}^{e}$ such that $f\left(x_{1}, \cdots, x_{e}\right) \neq 0$. Note that $f(0, \cdots, 0)=0$, and therefore

$$
f\left(x_{1}, \cdots, x_{e}\right)=\prod_{v \in V}\left(1-\left(\sum_{u \sim v} x_{u v}\right)^{p-1}\right) \neq 0 .
$$

This implies that for each vertex v we have

$$
\left(1-\left(\sum_{u \sim v} x_{u v}\right)^{p-1}\right) \neq 0 .
$$

By Fermat's little theorem this means that for each v we have $\sum_{u \sim v} x_{u v}$ is either 0 or p. Taking the subgraph defined by the $x_{u v}$ which are 1 gives a p regular subgraph.

[^0]: ${ }^{1}$ It is a homework assignment to prove $\frac{n(n+1)}{2} \leq m(n)$.

