(Recitation) |
Summary |
|||
Aug 27 Introduction ALA 1.1-1.2 |
Aug 29 ALA 1.2-1.4 |
Aug 30 Light’s Out |
Aug 31 ALA1.4 CTM 2.9-2.11 |
Basics of Vectors Vector Arithmetic |
Sep 3 No Class |
Sep 5 CTM 3.2-3.3 |
Sep 6 Planes/Lines |
Sep 7 LA 2.I.1 |
Linear Combinations, Spans Geometry of Spans Vector Spaces |
Sep 10 ALA 6.1-6.4 CTM 4.2 |
Sep 12 CTM 4.5, 4.6 |
Sep 13 Row Reduction |
Sep 14 CTM 4.7 |
Matrix arithmetic Matrix-Vector product Null Space |
Sep 17 CTM 4.10 |
Sep 19 CTM 4.10 |
Sep 20 Matrices of Linear Transformations |
Sep 21 CTM 4.11 |
Linear Transformations Matrix-matrix product |
Sep 24 CTM 4.13 |
Sep 26 Review |
Sep 27 Exam Review |
Sep 28 Exam 1 |
Inverses |
Oct 1 CTM 4.13 |
Oct 3 CTM 5.1, 5.7, 5.5 |
Oct 4 Cycle Bases |
Oct 5 ALA 5.1, CTM 5.5, 5.6 |
Inverses Linear Independence Basis |
Oct 8 CTM 5.8, LA 3.V |
Oct 10 CTM 6.1, 6.2 |
Oct 11 Change of Basis |
Oct 12 CTM 6.4 |
Theoretical results about Basis Dimension Rank-Nullity Theorem |
Oct 15 LA 4.1 |
Oct 17 LA 4.1 |
Oct 18 Calculating Rank |
Oct 19 No Class |
Determinants |
Oct 22 CTM 12.3 |
Oct 24 CTM 12.6, LA2 13.3 |
Oct 25 Diagonalization |
Oct 26 No Class |
Eigenvalues/eigenvectors Diagonalization |
Oct 29 CTM 12.4, 8.1, 8.2 |
Oct 31 CTM 8.3, 9.1 |
Nov 1 k-means clustering |
Nov 2 CTM 9.3 |
Using a basis of eigenvectors Norms, inner products Projection |
Nov 5 CTM 9.3 |
Nov 7 Review |
Nov 8 Exam Review |
Nov 9 Exam 2 |
Gram-Schmidt, projection |
Nov 12 FDS 3.3 |
Nov 14 FDS 3.4 |
Nov 15 Computing SVDs |
Nov 16 FDS 3.5 |
Singular values, vectors Best rank k approximation |
Nov 19 PCA Code used in class RGB Version |
Nov 21 No Class |
Nov 22 No Class |
Nov 23 No Class |
PCA |
Nov 26 ALA 12.1, 12.3 |
Nov 28 CTM 9.9 |
Nov 29 |
Nov 30 ALA 15.1 |
Least Squares |
Dec 3 Catch up (or Markov Chains) |
Dec 5 Catch up (or Markov Chains) |
Dec 6 |
Dec 7 Review |
TBD |