

X-Slice links

Jon Simone Georgia Tech

 $Knots$: Knotted circles in R^3 (Links: Collection of Knots in R^3 $Links:$ Collection of Knots in \mathbb{R}^3

(1) \mathbb{C} (1) \overline{O} (\bigcirc) (figure-eight) (unknot $($ trefoi $)$ O C) C (without boundary) Surtaces: sphere torus genus ² surface genus ^g genus y surface (with one boundary component) $\begin{matrix} \alpha & \beta \\ \beta & \gamma \end{matrix}$ $\begin{matrix} \alpha & \beta \\ \beta & \gamma \end{matrix}$ Mobius band **D**
disk $\triangleright\triangle$ $e+c$ (In topology, everything is made of rubber) Note: The boundary of a surface in R^3 is a link in R^3 20 Q Q $\begin{matrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{matrix}$ λ

Fact: Every link in κ^3 is the boundary of a surface in κ^3 (proved by Frankl - Pontryagin in ¹⁹³⁰ and an algorithm to construct such surfaces was given by Seifert in ¹⁹³⁴)

The only knot in IR^3 that bounds a clisk in IR^3 is the unknot.
 \bigcirc

Motivating Example \sqrt{P} Let K be a Knot in IR $(i+ must be the unknown)$ Let D be a disk in 12° bounded by K $\frac{1}{\sqrt{1-\frac{1$ Then D can be pushed into \mathbb{R}^3
Giving a disk in \mathbb{R}^3 bounded by K, which is still in R² $\frac{1}{\sqrt{k}}$ Moreover, K can bound other Kinds of surfaces in IR' that it cannot bound in R² The same is true for knots & Links in IR3: thry surface bounded by a link Lin IR3 can be pushed into IR4 Moreover, L can potentially bound more S push 5

Def	A	End in \mathbb{R}^3 is called Stive of \mathbb{H} bounds a disk in \mathbb{R}^4	
Using a disk?			
The	simplest	Surface	Knot can bound is a disk.
If	is	easy to bound simple surfaces.	
If	is	easy to bound more complicated surfaces.	
Since	More it bounds a disk in \mathbb{R}^3 that we can push into \mathbb{R}^4		
Since	is	Given though	does not bound a disk in \mathbb{R}^3
Since	is	given though	does not bound a disk in \mathbb{R}^3
Since	is	not the	not should be a disk in \mathbb{R}^3
Since	is	not the	not should be a disk in \mathbb{R}^3
Since	is	not the	not should be a disk in \mathbb{R}^3

Bond Band Moves Moves $\frac{1}{\text{infty}}$

lick two arcs on κ of the entrants of the arcs on κ on κ arcs on κ . The entrants of the arcs on κ pick two arcs on K () Traw two between raw two
arcs
between
the arcs
of the arcs
you drew on you drew on ^K Fact: If we perform one band move to K and get \bigcirc O then K is slice. The result is a disk in M^4 unith boundary K w hy? 3 \bigcirc / $\widehat{\mathscr{D}}$ Francisco $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log n}}$
 $\frac{1}{\frac{\log n + \log n}{\log n + \log$ Redraw the arcs
to recover K.
Fill in the arcs Fill in the arcs with a rectangle (band) ^① these unknots bound disjoint disks in 1R⁴. More generally, n band moves and get 0 --- 0 then K is slice

Band Moves Band Moves $\frac{1}{100}$ arcs arcs arcs pick two between $rac{1}{x}$ and two arcs between arcs on K (\bigcup the endpoints of the arcs raw two
arcs
between
the entrants
of the arcs
you drew on K = $\left(\frac{1}{\sqrt{2}}\right)$ = O arcs
between
the endpoints
of the arcs
you drew on K Fact: It we perform one band move to K and get 00 then K is slice why?

the material move to k and get 00

then K is slice

why?

Why?

Why?

Why?

Why?

Why?

Chestraw the arcs that were a " . K Redraw the arcs that were erased to recover K . Fill in the arcs with a rectangle (band) The result is a disk in M^{4} with boundary ^K More generally, $\begin{CD} \begin{picture}(160,10) \put(0,0){\line(1,0){15}} \put(10,0){\line(1,0){15}} \put(10,$ then K is slice

We can also see the disk

disk that intersects itself

push
regions
aroung red lines into IR"

 $E\times$

 E \rightarrow 0 0

Def: A link L in \mathbb{R}^3 is slice if each component of L bounds a disk in κ^4 and the disks are disjoint.

This is a "classical" notion of sliceness for links that many researchers have studied .

Def (2012): A link L in
$$
\mathbb{R}^3
$$
 is $\frac{X\text{-}slice}{X\text{-}s}$ if L bounds a surface
\nin \mathbb{R}^4 with no closed components and Euler characteristic
\nbomology

\nThe Euler characteristic of a surface S is

\n
$$
\chi(S) = \# vertices - \# edges + \# faces
$$
\n
$$
\chi = 4-4+1 = 1
$$
\n
$$
\chi = 4-4+1 = 1
$$
\n
$$
\chi = 4-4+1 = 1
$$

Note: If L has one component, then x-slice = slice (since the only χ = $|$ surface w/ one boundary component is the disk)

Nhylookatx-sh.ae?

- As with Knots, the simplest surfaces that certain links Can bound are those with $x=1$. these with
"nonzero determinant"
- X-slice links are also useful for constructing 3-dimensional and 4- dimensional objects that topologists are interested in studying.

To show a *link* is
$$
x
$$
-size! Use band moves as with knots

$$
\frac{1}{2} \left(\frac{1}{2} \right) \longrightarrow \text{OO} \quad \Rightarrow \quad \frac{1}{2} \text{ is } x\text{-slic.}
$$

We can also see the $x=1$ surface in this example:

Much is known about which pretzel knots are slice

÷=• Construction show certain infinite families of pretzel links are ✗slice by using band moves • Obstruction (this is the hard part) show " most " pretzel links are not ✗ slice using algebraic tools e.g. Donaldson's Diagonalization theorem,] more or less understandable Lattice Embeddings g if you know linear algebra Heegaard Floor Homology d- invariants -More advanced the majority of the summer was spent () understanding and applying these obstructive tools

Some Results

- If $p_1, p_2, ..., p_k > 0$, then $P(p_1, ...$,pr) is ✗- slice if and only if $(\rho_{1},\rho_{2},\ldots,\rho_{k}) = (k-3,1,$ - - - (1) or $(\rho_1, \rho_2, ..., \rho_n) = (m+1, 1, ..., 1)$
- The following 4- stranded pretzel links are ✗- slice : $P(p,1,-2,-2)$, $P(p, q, -q, -p-1)$, $P(p, q, -q, -p-4)$ (there are more)
- If p.q.rs satisfy some restrictive algebraic conditions, then $P(p_1, r_1s)$ is not x-slice

Open Problem: finish the classification of x -slice 4-stranded pretzel Links (slice 4- stranded knots were classified by Lecuona in ²⁰¹³)

Challenge: All links on this page are X-slice . Can you find band moves to prove it ?

