
21-128 Congruences

Definitions of congruence

Given a, b ∈ Z and n ∈ N, the expression ‘a ≡ b mod n’ can be interpreted in many (equivalent)
ways. It means...

(a) a and b leave the same remainder when divided by n.

(b) There exist q1, q2, r ∈ Z such that a = q1n + r and b = q2n + r.

(c) a = b + kn for some k ∈ Z.

(d) n divides a− b, that is a−b
n is an integer.

(e) a and b differ by a multiple of n.

Congruence behaves like equality

Congruence modulo n ‘behaves like equality’ in some special ways. First, is an equivalence
relation, meaning that it is:

• reflexive: given a ∈ Z, we have a ≡ a mod n;

• symmetric: given a, b ∈ Z, if a ≡ b mod n then b ≡ a mod n;

• transitive: given a, b, c ∈ Z, if a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.

Second, it respects addition, subtraction and multiplication, meaning that if a ≡ a′ mod n and
b ≡ b′ mod n, then

• a + b ≡ a′ + b′ mod n;

• a− b ≡ a′ − b′ mod n;

• ab ≡ a′b′ mod n.

A bunch of other useful properties follow from this. For example, by induction, it follows that
congruence respects all sums and products: if a1, . . . , ar, a

′
1, . . . , a

′
r are integers and ai ≡ a′i for

all 1 ≤ i ≤ r, then
r∑

i=1

ai ≡
r∑

i=1

a′i mod n and
r∏

i=1

ai ≡
r∏

i=1

a′i mod n



Some more consequences are:

• If a, b, c ∈ Z and a ≡ b mod n, then

ca ≡ cb mod n and a + c ≡ b + c mod n and a− c ≡ b− c mod n

So we can ‘multiply both sides’ and ‘add to both sides’, and so on, just like with equality.

• If a, b ∈ Z with a ≡ b mod n, then ak ≡ bk mod n for all k ∈ N.

All these nice properties of congruence means that we can rearrange congruences just like we
rearrange equations provided all we do is add, subtract and multiply.

Congruence doesn’t behave like equality

Aside from the arithmetic properties discussed above, congruence has many dissimilarities with
equality. This usually catches people out the first time they see it: all the nice properties of
congruence lull you into a false sense of security!

Here are some examples of where things go wrong:

• Division. Although we can add, subtract and multiply, division doesn’t work. Indeed:

– If q 6∈ Z then it makes no sense to mention q in a congruence. For example, it makes
no sense to say 2x ≡ 1 mod 3⇒ x ≡ 1

2 mod 3.

– Cancellation is also often impossible. It is not the case, for instance, that 2x ≡ 2y mod
4⇒ x ≡ y mod 4—to see this, try letting x = 0 and y = 2.

– . . . however, cancellation does work in the case where the number being cancelled and
the modulus are relatively prime: that is, if a and n are relatively prime then it is true
that ax ≡ ay mod n ⇒ x ≡ y mod n. This cancellation comes from multiplication by
a multiplicative inverse for a (see next section below), not from division by a.

• Algebra. One of the most used rules in algebra is that if ab = 0 then a = 0 or b = 0. This
is why we can use factorisation to solve polynomial equations: if (x − 1)(x − 2) = 0 then
x − 1 = 0 or x − 2 = 0, so x = 1 or x = 2. In general, this doesn’t work for congruences.
For example, the following steps are valid:

x2 ≡ 1 mod 8 ⇒ x2 − 1 ≡ 0 mod 8 ⇒ (x− 1)(x + 1) ≡ 0 mod 8

but it doesn’t follow that x ≡ 1 mod 8 or x ≡ −1 mod 8; indeed, x = 1, 3, 5, 7 all satisfy
x2 ≡ 1 mod 8.
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• Applying functions. A very useful property of functions is that if x = y then f(x) =
f(y)—this is part of what it means for a function to be well-defined. Unfortunately, it is not
in general true that x ≡ y mod n⇒ f(x) ≡ f(y) mod n. (We say such a function ‘respects
congruence modulo n’.) For example:

– The function f : Z→ Z defined by f(x) = 2x for all x ∈ Z doesn’t respect congruence
modulo 5. Indeed,

1 ≡ 6 mod n but 21 = 2 6≡ 4 ≡ 64 = 26 mod n

In general, it is almost never true that x ≡ y mod n⇒ ax ≡ ay mod n—see the section
on Fermat’s little theorem and Euler’s theorem below.

– If a function doesn’t take integer values then there is no hope of it being a valid thing
to use in congruences. For example, square roots, logarithms, trigonometric functions,
and the like, all behave badly (in fact, they don’t behave at all) around congruences.

Multiplicative inverses

So we can’t do division in modular arithmetic. But we almost can, at least, when a number is
relatively prime to the modulus. The feature of division that makes it useful in solving equations
is cancellation: if 2x = 4 then x = 2. This works because 2× 1

2 = 1 and 4× 1
2 = 2, so

2x = 4 ⇒ 1

2
× 2x =

1

2
× 4 ⇒ x = 2

What made this work is we found a number b such that 2b = 1. In modular arithmetic we can
do the same trick: if we can find b ∈ Z such that 2b ≡ 1 mod 11, for instance, then

2x ≡ 4 mod 11 ⇒ 2bx ≡ 4b mod 11 ⇒ x ≡ 4b mod 11

Given a ∈ Z and n ∈ N, a multiplicative inverse for a modulo n is an integer b such that
ab ≡ 1 mod n. Then

multiplication by b has the same effect as division by a

but it is important to emphasise that we are multiplying by an integer, not dividing by a.

An integer a has a multiplicative inverse modulo n if and only if any of the following equivalent
conditions hold:

• There exists b ∈ Z such that ab ≡ 1 mod n;

• a and n are relatively prime;

• The equation ax + ny = 1 has a solution (x, y) ∈ Z× Z;

• ak ≡ 1 mod n for some k ∈ N.
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Solving single congruences

By the foregoing remarks on multiplicative inverses, if a and n are relatively prime then we can
always solve the equation ax ≡ c mod n. Indeed, if this is so then there is some b ∈ Z such that
ab ≡ 1 mod n, and then

• If ax ≡ c mod n then abx ≡ bc mod n, so x ≡ bc mod n;

• If x ≡ bc mod n then ax ≡ abc mod n, so ax ≡ c mod n.

So we have an equivalence: ax ≡ c mod n if and only if x ≡ bc mod n.

Thus, if a and n are relatively prime, then:

• A solution x0 ∈ Z to the congruence ax ≡ c mod n exists (for instance we can let x0 = bc,
where b is a multiplicative inverse for a modulo n); and

• All other solutions x satisfy x = x0 + kn for some k ∈ Z.

If a and n are arbitrary (i.e. not necessarily relatively prime), there is an added complication; in
this case:

• A solution x0 to the congruence ax ≡ c mod n exists if and only if gcd(a, n) | c; and

• All other solutions x satisfy x = x0 + k n
gcd(a,n) .

Here is an algorithm for solving a congruence of the form ax ≡ c mod n:

Step 1. Let d = gcd(a, n). If d - c then no solution exists, so stop; otherwise, proceed to step 2.

Step 2. Find u, v ∈ Z such that au + nv = d using the extended Euclidean algorithm. It follows
that au ≡ d mod n.

Step 3. Let x0 = u · cd . Then ax0 ≡ c mod n, so x0 is a solution.

Step 4. All other solutions are now of the form x0 + k · nd for some k ∈ Z.

Another approach is to apply the following result: if a, c ∈ Z, n ∈ N and d ∈ Z with d | a, d | c
and d | n, then

ax ≡ c mod n ⇔ a

d
x ≡ c

d
mod

n

d
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So by dividing by the greatest common divisor of a and n, we reduce to the relatively prime case.
(This relies on the fact that if d = gcd(a, n) then a

d and n
d are relatively prime!)

The new algorithm based on this approach is as follows:

Step 1. Let d = gcd(a, n). If d - c then no solution exists, so stop; otherwise, proceed to step 2.

Step 2. The numbers a
d and n

d are relatively prime; find a multiplicative inverse b for a
d modulo

n
d .

Step 3. Let x0 = b · cd . Then ax0 ≡ c
d mod n

d , so x0 is a solution.

Step 4. All other solutions are now of the form x0 + k · nd for some k ∈ Z.

Solving systems of congruences: Chinese remainder theorem

Suppose you need to find x ∈ Z such that

x ≡ a mod m and x ≡ b mod n

The first congruence tells you that x = a+ km for some k ∈ Z. Substituting into the second tells
you that a+ km ≡ b mod n, that is km ≡ b− a mod n. By the previous section, a solution exists
if and only if gcd(m,n) | b− a, that is if and only if a ≡ b mod gcd(m,n), and any two solutions
are congruent modulo mn

gcd(m,n) . Hence, when gcd(m,n) = 1, a solution definitely exists, and any
two solutions are congruent modulo mn.

The Chinese remainder theorem extends this result inductively in the special case when the moduli
are pairwise relatively prime. Precisely: given integers a1, . . . , ar and natural numbers n1, . . . , nr

such that gcd(ni, nj) = 1 for all 1 ≤ i < j ≤ r, the system of congruences

x ≡ ai mod ni (1 ≤ i ≤ r)

has a solution x ∈ Z, and any two such solutions are congruent modulo n1 × n2 × · · · × nr.

We can combine this with what we learnt in the previous section to obtain a more general result:
let a1, . . . , ar, c1, . . . , cr ∈ Z and n1, . . . , nr ∈ N, and consider the system of congruences

aix ≡ ci mod ni (1 ≤ i ≤ r)

Let di = gcd(ai, ni) for each 1 ≤ i ≤ r. If:

• di | ci for each 1 ≤ i ≤ r; and

• gcd(ni
di
,
nj

dj
) = 1 for all 1 ≤ i < j ≤ r;

then a solution x ∈ Z exists; and any two solutions are congruent modulo n1
d1
× · · · × nr

dr
.
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Fermat, Euler, Wilson

Given a ∈ Z and n ∈ Z, with a and n relatively prime, it would be useful to be able to find
k ∈ Z such that ak ≡ 1 mod n—it would be even more useful if k depended only on n, not on a.
Fermat’s little theorem gives us such a value of k in the case when n is prime; Euler’s theorem
generalises this to arbitrary natural numbers.

Fermat’s little theorem. Let a ∈ Z and let p ∈ N be prime. If p - a then ap−1 ≡ 1 mod p.

Proof strategy. Consider the list 1, 2, . . . , p− 1. First prove that the list a, 2a, . . . , (p− 1)a is the
same list (modulo p), just rearranged; it then follows that

1× 2× · · · × (p− 1) ≡ a× 2a× · · · × (p− 1)a ≡ ap−1(1× 2× · · · × (p− 1)) mod p

Since each of 1, 2, . . . , p− 1 is relatively prime to p, each can be cancelled from both sides. Hence
ap−1 ≡ 1 mod p.

Euler’s theorem generalises Fermat’s little theorem to remove the restriction of primality. To
state it, first we need to introduce the notion of a totient.

Given n ∈ N, the totient of n, denoted ϕ(n), is the number of natural numbers less than n which
are relatively prime to n. That is,

ϕ(n) = |{k ∈ [n] : k and n are relatively prime}|

For example, if p ∈ N is prime then ϕ(p) = p − 1, since each of the numbers 1, 2, . . . , p − 1 is
relatively prime to p.

Euler’s theorem. Let a ∈ Z and n ∈ N. If a and n are relatively prime, then aϕ(n) ≡ 1 mod n.

Proof strategy. Let i1, i2, . . . , iϕ(n) be the natural numbers less than n which are relatively prime
to n. First prove that the list ai1, ai2, . . . , aiϕ(n) is the same list (modulo n), just rearranged; it
then follows that

i1 × i2 × · · · × iϕ(n) ≡ ai1 × ai2 × · · · × aiϕ(n) ≡ aϕ(n)(i1 × i2 × · · · × iϕ(n)) mod n

Since each of i1, i2, . . . , iϕ(n) is relatively prime to n, each can be cancelled from both sides. Hence

aϕ(n) ≡ 1 mod n.

Notice that the argument in the proof of Euler’s theorem is almost identical to that of the proof
of Fermat’s little theorem—indeed, in the case when n is prime, the argument is exactly the same!

Wilson’s theorem. Let p ∈ N be prime. Then (p− 1)! ≡ −1 mod p.

Proof strategy. The numbers 1, . . . , p− 2 come in cancelling pairs, leaving just p− 1.
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