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Abstract

Hilbert’s epsilon substitution method provides a technique for showing that a
theory is consistent by producing progressively more accurate computable approx-
imations to the non-computable components of a proof. If it can be shown that
this process eventually halts with a sufficiently good approximation, the theory is
consistent.

Here we produce a new formulation of the method for the theoryID1 of induc-
tive definitions which simplifies the proof given in [Ara03], and prove termination
using the cut-elimination method of [MTB96].

1 Introduction

Hilbert introduced the epsilon calculus, c.f. [HB70] to provide a method for proving
the consistency of arithmetic and analysis. In place of the usual quantifiers, a symbol
ε is added, allowing terms of the formεxφ[x], which are interpreted as “somex such
thatφ[x] holds, if such a number exists.” When there is nox satisfyingφ[x], we allow
εxφ[x] to take an arbitrary value (usually0). Then the existential quantifier can be
defined by

∃xφ[x] ⇔ φ[εxφ[x]]

and the universal quantifier by

∀xφ[x] ⇔ φ[εx¬φ[x]]

Hilbert proposed a method for transforming non-finitistic proofs in this epsilon
calculus into finitistic proofs by assigning numerical values to all the epsilon terms,
making the proof entirely combinatorial.

The difficulty centers on the critical formulas, axioms of the form

φ[t] → φ[εxφ[x]]

In Hilbert’s method, the (finite) list of critical formulas which appear in a proof is con-
sidered. Then a finite series of functions—ε-substitutions—is defined, each providing
values for some of the of the epsilon terms appearing in the list. Each of these sub-
stitutions will satisfy some, but not necessarily all, of the critical formulas appearing
in proof. At each step we take the simplest unsatisfied critical formula and update an
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appropriate epsilon term so that it becomes true. The resulting series of substitutions is
called theH-process.

TheH-process can only halt when the final substitution makes every critical for-
mula, and therefore every formula of the proof, true. Then, when every epsilon term
in a proof of some formula is replaced by its value under the substitution, we have a
purely numerical proof of the new formula. Typically, we start with a proof of∃xφ[x]
whereφ is quantifier free. At the conclusion of theH-process, we haveφ[n] and a
proof thatn does, in fact, satisfyφ.

If it can be shown that this process terminates for every (finite) set of starting for-
mulas, then we have also proven the consistency of our theory.

After several attempts, Ackermann [Ack40] eventually proved that the provess ter-
minates for first order arithmetic, and therefore that a substitution of numerical values
for all infinitary terms can be found using a finite process.

For several decades, little work was done applying this technique to more power-
ful theories, in preference to other techniques for proving the consistency of theories,
chiefly cut-elimination ([Gen34],[Gen36]). These techniques were extended to the im-
predicative theory ofΠ1

1-comprehension in [Tak67]. This work led to the development
of impredicative theories likeID1 and their detailed analysis in [Kre63], [Fef70], and
[BFPS81].

Grigori Mints developed a different technique for proving that theH-process ter-
minates, using a cut-elimination argument applied to an ad hoc system of deductions.
As laid out in [Min94], this technique shows that a cut-free derivation of the empty se-
quent in this system encodes theH-process, and the well-foundedness of the derivation
implies that the process must terminate.

This technique was applied to more powerful theories, including elementary analy-
sis [MTB96], ramified analysis [MT99], and the hyperarithmetical hierarchy [Ara02b].
This last paper also gives a proof using Ackermann’s technique.

The most recent work has focused on extending either method to impredicative sys-
tems, specifically to theories of inductive definitions likeID1. Based on the extended
definition of anε-substitution given in [Min03], a proof using Ackermann’s technique
was given in [Ara03], and a slightly simplified version was explained more clearly, but
without full detail, in [Ara].

In this paper we prove that theH-process forID1 terminates using the cut-elimination
method. The transition toID1 from a system like first order arithmetic raises several
separate issues which must be addressed. The first is the presence of transfinite or-
dinals, which means that we cannot recursively verify that a given solution toφ[x] is
minimal. We resolve this in the same way as [Ara03], in that whenφ[t] is true, we
simply take the value oft under the current substitution to be the new value forεν.φ[ν],
rather than selecting the least number satisfyingt.

An immediate consequence of this is that even when a non-default value forεx.φ[x]
is correct, we may change it to some other (smaller) non-default value. This requires
some changes to the cut-elimination proof; the necessary modifications were made in
[Tow03], which applies Mints’ technique to Peano Arithmetic with transfinite induc-
tion.

The presence of impredicativity requires some kind of collapsing argument during
cut-elimination. Despite the differences in the systems, the collapsing argument here
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is very similar to the standard cut-elimination argument forID1 as given in [Poh89].
Unlike Ackermann’s method, the proof by cut-elimination requires carefully distin-

guishing which expressions are assigned default values because we have not yet con-
sidered their value, and which have been actually decided to have the default value, at
least temporarily. With simpler systems this doesn’t matter, but inID1, the monotonic-
ity of our inductive predicate means we require some additional work. In particular,
(n ∈ I<α,⊥) ∈ S implies that we can assumen ∈ I<β is also false forβ < α. Con-
sequently, we need to modify theH-rule by redefining the truncationΘ≤r of Θ to rank
r so that when we remove formulas of rank greater thanr, we retain the implications
that formula had for formulas of rank≤ r.

The presence of formulasn ∈ Iα andn ∈ I<α in our substitutions creates one
last oddity which cut-elimination must deal with. When we decide how to evaluate
n ∈ I<α, we could create a cut with two premises, one corresponding to the claim
thatn ∈ I<α is true, and the other to the claim thatn ∈ I<α is false. But this proves
problematic, since we would like to ensure thatn ∈ I<α is true only whenn ∈ Iβ is
true for someβ < α. We resolve this by introducing anFCut inference, a modified
cut-rule whose subderivations correspond to(n ∈ I<α, ?) and(n ∈ Iβ ,>) for each
β < α. Moreover, if we already have some(n ∈ I<γ , ?) in our sequent withγ < α,
we only allowβ in the range[γ, α). This inference does not have a welldefined cut-
rank, since different premises add pairs with different ranks, so we develop a method
of eliminating a cut in pieces as the cut-rank of the derivation decreases.

2 Ordinals

We use the system of ordinalsψ(ΩΓ) developed in [Poh89]. The ordinals of this system
are generated from0 andΩ using+, the Veblen functionϕ, and the functionψ. We
are mostly interested in the collapsing functionD [Poh89][Section 24], whose primary
properties are thatDα < Ω for all α, Dα = α whenα < Ω, and the property that
Dα < Dβ iff either:

1. β < α and there is someη ∈ SC(β) such thatDα ≤ η, or

2. α < β and for everyη ∈ SC(α), η < Dβ

whereSC(α) is defined by:

1. SC(0) = SC(Ω) = ∅

2. SC(α+ β) = SC(ϕαβ) = SC(α) ∪ SC(β)

3. SC(Dα) = {Dα} if α ≥ Ω andSC(Dα) = SC(α) otherwise

Ω and ordinals of the formDα for α ≥ Ω are strong critical, meaning that ifα is
strongly critical andβ, γ < α thenβ + γ, ϕβγ < α.

Definition 2.1. We sayα� β, α is essentially less thanβ if α < β andDα < Dβ.
We sayα�

-
β iff α ≤ β andDα ≤ Dβ.
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The following properties are proved in [Poh89], or follow immediately from results
there:

Lemma 2.1. 1. α� β impliesΩ + α� Ω + β

2. If n,m < ω andα < β thenα+ n� β +m iff α� β

3. If Ω ≤ α thenSC(α) < Dα

We will mostly be interested in ordinals of the formD(α+ γ) whereα ≥ Ω > γ,
and ifγ 6= 0 thenγ = D(α′ + γ′) whereα ≤ α′. When we writeξ = D(α + γ), we
always assume thatγ < Ω ≤ α, even when not explicitly stated.

The following ad hoc function on ordinals will be useful:

Definition 2.2. αr for r < ω is given by induction onr:

αr(η) =
{
η if r = 0
αω # αs(η) # αs(η)+2 if r = s+ 1

3 ID1ε

Our system is similar to the one given in [Ara] and [Ara03].
There are two types inID1ε, numbers and ordinals, denotedN andO respectively.

We letι ∈ {N,O}.
The language ofID1ε consists of:

1. N-variablesx, y, z, . . .

2. O-variablesξ, η, ζ

3. The0-ary function constants0ι

4. A 0-ary function constantξ for each ordinal inOrd

5. The unary functionS

6. Predicate constants for everyn-ary computable predicate on numbers, including
=N ,<N , add, andprod

7. Binary predicate constants<O and=O

8. Binary predicate constantsI andI<

9. Unary predicate constantI<Ω

10. Propositional connectives¬, ∧, and→

11. Propositional constants⊥ and>

12. The epsilon symbolε
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We typically usex, y, z for N -variables,ξ, η, ζ for O-variables, andν for variables
which may be either. We usem,n for N -terms (and also meta-language numbers),
α, β for O-terms,s, t for terms which may be either.

The expressions ofID1ε includeι-terms forι ∈ {N,O}, and formulas, and are
defined inductively by:

1. Eachι-variable is anι-term

2. 0ι is anι term

3. Each ordinalα is anO-term

4. ⊥ and> are formulas

5. If t is anN -term thenSt is anN -term

6. If t1, . . . , tn areN -terms andR is ann-ary predicate constant thenRt1 · · · tn is
a formula

7. If s andt areO-terms thens1 =O s2 ands1 <O s2 are formulas

8. If φ andψ are formulas then¬φ, φ ∧ ψ, andφ→ ψ are formulas

9. If s is anO-term andt is anN -term thenIst, I<st, andI<Ωt are formulas
written t ∈ Is, t ∈ I<s, andt ∈ I<Ω respectively

10. If φ is a formula andx anN -variable occuring free inφ thenεx < ωφ[x] is an
N -term

11. If φ is a formula andη anO-variable occuring free inφ thenεη < Ωφ[η] is an
O-term

12. If t is anN -term,s anO-term, andη anO-variable not occuring free int or s
thenεη < s[t ∈ Iη] is anO-term abbreviateds{t}.

Note that the bounds in (10) and (11) are true of all values in the range; they are
included only to make the notation uniform. The restriction on the firstj+k parameters
to {} predidicates is neccessary to make sure that our reduction relation is confluent.
(It is probably possible to avoid this by putting tighter restrictions on our reduction
relation, but since we have no need for a more general definition, this suffices.)

The axioms ofID1ε consist of:

1. All propositional tautologies

2. Substitution instances of quantifier free defining axioms forn-ary predicates,
including the axioms for the linear orders<N and<O

3. Equality axiomst = t, s = t → φ(s) → φ(t) wheres andt areN - orO-terms
of the same type

4. ¬St = 0 andSs = St→ s = t
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5. ¬t ∈ I<0

6. Critical formulas:

Pred ¬s = 0 → s = Sεx < ω(s = Sx)

Epsilon Axiom φ[t] ∧ t <ι s→ (εν < sφ[s]) ≤ t ∧ φ[εν < sφ[s]]

Inductive Definition Axiom t ∈ Is ↔ A[I<s, t]

Inductive Minimality Axiom s > 0 → (t ∈ I<s ↔ t ∈ Is{t})

Closure A[I<Ω, t] → t ∈ I<Ω

We considert ∈ I<Ω ↔ t ∈ IΩ{t} to be an instance of the Inductive Minimality
Axiom (whereΩ > 0 has been taken to be trivially true, and omitted since it is not
a formula of our language). We considerφ[t] → φ[εξ < Ωφ[ξ]] andφ[t] → φ[εx <
ωφ[x]] to be instances of the Epsilon Axiom whereξ <O Ω or x <N ω is taken to be
trivially true. Note that the Inductive Definition Axiom cannot apply withs = Ω, since
it would not be a formula of our language.

The only rule is modus ponens:
φ φ→ ψ

ψ
To save notation, we require thatA have the form¬B(εx < ωB(x)) andB con-

tains noε-subterms, nor any predicatesI, I<, or I<Ω. We interpretI<Ω to be the least
fixed point ofA. It is known that restrictingA to Π1 formulas does not weaken the
system [Mos74]. We are further restricting our formula to a single initial quantifier to
simplify our notation.

4 ε-Substitutions

Definition 4.1. We define the depth of an expression to be the number of closed non-
computable expressions it contains:

1. d(ν) = d(0ι) = d(α) = d(⊥) = d(>) = 0

2. d(St) = d(t)

3. d(pe1 · · · en) = Σn
i=1d(ei)

4. d(s1 =O s2) = d(s1 <O s2) = d(s1) + d(s2)

5. d(¬φ) = d(φ)

6. d(φ ∧ ψ) = d(φ→ ψ) = d(φ) + d(ψ)

7. d(t ∈ Is) = d(I<s) =
{

1 + d(t) + d(s) if s andt are closed
d(t) + d(s) otherwise

8. d(t ∈ I<Ω) =
{

1 + d(t) if t is closed
d(t) otherwise

9. d(ενφ[ν]) =
{

1 + d(φ) if φ is closed
d(φ) otherwise
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Definition 4.2. An expressione is canonicalif it is closed,d(e) = 1, and it has one of
the formsεν < tφ, t ∈ Is, or t ∈ I<s.

An expressione is simpleif it is closed andd(e) = 0.

Definition 4.3.

ι(e) =


B if e is a formula
N if e is anN -term
α if e is theO-termεξ < αφ[ξ]
Ω if e is anO-termεξ < tφ[ξ] and there is noα < Ω such thatt = α

V ι =

 N \ {0} ι = N
{>} ι = B

{β | 0 < β < α} ι = α

Also0B = ⊥

Definition 4.4. An ε-substitution is a functionS such that:

Domain The domain is a set of canonical expressions

Range S(e) ∈ V ι(e) ∪ {?} for e ∈ dom(S)

Monotonicity 1 If (n ∈ Iα,>) ∈ S and α <O β ≤ Ω then (n ∈ Iβ , ?), (n ∈
I<β , ?) 6∈ S

Monotonicity 2 If (n ∈ I<α,>) ∈ S then(n ∈ Iβ ,>) ∈ S for someβ <O α

Parsimony 1 If (e, u) ∈ S andu 6=? thenu 6= 0ι(e)

Parsimony 2 If (εν <ι(ν) α.φ[ν], u) ∈ S andu 6=? thenu <ι(ν) α

Definition 4.5.

S∗ = S ∪{(n ∈ Iβ ,>) | ∃α <O β[(n ∈ Iα,>) ∈ S]}
∪{(n ∈ Iβ , ?) | ∃α >O β[n ∈ Iα ∈ dom(S)]}
∪{(n ∈ Iβ , ?) | ∃α >O β[(n ∈ I<α, ?) ∈ dom(S)]}
∪{(n ∈ I<β ,>) | ∃α <O β[(n ∈ Iα,>) ∈ S]}
∪{(n ∈ I<β , ?) | ∃α ≥O β[n ∈ Iα ∈ dom(S)]}
∪{(n ∈ I<β , ?) | ∃α >O β[(n ∈ I<α, ?) ∈ dom(S)]}

is called thecompletionof S.

S = S∗ ∪{(e, ?) | e is a canonicalε term not indom(S)}
∪{(n ∈ Iβ , ?) | ¬∃α[(n ∈ Iα,>) ∈ S]}
∪{(n ∈ I<β , ?) | ¬∃α[(n ∈ Iα,>) ∈ S]}

is called thestandard extensionof S.

The completion internalizes the monotonicity ofIβ by assigning values to alln ∈
Iβ andn ∈ I<β whenevern ∈ Iα is in S. The standard extension assigns default
values to all canonical expressions left undecided byS∗.
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Definition 4.6.
rng(S) = {S(e) | e ∈ dom(S)}

Definition 4.7. We say anε-substitutionS is finitary if the following conditions are
satisfied:

Finite S is finite

I?-free If S(e) =? thene is not of the formn ∈ Iβ

Parsimony 3 If (n ∈ Iα,>), (n ∈ Iβ ,>) ∈ S thenα = β

Parsimony 4 (n ∈ I<α,>) 6∈ S for anyn or α

Generally we will be interested in working with the completions of finitary substi-
tutions. The completion expands the information in a finitary substitution to include
all values forn ∈ Iβ andn ∈ I<β which we can directly infer from values already
present. Unlike in [Ara03], we need to distinguish the completion from the standard ex-
tension because cut-elimination requires that we keep track of which expressions have
been decided, even when they retain a default value. Similarly, our definition of finitary
is slightly different, since we allow? in the range ofS except for formulasn ∈ Iβ .
This is because when we wish to indicate¬n ∈ Iβ , we include(n ∈ I<β+1, ?) rather
than(n ∈ Iβ , ?).

When we have(n ∈ Iα,>) ∈ S, we generally interpret this asn ∈ Iα \ I<α.

5 Computations with ε-Substitutions

Definition 5.1. 1. If (e, u) ∈ S∗ thene ↪→1
S u

2. If (e, ?) ∈ S∗ thene ↪→1
S 0ι(e)

3. If t ↪→1
S t

′ thenSt ↪→1
S t

′

4. If 1 ≤ i ≤ n andek ↪→1
S e

′
i thenRe1 · · · ei · · · en ↪→1

S Re1 · · · e′i · · · en

5. If t ↪→1
S t

′ thent =O s ↪→1
S t

′ =O s, t <O s ↪→1
S t

′ <O s, s =O t ↪→1
S s =0 t′,

s <O t ↪→1
S s <

O t′

6. If φ ↪→1
S φ

′ then¬φ ↪→1
S ¬φ′, φ∧ψ ↪→1

S φ
′∧ψ, ψ∧φ ↪→1

S ψ∧φ′, φ→ ψ ↪→1
S

φ′ → ψ, ψ → φ ↪→1
S ψ → φ′

7. If φ ↪→1
S φ

′ thenεν < sφ ↪→1
S εν < sφ′

8. If t ↪→1
S t′ thenεν < tφ ↪→1

s εν < t′φ, t ∈ Is ↪→1
S t′ ∈ Is, t ∈ I<s ↪→1

S

t′ ∈ I<s, t ∈ I<Ω ↪→1
S t′ ∈ I<Ω, andt ∈ {t1, . . . , tj | s1, . . . , sk} ↪→1

S t′ ∈
{t1, . . . , tj | s1, . . . , sk}

9. If s ↪→1
S s

′ thent ∈ Is ↪→1
S t ∈ Is′ andt ∈ I<s ↪→1

S t ∈ I<s′

↪→S is the transitive, reflexive closure of↪→1
S
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Lemma 5.1. If e ↪→1
S e

′ thenFV (e) = FV (e′)

Proof. By induction on the definition of↪→1
S

1. If e is almost canonical thene′ is simple, so both are closed

2. Otherwise, the result follows directly from the inductive hypothesis

Lemma 5.2. If e ↪→1
S e′ ande ↪→S e′′ then there is someu such thate′ ↪→S u and

e′′ ↪→S u.

Proof. By induction on the definition of↪→1
S

1. If e is almost canonical then there is a uniqueu such thate ↪→1
S u, soe′ = e′′ =

u.

2. If e has only one immediate subexpression which can be reduced, the result
follows directly from IH

3. Otherwise, lete = f(e1, . . . , ei, . . . , ej , . . . , en) wheree′ = f(e1, . . . , e′i, . . . , ej , . . . , en)
ande′′ = f(e1, . . . , ei, . . . , e

′
j , . . . , en). If i = j then the result follows by IH.

Otherwise,u = f(e1, . . . , e′i, . . . , e
′
j , . . . , en).

Lemma 5.3. If e ↪→1
S e

′ thend(e′) < d(e).

Proof. By induction on the definition of↪→1
S

1. If e is almost canonical thene′ is simple,d(e) = 1 > 0 = d(e′)

2. Otherwise, the result follows directly from the inductive hypothesis

Lemma 5.4. Every expressione has a unique normal form|e|S such thate ↪→S |e|S
and there is nou such that|e|S ↪→1

S u.

Proof. By Lemma 5.3, any sequence of reductions must eventually end, and by Lemma
5.2, it must end uniquely.

Definition 5.2. e is S-computable iffd(|e|S) = 0.

Definition 5.3. If S andS′ are ε-substitutions then we sayS E S′ if for each(e, u) ∈
S, one of the following holds:

1. (e, u) ∈ S′

2. e = n ∈ I<α, u =?, and(n ∈ I<β , ?) ∈ S′ for someβ > α

3. e = n ∈ I<α, u =?, and(n ∈ Iβ ,>) ∈ S′ for someβ ≥ α
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S E S′ means thatS is the same asS′ except that some(n ∈ I<α, ?) ∈ S may be
improved to some(e, u) ∈ S′ which is stronger, in the sense that(e, u) ∈ S′ implies
(n ∈ I<α, ?) ∈ S′∗.

Lemma 5.5. S E S′ impliesS∗ ⊆ S′∗

Proof. AssumeS E S′ and(e, u) ∈ S∗; then one of the following holds:

1. (e, u) ∈ S. Then if (e, u) ∈ S′ the result is obvious. Otherwise,e = n ∈ I<α

and either(n ∈ I<β , ?) ∈ S′ for β > α or (n ∈ Iβ ,>) ∈ S′ with β ≥ α. In
either case,(e, u) ∈ S′∗.

2. (e, u) ∈ S∗ because there is some appropriate(n ∈ Iα, v) ∈ S. Then(n ∈
Iα, v) ∈ S′, so(e, u) ∈ S′∗.

3. (e, u) ∈ S∗ because there is some appropriate(n ∈ I<α, ?) ∈ S. If (n ∈
I<α, ?) ∈ S′ the result is obvious. Otherwise, there is either somen ∈ I<β or
n ∈ Iβ in S′. In either case,(e, u) ∈ S′∗ is forced.

6 Rank

This definition similar to the one used in [Ara03], cf. [Ara02a]. In particular, Lemma
6.1 is essentially Arai’s Rank Lemma.

Definition 6.1. Letσ be either a variable or∗. Then ifσ 6∈ FV (e)∪{∗} thenrkσ(e) =
0. Otherwise:

1. rkσ(ν) = rkσ(α) = rkσ(⊥) = rkσ(>) = 0

2. rkσ(St) = rkσ(t)

3. rkσ(Rt1 · · · tn) = max{rkσ(t1), . . . , rkσ(tn)}

4. rkσ(s1 =O s2) = rkσ(s1 <O s2) = max{rkσ(s1), rkσ(s2)}

5. rkσ(¬φ) = rkσ(φ)

6. rkσ(φ ∧ ψ) = rkσ(φ→ ψ) = max{rkσ(φ), rkσ(ψ)}

7. rkσ(εx < ωφ) = max{rkσ(φ), rkx(φ) + 1}

8. rkσ(εξ < Ωφ) = max{rkσ(φ), rkξ(φ) + 1,Ω + 1}

9. rkσ(εξ < s[t ∈ Iξ]) =
{

max{rkσ(t), 3α+ 1} if s ≡ α ≤ Ω
max{rkσ(t), rkξ(t) + 1, rkσ(s),Ω + 2} otherwise

10. rkσ(t ∈ Is) =
{

max{rkσ(t), 3α+ 2} if s ∈ {α, α{t}}
max{rkσ(t), rkσ(s),Ω + 1} otherwise
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11. rkσ(t ∈ I<s) =
{

max{rkσ(t), 3α} if s ≡ α < Ω
max{rkσ(t), rkσ(s),Ω} otherwise

12. rkσ(t ∈ I<Ω) = max{rkσ(t), 3Ω}
rk(e) = rk∗(e) is therankof e.

Rank is defined to satisfy the following:

Lemma 6.1. 1. If e ↪→1
S e

′ thenrkσ(e′) ≤ rkσ(e)

2. All subexpressions of an expressione have ranks≤ rk(e)

3. If εν < sφ is canonical andu ∈ V ι(ν) ∪ 0ι(ν) thenrk(φ(u)) < rk(εν < sφ)

4. If n ∈ Iα is canonical thenrk(A(I<α, n)) < rk(n ∈ Iα)

5. rk(n ∈ Iβ) < rk(α{n}) wheneverβ < α.

6. rk(n ∈ Iβ) < rk(n ∈ Iα) wheneverβ < α.

7. The rank of compound expressions formed byR,¬,∧,→, =O,<O, andS is just
the maximum of the ranks of the subexpressions.

We haverk(e) < Ω + ω for all e.

Definition 6.2. We defineO(r) by:

O(r) =
{
α if r = 3α or r = 3α+ 1
α+ 1 if r = 3α+ 2

Definition 6.3. If S is anε-substitution then

S≤r = {(e, u) ∈ S | rk(e) ≤ r} ∪{(n ∈ I<O(r), ?) | (n ∈ Iβ ,>) ∈ S, rk(n ∈ Iβ) > r}
∪{(n ∈ I<O(r), ?) | (n ∈ I<β , ?) ∈ S, rk(n ∈ I<β) > r}

This definition differs from the one used in, for instance, [MTB96] with respect
to the formula components ofS. The property we actually maintain is that whenever
rk(e) ≤ r, |e|S = |e|S≤r

. This is necessary to ensure that when a component(n ∈
I<β , ?) is present inS and removed inS≤r, its low-rank consequences (like(n ∈
I<O(r), ?)) are kept.

Lemma 6.2. 1. If rk(e) ≤ r ande ↪→S u thene ↪→S≤r
u

2. If (e, u) ∈ S≤r andrk(e) > r thenu =?, e = n ∈ I<β , rk(e) = r + 1

3. If (e, u) ∈ S≤r \ S andrk(e) < r thenu =?, e = n ∈ I<β , rk(e) = r − 1

Proof. 1. By straightforward induction on↪→1
S .

2. Obvious from the definition

3. Obvious from the definition

Lemma 6.3. If S≤r = S′≤r andrk(e) ≤ r then|e|S = |e|S′

Proof. By induction ond(e), using Lemma 6.2.
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7 H-Process

AssumeCr0, . . . , CrN is a fixed finite sequence of closed critical formulas and that
no ordinal constants other than0 andΩ appear in anyCrI . This is equivalent to the
general case since each constant is definable by a primitive recursive formula.

Definition 7.1. If |e|S is some true propositional combination of computable formu-
las we saye ↪→S >. If |e|S is some false propositional combination of computable
formulas, we saye ↪→S ⊥.

We sayS is solving if CrI ↪→S > for I ∈ {0, . . . , N}

7.1 H-Expressions andH-Values

We are going to define a function onε-substitutions which updates them. There will
be two types of updates, one for formulas and one forε-terms. When we update a
term, we either add(e, u) or we replace some(e, u) with (e, v) wherev < u under
the appropriate ordering. When we update a formula, we either add(n ∈ Iβ ,>)
(possibly displacing some(n ∈ I<α, ?)) or replace(n ∈ Iβ ,>) with (n ∈ Iγ ,>)
whereγ <O β.

Definition 7.2. For each component(e, u), we defineP(e, u) to be the set of pairs
which it may displace:

P(e, u) =

 {(e, v)}u<Ov<Oα ∪ {(e, ?)} if e = εξ < αφ
{(e, v)}u<v<ω ∪ {(e, ?)} if e = εx < ωφ
{(n ∈ Iβ ,>)}α<Oβ<OΩ ∪ {(n ∈ I<β , ?)}β≤Ω if e = n ∈ Iα

Definition 7.3. LetS be a nonsolvingε-substitution.
For I ≤ N , defineeS

I depending on the type of the formulaCrI :

1. If CrI is of the form¬s = 0 → s = Sεx < ω(s = Sx) then

eS
I = εx < ω|s|S = Sx

2. If CrI is of the formφ[t] ∧ t < s→ (εν < sφ) ≤ t ∧ φ[εν < sφ[ν]] then

eS
I = εν < |s|S |φ|S [ν]

3. If CrI is of the formt ∈ Is ↔ A[I<s, t] then

eS
I = |t|S ∈ I

|s|S

4. If CrI is of the forms > 0 → (t ∈ I<s ↔ t ∈s{t}) then

eS
I = εν < |s|S |t|S ∈ I

ν

5. If CrI is of the formA[I<Ω, t] → t ∈ I<Ω then

eS
I = |t|S ∈ I

α

for suitableα.
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Section 7.3 explains what a suitableα is.

Definition 7.4. DefinerS
I = rk(eS

I ) and letI(S) ≤ N be the leastI such that:

1. CrI ↪→S ⊥

2. WheneverrS
J < rS

I , CrJ ↪→S >

3. If rS
J = rS

I andJ < I, CrJ ↪→S >

DefineCr(S) = CrI(S), R(S) = rS
I(S), and e(S) = eS

I(S). e(S) is called the
H-expression ofS.

TheH-valuev(S) is given by:

1. If Cr(S) is of the form¬s = 0 → s = Sεx < ω(s = Sx) thenv(S) = |s|S − 1

2. If Cr(S) is of the formφ[t] ∧ t < s → (εν < sφ[ν]) ≤ t ∧ φ[εν < sφ[ν]] then
v(S) = |t|S

3. If Cr(S) is of the formt ∈ Is ↔ A[I<s, t] thenv(S) = >

4. If Cr(S) is of the forms > 0 → (t ∈ I<s ↔ t ∈s{t}) thenv(S) is the (unique)
α such that(|t|S ∈ Iα,>) ∈ S

5. If Cr(S) is of the formA[I<Ω, t] → t ∈ I<Ω thenv(S) = >. In this case, we
sayS is at a closure step.

Definition 7.5.

Hw(S) = S≤R(S) \ P(e(S), v(S)) ∪ {(e(S), v(S))}

Note thatHw(S) is the same asH(S) in [Ara03].
We can now define the fullH-stepH(S), and theH-process (the sequence of

substitutions resulting from iteration of theH-step) by simultaneous induction. Note
that all the definitions in the rest of this section are simultaneous with the definition of
theH-process.

Definition 7.6. If S, S′ are ε-substitutions and, for somen ≥ 0, Hn(S) = S′, we say
S ≤ S′. If n > 0 we sayS < S′.

That is,S < S′ exactly ifS′ comes afterS in theH-process.

7.2 Correction Terms

We need to accomodate the following situation: suppose that, at some closure step, we
addn ∈ Iα, and then, at some later step, refute this. Then our would add(εx¬|B(I<α, n, x)|S , k)
for somek which witness this refutation.

Then the immediate next step will be to assignn ∈ Iα again: while our substitu-
tion “knows” thatn ∈ Iα is false, it does not know thatn ∈ I<Ω is also false. To
deal with this, we must copy(εx¬||B(I<α, n, x)|S , k) up, by simultaneously adding
(εx¬||B(I<Ω, n, x)|S , k).

13



Definition 7.7. SupposeS is at a closure step andeS ≡ n ∈ Iα. Then we sayn is the
sourceofα in S. If S < S′ in theH-process andn ∈ Iα is inU wheneverS < U ≤ S′

then we also sayn is the source ofα in S′.

The immediate solution is to say that, whenevern is the source ofα and(e(S), v(S)) =
(εx¬|B(I<α, n, x)|S , k) then we add an additional component.

We must also deal with the iterated version of this problem: suppose that, after
refutingn ∈ Iα, we add somem ∈ Iβ (thereby removing(εx¬|B(I<Ω, n, x)|S , k)).
We then refutem ∈ Iβ , add an extra component, and then addn ∈ Iα again, losing
the extra component we added to refutem ∈ I<Ω. To deal with this, when we refute
m ∈ Iβ , we need to add the extra component refutingn ∈ Iα as well.

We want to copy components of the formπ = (εx¬|B(I<Ω, n, x)|U , k) when
π ∈ U whereU ≤ S, but not all such components. When copying from earlier
substitutions, we need to ensure that intervening changes have not made the component
incorrect. First, we need to require thatI<Ω has the same meaning in bothU andH(S).
Second, we need to require that all changes made betweenU andS are irrelevant; it
suffices to require that they have rank greater thanα.

Definition 7.8. C(S1, . . . , Sn) is a set of components of the form(εx¬|B(I<Ω, n, x)|Si
, k)

for somei ≤ n. C(S1, . . . , Sn) 6= ∅ iff (e(Sn), v(Sn)) = (εx¬|B(I<α, n, x)|Sn
, k)

andn is the source ofα. In this case:

• (εx¬|B(I<Ω, n, x)|
(Sn)≤r

, k) ∈ C(S1, . . . , Sn). This is called theprimary com-

ponentofC(S1, . . . , Sn)

• If the following conditions are met then(εx¬|B(I<Ω,m, x)|Si
, l):

– i ≤ n

– (εx¬|B(I<Ω,m, x)|Si
, l) ∈ Si

– (n ∈ Iξ,>) ∈ Si iff ξ < α and(n ∈ Iξ,>) ∈ Sn

– For anyj with i ≤ j < n, rk(e(Sj)) > 3α

If C(S1, . . . , Sn) 6= ∅ then we say thatS1, . . . , Sn is at acorrected H-step.

Definition 7.9.
H(S1, . . . , Sn) = Hw(Sn) ∪ C(S1, . . . , Sn)

Note thatH(S) is calledHΩ(S) in [Ara03].

Definition 7.10. TheH-process is defined inductively byH0 = ∅,

Hn+1 =
{
H(H1, . . . ,Hn) if Hn is not solving

Hn if Hn is solving

We say theH-process (forCr0, . . . , Crn) terminates if there is somen such that
Hn is solving, and therefore thatHn = Hn+1.

14



7.3 Ordinal Assignment

We need to select an ordinal to assign when updating closure axioms. The ordinal
selected depends on a “height” which we calculate by predicting portions of the tree
which will be used to show that the process terminates. Rather than pull all the key
definitions out of context, the height will be defined in Section 9.2.

We actually need the part of the process preceeding the substitution at a closure
step, so the ordinal has to be defined by simultaneous induction with theH-step. Let
ind(S) be the operation defined in Section 9.2.

In order to have the properties we will need, we need some information about the
ordinals in our substitutions first.

Definition 7.11. 1. Ord(e) = {ξ < Ω | ξ is a subterm ofe} ∪ {0}

2.
Ord(S) = {ξ | ∃n[(n ∈ Iξ) ∈ dom(S)]}

∪ {ξ | ξ ∈ rng(S)}
∪ {0,Ω}

The second clause ofOrd(S) may appear unnecessary, and, ifS = Hn for some
n, it is. However in the termination proof we will deal with substitutions which may
include some(e, α) when there is non ∈ Iα in the domain.

Lemma 7.1 (cf Lemma 9.8 in [Ara03]). 1. LetS be a substitution. Ife is an ex-
pression withOrd(e) ⊆ Ord(S) ande ↪→S e

′ thenOrd(e′) ⊆ Ord(S)

2. IfS is non-solving andCr(S) is not a closure axiom thenOrd(e(S)) ⊆ Ord(S)

Proof. 1. By straightforward induction on↪→S .

2. By part1 and the definition ofe(S).

Definition 7.12. If O is a set of ordinals then

SCl1(O) = O ∪ {SC(α) ∪ {γ} | D(α+ γ) ∈ O}

ThenSCln+1(O) = SCl1(SCln(O)), andSCl(O) =
⋃

n<ω SCln(O).

Definition 7.13. LetS0, . . . , Sm be a sequence such thatH(S0, . . . , Si) = Si+1 and
e(Si) ≥ Ω for i < m. LetΩ ≤ ξ < Ω+ω be an ordinal andΩ ≤ r = min{rk(e(Si)) |
i < m} < Ω + ω.

• If ξ > r theno(S0, . . . , Sm; ξ) = o(S0, . . . , Sm; r)

• If m = 0 theno(S0, . . . , Sm; ξ) = o(S0; ξ) = (Ω + ω)r−ξ(ind(S0)).

• If m > 0 then let{k1 < · · · < kl} = {i < m | e(Si) = r}, k0 = 0, and set

o(S0, . . . , Sm; ξ) = (Ω + ω)r−ξΣi<lo(Ski
, . . . , Ski+1−1; r)

Seto(S0, . . . , Sm) = o(S0, . . . , Sm; Ω).
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Definition 7.14. SupposeS0, . . . , Sm = S is the maximal sequence such thatH(Si) =
Si+1 ande(Si) ≥ Ω for i < m. SupposeSCl(Ord(S)) = {ξ0 > ξ1 > · · · > ξk = 0}.
Let eachξi = D(αi + γi) with γi < Ω ≤ αi.

Let i(S1, . . . , Sm) = min{i < k | αi ≥ o(S0, . . . , Sm)}.

k(S1, . . . , Sm, n) =
{
ξi(S1,...,Sm) if SC(o(S1, . . . , Sm)) < ξi(S1,...,Sm)

0 otherwise

Definition 7.15. If CrI is a closure axiom andS0, . . . , Sm = S the maximal sequence
such thatH(S0, . . . , Si) = Si+1 theneI

S = (n ∈ Iα) where

α = D(o(S0, . . . , Sm) + k(S0, . . . , Sm))

Lemma 7.2 (Cf. [Ara03], Lemma 9.18). LetO,O′ be finite sets of ordinals so that
maxO′ ≤ maxO, and suppose thatξ = D(α+ γ) satisfies either:

• γ > SC(α), and for everyξ′ = D(α′+γ′) ∈ SCl(O) such thatα ≤ α′, ξ′ ≤ γ,
or

• γ = 0 and for everyξ′ = D(α′ +γ′) ∈ SCl(O), such thatα ≤ α′, ξ′ ≤ SC(α)

Then one of these properties holds forξ with respect toO ∪O′.

Proof. Then we have someξ′ ∈ O′ which violates this property. That is,α ≤ α′ and
γ < ξ′. SincemaxO′ ≤ maxO, we also have someξ∗ ∈ O ⊆ SCl(O) such that
ξ′ ≤ ξ∗. Let ξ∗ = D(α∗ + γ∗) be least such thatξ∗ ∈ SCl(O) andξ′ ≤ ξ∗.

Supposeα∗ < α′. Then there is someη ∈ SC(α∗ + γ∗) such thatξ′ ≤ η. But
thenη ∈ SCl(O) andη < ξ∗, violating our assumption. Henceα′ ≤ α∗. Then, since
γ < ξ∗, it must be thatξ∗ ≤ SC(α). But thenγ < ξ′ ≤ SC(α), so we haveγ = 0
and the second case remains true.

Lemma 7.3. If ξ ∈ SCl(Ord(S)) andCrI is a closure axiom, and thereforeeS
I =

n ∈ Iβ , thenξ < β.

Proof. Let β = D(α′ + γ′). We proceed by induction. Ifξ ∈ SCl(Ord(S)) then
ξ = D(α + γ), and by IH,γ < β. If α + γ < α′ + γ′ then sinceSC(α + γ) ⊆
SCl(Ord(S)), by IH we haveSC(α+ γ) < β, soξ < β.

If α′ + γ′ ≤ α+ γ thenα′ ≤ α. If ξ < SC(α) thenξ < β, and otherwise we have
ξ ≤ γ′ < β.

Lemma 7.4. Letξ = D(α+γ) be some ordinal, and letξ′ = D(α′+γ′) < ξ be some
ordinal such thatα ≤ α′. Thenξ′ ≤ γ.

Proof. By induction onξ: let ξ be least that such anξ′ exists.
If α+γ < α′+γ′ then there is someη ∈ SC(α+γ) such thatξ′ ≤ η. Then either

η = γ or η ∈ SC(α), and thereforeξ′ ≤ SC(α).
So supposeα′ + γ′ < α + γ. Thenα′ = α andγ′ < γ. Thenγ = D(α∗ + γ∗),

andα ≤ α∗, SC(α) < γ. SinceSC(α′ + γ′) < γ, it must be thatα∗ + γ∗ < α′ + γ′,
that isα∗ = α andγ∗ < γ′.

But thenγ∗ < γ′ < γ, soγ′ = D(α′′ + γ′′), and we must haveα′′ ≥ α. But then
γ andγ′ provide a smaller example, contradicting the minimality ofξ.
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The following lemma is also needed, but we will have to prove it along with the
termination proof:

Lemma 7.5 (Cf. [Ara03], 10.4). If e(S) ≡ n ∈ Iα then there is nok such that
(εx¬|B(I<α, n, x)|S , k) ∈ S.

Note that theH-process we have defined has the following essential property:

Lemma 7.6. If e(Sk) > r ≥ e(Sn) thenH(S1, . . . , Sn) = H(Sk+1, . . . , Sn).

Proof. Follows from the definition.

8 Correctness

Definition 8.1. We define

F (e, u) =

 φ[u] ∧ ¬φ[0] if e = εν < sφ[ν] andu 6=?
A[I<β , n] if e = n ∈ Iβ andu 6=?
> if u =?

F(S) = {F (e, u) | (e, u) ∈ S ∧ u 6=?}

Note thatrk(F (e, u)) < rk(e) by Lemma 6.1.

Definition 8.2. We say anε substitutionS is correct ifφ ↪→S > for all φ ∈ F(S).

Lemma 8.1. If S is correct and nonsolving thenH(S) is a correctε-substitution.

Proof. Consider some(e, u) ∈ H(S). If (e, u) ∈ S thenrk(F (e, u)) < rk(e(S)), so
the result follows form the correctness ofS.

On the other hand, suppose(e, u) ∈ H(S) \ S. If u 6=? then either(e, u) =
(e(S), v(S)) or (e, u) ∈ C(S). Suppose(e, u) = (e(S), v(S)). By Lemma 6.3, it
suffices to show that|F (e, u)|S = |F (e, u)|

H(S)
.

1. If Cr(S) is of the form¬s = 0 → s = Sεx < ω(s = Sx) then |s|S =
S(|s|S − 1) ↪→S >, and therefore|s|S = S(|e|S − 1) ↪→S > by Lemma 6.3.

2. If Cr(S) is of the formφ[t] ∧ t < s → (εν < sφ[ν]) ≤ t ∧ φ[εν < sφ[ν]] then
φ[t] ↪→S >, and so||φ|S [|t|S ]|S≤rk(e(S))

= >. By correctness ofS, we have

eithere(S) 6∈ dom(S), in which case|φ[0]|S≤rk(e(S))
= ⊥ or e(S) ∈ dom(S)

in which case, by correctness, the same thing holds. But sinceS∗≤rk(e(S)) =
H(S)∗≤rk(e(S)), we have|F(e, u)|

H(S)
= ||φ|S [|t|S ]|

H(S)
= >.

3. If Cr(S) is of the form t ∈ Is ↔ A[I<s, t] then |A[I<|s|S , |t|S ]|
H(S)

=
|A[I<s, t]|S , and sinceS is correct andCr(S) ↪→S ⊥, A[I<s, t] ↪→S >, so
A[I<|s|S , |t|S ] ↪→

H(S)
>.

4. If Cr(S) is of the forms > 0 → (t ∈ I<s ↔ t ∈s{t}) then sincet ∈ I<s ↪→S

>, it must be thatu < |s|S . Also, sincerk(n ∈ Iu) ≤ rk(e), (n ∈ Iu,>) ∈
H(S).
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5. If Cr(S) is of the formA[I<Ω, t] → t ∈ I<Ω then this follows by Lemma 7.5.

Suppose(e, u) ∈ C(S). If (e, u) is the primary component ofC(S) then let
e(S) ≡ εx¬b(I<α, n, x). Sincen ∈ I<ξ ↪→

H(S)
> iff n ∈ I<Ω ↪→

H(S)
>, and

by the argument above,¬b(I<α, n, u) ∧ b(I<α, n, 0) ↪→
H(S)

>, the same holds for

¬b(I<Ω, n, u) ∧ b(I<Ω, n, 0).
If (e, u) is not the primary component then lete ≡ εx¬b(I<Ω,m, x). We have

¬b(I<Ω,m, u)∧b(I<Ω,m, 0) ↪→U > for someU such thatn ∈ I<ξ ↪→
H(S)

> iff n ∈
I<ξ ↪→U >, andU andH(S) agree below the largest ordinal inH(S) (and therefore
below the largest ordinal inU ). But by Lemma 7.1, sinceOrd(b) ⊆ {0}, it follows
that|¬b(I<Ω,m, u) ∧ b(I<Ω,m, 0)|

H(S)
= |¬b(I<Ω,m, u) ∧ b(I<Ω,m, 0)|U = >.

Observe thatH(S) is finite, since it is at most one element larger thanS. It is
I?-free sincev(S) =? is never?. It meets the remaining conditions since:

1. No component of(e, u) ∈ S≤r hasu = 0ι(e) by the parsimony ofS, andv(S) 6=
0ι(e(S))

2. If (e, u) = (εν <ι(ν) α.φ[ν], u) ∈ H(S) andu 6=? then either(e, u) ∈ S, in
which caseu <ι(ν) α by the parsimony ofS, or e = e(S) andu <ι(ν) α follows
by the definition of theH-step.

3. If (n ∈ Iα,>), (n ∈ Iβ ,>) ∈ H(S) then, sinceS is parsimonious, it must be
that (w.l.o.g.)e(S) = (n ∈ Iα) andv(S) = >. If α < β then(n ∈ Iβ ,>) ∈
P(e(S), v(S)), so we could not have(n ∈ Iβ ,>) ∈ H(S). If β < α then we
haven ∈ Iα ↪→S >, son ∈ Iα could not be theH-term ofS. Thereforeα = β.

4. We cannot have(n ∈ I<α,>) ∈ S≤r for anyα sinceS is parsimonious, and
e(S) 6= (n ∈ I<α).

Definition 8.3. S is computationally inconsistent (ci) ifφ ↪→S ⊥ for someφ ∈ F(S)
Otherwise it is cc.

S is computing iff all formulasφ ∈ F(S) areS-computable.
S is deciding iffS is computing and the critical formulasCr0, . . . , Crn are S-

computable.

Lemma 8.2. If S is a correct, nonsolvingε-substitution then:

1. If (e, u) ∈ S, u 6=?, and (e, v) ∈ H(S) for somev 6= u then e = e(S),
v = v(S), v 6=? andv < u.

2. If (n ∈ Iα,>) ∈ S and(n ∈ Iβ ,>) ∈ H(S) with β 6= α thenn ∈ Iα is e(S)
andβ < α

Proof. 1. Sincee = εν < s.φ[ν] must be theH-term ofS, we consider which criti-
cal formulas could havee asH-term. Sinceφ[u] ↪→S > by the correctness ofS,
the only axiom which could be false underS is the Epsilon Axiom, specifically
we must have(εν.ψ[ν]) ≤ t ↪→S ⊥, and therefore sinceu ≤ t ↪→S ⊥, we have
v = |t|S < u.
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2. n ∈ Iβ must be theH-term ofS, soCr(S) must be an Inductive Definition
Axiom, and if we hadα ≤ β thenCr(S) ↪→S >, so we must haveβ < α.

Definition 8.4. We say theH-rule appliesto S if S is cc, deciding, and nonsolving.

9 Cut Elimination

To prove that theH-process terminates, we will create an ad hoc sequent calculus.
Our sequents will beε-substitutions augmented with additional information, and the
resulting derivations will be similar to invertedH-processes, with the empty sequent
on the bottom derived from axioms which will include solvingε-substitutions. We will
then apply a cut-elimination process which will result in a derivation from a solvingε-
substitution in which each inference corresponds exactly to theH-step would be taken
(or to certain non-essential operations which do not affect thatH-process); the well-
foundedness of our derivation will then prove that theH-process reaches a solving
substitution in finitely many steps.

Each pair(e, u) in one of our sequents will be expanded to include a marker, which
must be eithert (temporary) orf (fixed). This will indicate whether or not that item
may be updated in the derivation, that is, whether we allow a step above it in our deriva-
tion to represent anH-step in whiche is theH-expression. When a pair is fixed and we
would like to update it, we will instead be required to stop at an axiom indicating that
we would like to update the pair. (This is a generalization of the distinction between?
and?◦ in [MTB96]; in that paper, only pairs(e, ?) can be updated, while here we must
deal with the possibility that any value can be changed by a laterH-step.)

Definition 9.1. • A sequentΘ is a set of tuples(e, u, i) satisfying:

1. ΘS = {(e, u) | (e, u, i) ∈ Θ} is anε-substitution

2. i ∈ {t, f} for each(e, u, i) ∈ Θ

3. If (e, u, i), (e, u, j) ∈ Θ theni = j

• A historical sequentis a triple (Θ,H,A) such that:

– Θ is a sequent

– H = 〈S1, . . . , Sn〉 is a finite sequence ofε-substitutions

– A is a set of canonicalε-terms of rankΩ + 1

• dom(Θ) = dom(Θ) = dom(ΘS)

• SupposeΘ is a sequent,e a canonical expression,u ∈ V ι(e) ∪ {?}, and i ∈
{t, f}. Then(e, u, i),Θ = Θ ∪ {(e, u, i)} iff Θ ∪ {(e, u, i)} is also a sequent;
that is, eithere 6∈ dom(Θ) or (e, u, i) ∈ Θ.

• Θt = {(e, u, t) ∈ Θ}

• Θf = {(e, u, f) ∈ Θ}
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• We sayΘ E Σ if ΘS E ΣS

• If ./∈ {<,≤, >,≥,=} then we sayΘ ./ r if for everye ∈ dom(Θ), rk(e) ./ r.

• We sayΣ . r if there is someΣ′ such thatΣ = Σ′
≤r

• We sayr . Σ if, whenever(e, u, i) ∈ σ andrk(e) < r thenr = rk(e) + 1 and
e has the formn ∈ I<α for someα

• Ord(Θ) = Ord(ΘS)

If (Θ,H,A) is a historical sequent, we often only mention the sequentΘ, and do
not specify thatH andA are also present.

9.1 IDε

We introduce a deduction system for historical sequents with three groups of inferences
and axioms. We will frequently find it useful to be able to refer to the premises of an
inference by parameters, so we introduce notation to make this convenient

Definition 9.2. If I is an inference thenPrem(I, x) refers to the premise ofI indexed
byx.

If I as an inference andJ some instance of an inference occuring in one of the
premises ofI, we writeParam(I, J) = x whenJ occurs inPrem(I, x).

Technically the premise is a deduction, but we will sometimes usePrem(I, x) to
refer to the endsequent of the premise; it will be clear from context when we are doing
this. In general, if the parameters ofI other than? range over the ordinals belowα, we
equate? with α.

In the definitions below,I always refers to the inference being defined.

9.1.1 Generic Axioms

AxF (Θ,H,A) is an instance ofAxF if ΘS is ci

AxS (Θ,H,A) is an instance ofAxS is ΘS is solving

9.1.2 Term Axioms and Inferences

e is anε-term for all axioms and inferences in this subsection, and is called the main
expression of the inference or axiom.

AxHe,v ((e, u, f),Θ,H,A) is an instance ofAxHe,v if e is theH-term andv the
H-value of((e, u, f),Θ)S , and theH-rule applies

AxPHe,v ((e, ?, t),Θ,H,A) is an instance ofAxHe,v if e is theH-term andv the
H-value of((e, u, t),Θ)S , theH-rule applies, and is at a correctedH-step, and
(e, v, α) ∈ A for someα < rk(e)
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Cute
{P (I, u) | u ∈ V ι(e) ∪ {?}}

(Θ,H,A)
Where the endsequent ofP (I, ?) is ((e, ?, f),Θ,H,A) and the endsequent of
P (I, u) for u 6=? is ((e, u, f),Θ,H,A). We require thatOrd(e) ⊆ Ord(Θ)

CutFre
{P (I, u) | u ∈ V ι(e) ∪ {?}}

(Θ,H,A)
Where the endsequent ofP (I, u) is ((e, u, t),Θ,H,A) for u 6=? and((e, ?, t),Θ,H,A)
for u =?. We require thatOrd(e) ⊆ Ord(Θ)

Fre
((e, ?, t),Θ,H,A)

(Θ,H,A)
WhereOrd(e) ⊆ Ord(Θ)

He,v

((e, v, t), {(e′, v′, t) | (e′, v′ ∈ C(H_ΘS ∪ {(e, v)}))},Θ≤rk(e),H
_ΘS ∪ {(e, u)}, A)

((e, u, t),Θ, A)

If e is theH-term andv theH-value of((e, u, t),Θ)S , and theH-rule applies to
the conclusion.

CutFr∗e
{P (I, u) | u ∈ V ι(e) ∪ {?}}

(Θ,H,A)
Where the endsequent ofP (I, u) is ((e, u, t),Θ,H,A) for u 6=? and((e, ?, t),Θ,H,A∪
{e}) for u =? whereα is some ordinal, andι(e) = N . We require that
Ord(e) ⊆ Ord(Θ)

9.1.3 Formula Axioms and Inferences

n ∈ I<α (whereα = Ω when appropriate) is the main expression of the axiom or
inference except forFH2, AxFH2, andAxPFH2, which have main expressionn ∈
Iα. All variants ofFH come in two varieties1 and2; these are identical except that
one applies when the formula being removed is of the formn ∈ I<α and the other
when it is of the formn ∈ Iα. This means thatFH1 applies the first time we have
anH-inference forn, andFH2 applies every time we update whichα is the first such
thatn ∈ Iα.

These axioms and inferences are similar to the term axioms and inferences, al-
though somewhat more complicated. We name them be prefixing anF to the name
to indicate that they refer to formulas. AxiomsAxPFH replaceAxFH after partial
elimination of cuts (described in detail below).

AxFH1
n,α,β ((n ∈ I<α, ?, f),Θ,H,A) is an instance ofAxFH1

n,α,β if n ∈ Iβ is the
H-term of((n ∈ I<α, ?, f),Θ)S and this is not a closure rule.
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AxFH2
n,α,β ((n ∈ Iα,>, f),Θ,H,A) is an instance ofAxFH2

n,α,β if n ∈ Iβ is the
H-term of((n ∈ Iα,>, f),Θ)S .

AxClFHn,β ((n ∈ I<Ω, ?, f),Θ,H,A) is an instance ofAxClFHn,β if n ∈ Iβ is
theH-term of((n ∈ I<Ω, ?, f),Θ)S and this substitution is at a closure step.

AxPFH1
n,α,β ((n ∈ I<α, ?, t),Θ,H,A) is an instance ofAxPFH1

n,α,β if n ∈ Iβ is
theH-term of((n ∈ I<α, ?, t),Θ)S and this is not a closure rule.

AxPFH2
n,α,β ((n ∈ Iα,>, t),Θ,H,A) is an instance ofAxPFH2

n,α,β if n ∈ Iβ is
theH-term of((n ∈ Iα,>, t),Θ)S .

AxPClFHn,β ((n ∈ I<Ω, ?, t),Θ,H,A) is an instance ofAxClFHn,β if n ∈ Iβ is
theH-term of((n ∈ I<Ω, ?, t),Θ)S and this substitution is at a closure step.

All these axioms also require that theH-rule apply.

FCutn,α,β

P (I, α) {P (I, γ) | β ≤ γ < α}
((n ∈ I<β , ?, f),Θ,H,A)

Where the endsequent ofP (I, α) is ((n ∈ I<α, ?, f),Θ,H,A) and the end-
sequent of eachP (I, γ) is ((n ∈ Iγ ,>, f),Θ,H,A). Also, we require that
α > β andα ∈ Ord(Θ). If β = 0 then the conclusion isΘ (and the component
(n ∈ I<β , ?, f) is omitted).

PCutn,α,β,δ

P (I, α) {P (I, γ) | β ≤ γ < δ}
((n ∈ I<β , ?, f),Θ,H,A)

Where the endsequent ofP (I, α) is ((n ∈ I<α, ?, t),Θ,H,A) and the end-
sequent of eachP (I, γ) is ((n ∈ Iγ ,>, f),Θ,H,A). Also, we require that
α > δ ≥ β andα ∈ Ord(Θ). If β = 0 then the conclusion isΘ (and the
component(n ∈ I<β , ?, f) is omitted).

PCutFrn,α,β,δ

P (I, α) P (I, δ) {P (I, γ) | β ≤ γ < δ}
(e(n ∈ I<β , ?, f),Θ,H,A)

Where the endsequent ofP (I, α) is ((n ∈ I<α, ?, t),Θ,H,A), the endsequent
of P (I, δ) is ((n ∈ Iδ,>, t),Θ,H,A), the endsequent of eachP (I, γ) is ((n ∈
Iγ ,>, f),Θ,H,A). Also, we require thatα > δ ≥ β andα ∈ Ord(Θ). If
β = 0 then the conclusion isΘ (and the component(n ∈ I<β , ?, f) is omitted).

FFrn,α,β

((n ∈ I<α, ?, t),Θ,H,A)

((n ∈ I<β , ?, t),Θ,H,A)

Providedα > β. The component(n ∈ I<β , ?, t) is omitted ifβ = 0. We require
thatα ∈ Ord(Θ).
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FH1
n,α,β

((n ∈ Iα,>, t),Θ≤rk(n∈Iα),H
_ΘS ∪ {(n ∈ Iα, ?)}, A)

((n ∈ I<β , ?, t),Θ,H,A)

If n ∈ Iα is theH-term of((n ∈ I<β , ?, t),Θ)S and this substitution is not at a
closure step, and theH-rule applies to the conclusion.

FH2
n,α,β

((n ∈ Iα,>, t),Θ≤rk(n∈Iα),H
_ΘS ∪ {(n ∈ Iα, ?)}, A)

((n ∈ Iβ ,>, t),Θ,H,A)

If n ∈ Iα is theH-term of ((n ∈ Iβ ,>, t),Θ)S , and theH-rule applies to the
conclusion.

ClFHn,α

((n ∈ Iα,>, t),Θ≤rk(n∈Iα),H
_ΘS ∪ {(n ∈ Iα, ?)}, A)

((n ∈ I<Ω, ?, t),Θ,H,A)

If n ∈ Iα is theH-term of ((n ∈ I<Ω, ?, t),Θ)S and this substitution is at a
closure step, and theH-rule applies to the conclusion.

While there are a large number of axioms and inferences, most of the differences
represent technical variations on the same basic axiom or inference. TheCut and
FCut rules are what will be present in the initial derivation. They represent an un-
informed guess as to what value to assign some expression we wish to evaluate, a
question resolved by considering all possibilities as different branches. Viewed as in-
ference rules, they can be taken to mean that the conclusion is sound precisely when
at least one of the input branches is–the inputs represent all possible situations which
expand on the conclusion in the necessary way.

TheFCut, in particular, states that when¬n ∈ I<β andβ < α, the possibilities
are either that¬n ∈ I<α, orn ∈ Iγ whereβ ≤ γ < α. It represents the formula:

¬n ∈ I<β → ¬n ∈ I<α ∨
∨

β≤γ<α

n ∈ Iγ (1)

Note that we read the inference going upwards.
Also present in the original derivation will be theAxH axiom and its variants, the

AxFHi andAxClFH axioms. These represent attempts to actually apply anH-rule,
places where the conclusion contains everything needed to pick anH-expresion and
H-value for it, but where the relevant expression is fixed in value.

Our basic operation will be the replacement ofCut-type inferences andAxH-
type axioms with theFr inference (and its variant theFFr inference) and theH
inference (and its variants, theFHi, andClFH inferences). TheFr-type inferences
simply mark that we have used some expression–both premise and conclusion will
compute every expression exactly the same way, but the premise notes that some default
value has been used, which allows us to keep track of where branches belong in our
derivation. TheH-type inferences are the heart of our process, each corresponding
to a different type ofH-step. We could choose to have only one, awkwardly defined,

23



inference for all these cases, but using different inferences makes the case distinctions
we will need to make easier.

The remaining inferences are intermediate steps of various kinds, which will appear
during cut-elimination, and all eventually be removed. ThePCut is an oddity resulting
from the fact that, unlike in most cut-elimination arguments, theFCut inference has
premises with many different ranks. As a consequence, when we have eliminated cuts
above some rank, but not below it, some of theFCut’s premises should behave as if
theCut has been eliminated, but some should not. ThePCut represents this “partially
eliminated” cut–it is essentially anFFr inference with the remains of anFCut added
on.

TheCutFr andPCutFr inferences are similar, but will exist only in the middle
of cut-elimination. They will result when we eliminate a cut of some rank, but are
still eliminating cuts of the same rank below that inference, and may need the extra
information contained in the other premises. When we have finished eliminating cuts
of that rank, we will prune the extra premises, resulting in anFr or PCut inference.

Definition 9.3. A deductionof (Θ,H) in IDε from a setΣ of historical sequents is a
wellfounded tree according to the rules of inference ofIDε. Aderivationis a deduction
from just the axioms ofIDε.

Definition 9.4. We defineh(d) ≤ α, theheightof d inductively:

1. If d is an axiomΘ andOrd(Θ) \ Ω�
-
α thenh(d) ≤ α

2. If d ends in an inferenceI with endsequentΘ such thatOrd(Θ)\Ω�
-
α and for

eachγ such thatPrem(I, γ) is defined,h(Prem(I, γ)) ≤ αγ , and:

(a) αγ < α

(b) If α�
-
β, andγ � β thenαγ � β

Thenh(d) ≤ α. (This definition is essentially that of [Poh89], Definition 24.27.)

Lemma 9.1. If rk(e) = r thenr = α+ n whereα is the largest ordinal appearing in
e or Ω andn < ω. Therefore ifOrd({e}) < ξ, rk(e) < Ω, andξ is strongly critical
thenrk(e) < ξ.

Proof. The first part follows by straightforward induction on the definition of rank.
The second follows sinceξ is strongly critical, soξ > α+ ω > rk(e).

Lemma 9.2. If d is a derivation ending inΘ andα ∈ Ord(Θ) then for everyη such
thath(d) ≤ η, α�

-
η.

Proof. By straightforward bottom-up induction ond.
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9.2 Original Derivation

The construction of the original derivation in this section is the same as in [MTB96]
for ε-termse, the step described in Lemma 9.4. In Lemma 9.5 we useFCut inferences
to decide formulasn ∈ I<α andn ∈ Iα. We do not deciden ∈ Iα by applying a cut
directly to this formula; instead we deciden ∈ I<α+1.

Essentially, we attempt to evaluate the critical formulas; if our substitution is cor-
rect but non-solving, we will find canonical expressions which have not been assigned
values. We apply a cut over some canonical expression appearing in our critical for-
mulas, and repeat the process for every premise of the cut. In order to show that the
process halts, we always choose canonical subexpressions of formulas having the max-
imum possible rank.

We add one essential trick: in order to make sure that ordinals decrease both in
terms of< and�, we have to add ordinals to the height as we add them to sequents.
In order to make “room” for this, we have to count the number of places where ordinals
could potentially be added.

Definition 9.5. Defineχ(e) by induction:

1. χ(ν) = χ(0ι) = χ(α) = χ(⊥) = χ(>) = 0

2. χ(St) = χ(t)

3. χ(pe1, . . . , en) = Σn
i=1χ(ei)

4. χ(s1 =O s2) = χ(s1 <O s2) = χ(s1) + χ(s2)

5. χ(¬φ) = χ(φ)

6. χ(φ ∧ ψ) = χ(φ→ ψ) = χ(φ) + χ(ψ)

7. χ(t ∈ Is) = χ(t ∈ I<s) = χ(t) + χ(s)

8. χ(t ∈ I<Ω) = χ(t) + 1

9. χ(s ∈ {t1, . . . , tn | s1, . . . , sn}) = χ(s)

10. χ(εν < αφ[ν]) =
{
χ(φ) + 1 if α = Ω
χ(φ) otherwise

This essentially measures the number of places an unbounded countable ordinal
might appear in an expression.

Lemma 9.3. If e ↪→1
S e

′ thenχ(e′) ≤ χ(e).

Proof. By the definition of↪→1
S .

Definition 9.6. LetS be anε-substitution andΦ = {A1, . . . , An} a finite set of closed
formulas.

• ρS(Φ) = max{rk(|A|S) | A ∈ Φ, d(|A|S) > 0} ∪ {0}
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• χS(Φ, r) = ΣA∈Φ,rk(|A|S)=rΩ · χ(|A|S) + #α∈Ord(S)#β∈SC(α)β

• dr(F ) =
{

0 if rk(F ) < r
d(F ) otherwise

• µS(Φ, r) = ΣA∈Φdr(|A|S)

• νS(Φ) = Ω2 · ρS(Φ) + ωχS(Φ, ρS(Φ)) + µS(Φ, ρS(Φ))

NoteµS(Φ, r) < ω, χS(Φ, r) < ω · Ω, ρS(Φ) < Ω + ω, and thereforeνS(Φ) <
Ω3 + Ω2.

Definition 9.7.

||u||A =

 Ω if u =?
u if u is an ordinal or number
1 if u = >


Definition 9.8. If S is an ε-substitution such that theH-rule applies toS, define an
ε-substitutionexti(S) and a set of formulasΦi(S) for i < ω as follows:

1. ext0(S) = ∅ andΦ0(S) = {Cr0, . . . , CrN}

2. If theH-rule applies toexti(S), exti+1(S) = exti(S) andΦi+1(S) = Φi(S)

3. If theH-rule does not apply toexti(S), letA0 ∈ Φi(S) be such thatrk(|A0|exti(S))
is maximal, and choose some canonical subexpressione of |A0|exti(S). If e is
computed byS thenexti+1(S) = exti(S) ∪ {e, |e|S} andΦi+1(S) = Φi(S) ∪
{F (e, |e|S)}. Otherwiseexti+1(S) = exti(S)∪{(e, ?)} andΦi+1(S) = Φi(S).

n(S) is the leasn such thatextn(S) = extn+1(S). ext(S) = extn(S)(S).
Finally if exti+1 \ exti(S) = (e, u) thene(i, S) = e andv(i, S) = u if e is a term,

andα if e is the formulan ∈ Iα or n ∈ I<α.

Definition 9.9. Define

ind(S) = Σi<n(S)Ωωνexti(S)(Φi(S))||v(i, S)||A + ΩωνS(Φn(S)(S))+2

The following two lemmas appear complicated, but the concept is simple: we are
given anε-substitution and a finite set of formulas. We select a canonical expressione
of maximal rank from{|A|S | A ∈ Φ}, assign it a valueu, and augmentΦ to include
a witness to the correctness of(e, u), if necessary. Then we show that the resulting
measure byν decreases according to both< and�. We will also show, in particular,
that if we are adding expressions in the order used to defineind(S) then also the indices
are decreasing.

Lemma 9.4. LetS be anε-substitution andΦ a finite set of closed formulas such that⋃
A∈ΦOrd(A) ⊆ Ord(S). LetA0 ∈ Φ with rk(|A0|S) = ρS(Φ), and lete be a

canonicalε-subterm of|A0|S . For anyu ∈ V ι(e) ∪ {?} let Su = S ∪ {(e, u)} and let

Φu =
{

Φ if u =?
Φ ∪ {F (e, u)} otherwise

Then for anyu ∈ V ι(e) ∪ {?}:
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• Su is anε-substitution

• ρSu(Φu) ≤ ρS(Φ)

• νSu(Φu) < νS(Φ)

• if νS(Φ)�
-
β andu� β thenνSu(Φu) � β

•
⋃

A∈Φu Ord(A) ⊆ Ord(Su)

• if Φ = Φn(S)(S) ande = e(n(S), Su) thenind(Su) < ind(S) and ifind(S)�
-
β

andu� β thenind(Su) � β.

Proof. • Su is anε-substitution
Trivial, sinceS is anε-substitution

• ρSu(Φu) ≤ ρS(Φ)
SinceS ⊆ Su, we have||w|S |Su = |w|Su , and thereforerk(|w|Su) ≤ rk(|w|S)
andd(|w|Su) ≤ d(|w|S) for eachw. Also, rk(|F (e, u)|Su) ≤ rk(F (e, u)) <
rk(e) ≤ ρS(Φ), soρSu(Φu) ≤ ρS(Φ).

• νSu(Φu) < νS(Φ)
If ρSu(Φu) < ρS(Φ) then this is obviously the case, so supposeρSu(Φu) =
ρS(Φ). If maxOrd(Su) > maxOrd(S) then it must be that someΩ has been
removed, and thereforeχ(|A0|Su) < χ(|A0|S). ThereforeχSu(Φu, ρS(Φ)) ≤
χS(Φ, ρS(Φ)). If this inequality is strict then we must haveνSu(Φu) < νS(Φ),
so assumeχSu(Φu, ρS(Φ)) = χS(Φ, ρS(Φ)). For eachA ∈ Φ, rk(|A|Su) ≤
rk(|A|S) andd(|A|Su) ≤ d(|A|S). ThereforeµSu(Φu) ≤ µS(Φ). But since
d(|A0|Su) < d(|A0|S), this inequality must be strict, soνSu(Φu) < νS(Φ).

• If νS(Φ)�
-
β andu� η thenνSu(Φu) � β

If νSu(Φ) � νS(Φ) then this follows from transitivity. Otherwise we have
DνS(Φ) ≤ DνSu(Φu), and therefore we must have someη ∈ SC(νSu(Φu))
such thatDνS(Φ) ≤ η. We must haveη 6∈ SC(νS(Φ)). But SC(νS(Φ)) \
SC(νSu(Φu)) ⊆ SC(u). But then we must haveDνS(Φ) < Du, so u 6�
νS(Φ).

•
⋃

A∈Φu Ord(A) ⊆ Ord(Su)
SinceOrd(Φu) = Ord(Φ)∪Ord(u) this follows sinceOrd(u) ⊆ Ord({(e, u)})
andOrd(Φ) ⊆ Ord(S).

• if Φ = Φn(S)(S) ande = e(n(S), Su) thenind(Su) < ind(S) and ifind(S)�
-
β

andu� β thenind(Su) � β
Sinceextn(S)−1(Su) = S andΦn(S)(Su) = Φu, let

ζ = Σi<n(S)Ωωνexti(S)(Φi(S))||v(i, S)||A

Thenind(S) = ζ+ΩωνS(Φ)+2 while ind(Su) = ζ+ΩωνS(Φ)||u||A+ΩωνSu (Φu)+2.
But since||u||A ≤ Ω andνSu(Φu) < νS(Φ), ind(S) < ind(Su).
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If ind(S)�
-
β andu � β thenind(Su) � β follows since no strongly critical

ordinals appear inind(Su) that do not appear inνSu(Φu).

The following lemma is essentially the same as the previous one, using a formula
instead of a term. One complication arises from the fact that we always need to consider
two kinds of formulas:n ∈ I<β , andn ∈ Iγ for all γ < β. If the canonical subformula
has the formn ∈ I<α thenβ = α, however if it has the formn ∈ Iα, we need to set
β = α+ 1, since we need to consider the case where we add(n ∈ Iα,>).

Lemma 9.5. Let S be anε-substitution andΦ a finite set of closed formulas such
that

⋃
A∈ΦOrd(A) ⊆ Ord(S). Let A0 ∈ Φ with rk(|A0|S) = ρS(Φ) and let e′

be some canonical subformula of|A0|S . If e′ = I<α then sete = (n ∈ I<α) and
β = α, otherwise sete = (n ∈ I<α+1) andβ = α + 1. If there is no component
(n ∈ I<ξ, ?) ∈ S then letδ = 0, otherwise letδ = ξ. For eachγ such thatδ ≤ γ < β,
let Sγ = S ∪ {(n ∈ Iγ ,>)} \ P(n ∈ Iγ ,>) and letΦγ = Φ ∪ {F (n ∈ Iγ ,>)}. Let
Sβ = S ∪ {(n ∈ I<β , ?)} \ P(n ∈ I<β , ?) and letΦβ = Φ.

Then for everyδ ≤ γ ≤ β:

• Sγ is anε-substitution andg ↪→S g
′ impliesg ↪→Sγ g′

• ρSγ (Φγ) ≤ ρS(Φ)

• νSγ (Φγ) < νS(Φ)

• if νS(Φ)�
-
κ andγ � κ thenνSγ (Φγ) � κ

•
⋃

A∈Φγ Ord(A) ⊆ Ord(Sγ).

• if Φ = Φn(S)(S) ande′ = e(n(S), Su) thenind(Sγ) < ind(S) and ifind(S)�
-
κ

andγ � κ thenind(Sγ) � κ

Proof. Similar to Lemma 9.4.

• Sγ is anε-substitution andg ↪→S g
′ impliesg ↪→Sγ g′

We consider three cases:

1. There is a component(n ∈ I<ξ, ?) ∈ S. If β ≤ ξ then e′ is already
decided, so we haveξ < β. Then forSγ with ξ ≤ γ ≤ β, we have thatSγ

is anε-substitution since(n ∈ I<ξ, ?) ∈ P(n ∈ Iγ ,>). Also, sinceS is
anε-substitution,Sγ meets the remaining conditions.

2. There is a component(n ∈ Iξ,>) ∈ S. Impossible, since thene would be
decided.

3. There is no such component. Then clearlySγ is anε-substitution sinceS
is.
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• ρSγ (Φγ) ≤ ρS(Φ)
SinceS ⊆ Sγ , we have||w|S |Sγ = |w|Sγ , and thereforerk(|w|Su) ≤ rk(|w|S)
andd(|w|Su) ≤ d(|w|S) for eachw. Alsork(|A[I<γ , n]|Sγ ) ≤ rk(|A[I<γ , n]|S) <
rk(e′) ≤ ρS(Φ).

• νSγ (Φγ) < νS(Φ)
As in Lemma 9.4, if we do not haveρSγ (Φγ) < ρS(Φ) then we haveρSγ (Φγ) =
ρS(Φ). In this case, ifmaxOrd(Sγ) > maxOrd(S) then we must haveβ = Ω
andΩ > γ > maxOrd(S), and thereforeχSu(Φu, ρS(Φ)) < χS(Φ, ρS(Φ)).
OtherwiseχSu(Φu, ρS(Φ)) = χS(Φ, ρS(Φ)), and in that case, sincee′ is Sγ

computable, we have we haveµSγ (Φγ) < µS(Φ). In either case,νSγ (Φγ) <
νS(Φ).

• if νS(Φ)�
-
κ andγ � κ thenνSγ (Φγ) � κ

If we do not haveνSγ (Φγ) � νS(Φ) then we haveDνS(Φ) < Dγ and ifγ � κ
andνS(Φ) < κ thenνSγ (Φγ).

• if Φ = Φn(S)(S) ande′ = e(n(S), Su) thenind(Sγ) < ind(S) and ifind(S)�
-
κ

andγ � κ thenind(Sγ) � κ
Finally, sinceextn(S)−1(Sγ) = S andΦn(S)(Sγ) = Φγ , let

ζ = Σi<n(S)Ωωνexti(S)(Φi(S))v(i, S)

Thenind(S) = ζ+ΩωνS(Φ)+2 while ind(Sγ) = ζ+ΩωνS(Φ)γ+ΩωνSγ (Φγ)+2.
But sinceγ ≤ Ω andνSγ (Φγ) < νS(Φ), ind(S) < ind(Sγ).

If ind(S)�
-
κ andγ � β thenind(Sγ) � κ follows since no strongly critical

ordinals appear inind(Sγ) that do not appear inνSγ (Φγ).

The Lemma above corresponds to theFCut inference:
(n ∈ I<β , ?), S (n ∈ Iγ ,>), S, . . . ∀γ(δ ≤ γ < β ∈ V O)

(n ∈ I<δ, ?), S
The following two lemmata use the previous ones to actually construct a deduction

of ∅. Lemma 9.6 inductively uses Lemma 9.4 and Lemma 9.5 to constructCut and
FCut inferences. Lemma 9.7 applies this to our base case–the empty sequent and the
critical formulas we are concerned with–to produce a derivation, and verifies that this
derivation is in fact a deduction.

Lemma 9.6. SupposeΘ is a sequent withΘt = ∅,L a finite set of closed formulas with⋃
A∈LOrd(A) ⊆ Ord(ΘS), andr = ρΘS

(F(ΘS) ∪ L). Then there is a derivationd
of (Θ, ∅) byCuts andFCuts of ranks≤ r from computing sequentsΥ with Υt = ∅
containingΘ and computing all formulas inL. In addition,h(d) ≤ νΘS

(F(ΘS)∪L).

Proof. By induction onνΘS
(F(ΘS) ∪ L).
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Note that we have

maxOrd(Θ)�
-
χΘS

(F(ΘS) ∪ L)�
-
νΘS

(F(ΘS) ∪ L)

LetΦ = F(ΘS)∪L. If Θ computes all formulas inΦ thenΘ satisfies the condition.
Otherwise, letA ∈ Φ be some formula such thatrk(|A|ΘS

) = r and letg be some
canonical subexpression of|A|ΘS

.
If e is a term such thate 6∈ dom(Θ), and eachu ∈ V ι(e) ∪ {?}, let Θu =

(e, u, f),Θ. ThenΘu
S satisfies the conditions of Lemma 9.4, soνΘu(F(Θu

S) ∪ L) �
νΘ(Φ), and by IH there is a derivationdu of Θu byCuts andFCuts of rank≤ r from
appropriate sequentsΥ and withh(du) ≤ νΘu(F(Θu

S) ∪ L), and since by Lemma 7.1
Ord(e) ⊆ Ord(Θ), aCut with main terme satisfies the theorem.

If e is a formula then if it isn ∈ Iα, let β = α+ 1, and if it isn ∈ I<α let β = α.
Then for eachγ < β let Θγ = (n ∈ Iγ ,>, f),Θ and letΘβ = (n ∈ I<β , ?, f),Θ.
ThenΘγ

S satisfies the conditions of Lemma 9.5, soνΘγ (F(Θγ) ∪ L) � νΘ(Φ), and
by IH there is a derivationdγ of Θγ byCuts andFCuts of rank≤ r from appropriate
sequentsΥ and withh(dγ) ≤ νΘγ (F(Θγ) ∪ L), and since by Lemma 7.1Ord(n ∈
Iβ) ⊆ Ord(Θ), anFCut with main terme satisfies the theorem.

Lemma 9.7. There is somer < Ω + ω such that there is a derivationd of the empty
sequent consisting only of axioms,Cuts andFCuts with rank≤ r, andh(d) ≤ Ω3 +
Ω2.

Proof. Applying Lemma 9.6 to∅, L = {Cr0, . . . , CrN} andr = ρ∅(L) gives a de-
duction of∅ consisting of onlyCuts andFCuts with rank≤ ρ∅(L) and axioms.

If some top sequentΘ of this deduction is not an axiom thenΘS must be cc,
deciding, and nonsolving. Since the only inferences in the part already constructed are
cuts,Θt = ∅. But thenΘ has anH-expressione(ΘS) appearing in someCrI . Since
Θ is cc and deciding,CrI must be computed, and thereforee(ΘS) must be computed,
so there must be some(e, u) ∈ P(e(ΘS), v(ΘS)) such that(e, u, f) ∈ Θ. Note that
requirements on ordinals of cut terms are satisfied by Lemma 7.1.

Then this must be anAxH,AxFH, orAxClFH axiom.

In place of the height bounds given by Lemma 9.7, we will use the height bound
given by the functionind(S), which gives a derivationind(d) ≤ ΩΩ3+Ω2+1. This can
obviously be done, usingind(S) in place ofνS(Φ) in Lemma 9.6. While these appears
to do nothing but inflate our height bounds, it serves the purpose of synchronizing
the height bounds with the ordinal assignment, making a straightforward collapsing
argument possible.

9.3 Controlling Derivations

A derivation with cuts of rankr and higher eliminated will be called anr-derivation.
We will define steps which will allows us to convert, for instance,r + 1-derivations to
r-derivations. We will begin at the top of the derivation, and work down to the root
(using the well-foundedness of the derivation). As described above, we cannot directly
produce anr-derivation as we go down, since we may need the additional information
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retained byPCutFr andCutFr inferences; derivations with this information left in
will be calledr+-derivations. At the interim stages, we will haver + 1-derivations
below some inference, andr+-derivations above. Once the entire derivation isr+, we
will be able to easily prune it into anr-derivation.

We will define notationsX(d) ./ r, where./ is some comparison like< or≥ and
X is some inference rule or axiom, to indicate that all instances of that rule have the
appropriate relation to the rankr. PCutFr, FFr, and the axioms will have slightly
modified definitions, and we will need some additional information aboutPCut infer-
ences, which will be denoted byPCutF (d) = r or PCutF (d) ≈ r.

Definition 9.10. Thetarget rankof anAxHe,v axiom isrk(e).
Thetarget rankof anAxFHn,α,β ,AxPFHn,α,β ,AxClFHn,β , orAxPClFHn,β

is rk(n ∈ Iβ).

Definition 9.11. If theH-rule applies toΘ, we say(Θ,H) conflictswith (e, u, i) if
one of the following holds:

• e(Θ) ≡ n ∈ X, e ≡ n ∈ Y , u =?, andrk(n ∈ Y ) ≥ rk(n ∈ X)

• e = e(Θ) andu 6= v(Θ)

• (e, v) ∈ C(H) andv 6= u

• e ≡ n ∈ Iα ande(Θ) ≡ εx¬|B[I<α, n, x]|S
We sayΘ conflicts with(Σ,H,A) if:

• There is some(e, u, i) ∈ Σ such thatΘ conflicts with(e, u, i).

• There is some(e, v) ∈ C(H) such thate ∈ A.

Definition 9.12. Letd be a derivation.

• If
X ∈ {Cut, CutFr, CutFr∗, F r,H, FCut, PCut, FH,ClFH}

and./∈ {<,>,≤,≥,=} then we sayX(d) ./ r if every application of a ruleX
has main expression with rank./ r.

• We sayPCutF (d) = r if everyPCutn,α,β,δ appearing ind satisfiesrk(n ∈
Iδ) > r andrk(n ∈ Iγ) < r for all γ < δ.

• We sayPCutF (d) ≈ r if for everyPCutn,α,β,δ appearing,δ is the least ordinal
such thatrk(n ∈ Iδ) ≥ r.

• We sayPCutFr(d) = r if everyPCutFrn,α,β,δ appearing ind satisfiesrk(n ∈
Iδ) = r.

• If ./∈ {>,≥} then we sayFFr(d) ./ r if everyFFrn,α,β apperaing ind
satisfiesrk(n ∈ I<β) ./ r.

• We sayAx(d) ≤ r if everyAxH-type axiomΘ has target rank≤ r, and if the
target rank isr thenΘ conflicts with the endsequent ofd.
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• Bothr- andr+-derivations are derivations satisfying certain restrictions on the
axioms and inferences they include. The restrictions are stated in this table:

r-derivation r+-derivation
Cut(d) < r Cut(d) < r

FCut(d) < r FCut(d) < r
PCutF (d) ≈ r PCutF (d) = r

H(d) ≥ r H(d) ≥ r
FH(d) ≥ r FH(d) ≥ r

ClFH(d) ≥ r ClFH(d) ≥ r
PCut(d) ≥ r PCut(d) ≥ r
Fr(d) ≥ r Fr(d) > r

FFr(d) ≥ r FFr(d) > r
CutFr(d) < 0 CutFr(d) = r
CutFr∗(d) = Ω + 1 CutFr∗(d) = Ω + 1
PCutFr(d) < 0 PCutFr(d) = r

Ax(d) ≤ r Ax(d) ≤ r

In addition:

• If a CutFr∗ inference occurs in anr- or r+-derivation thenr ≤ Ω + 1

• If u 6=? and I is a CutFr∗ inference thenPrem(I, u) is an Ω + 1- and an
Ω + 1+-derivation (in addition to being anr- or r+-derivation)

• If I is anH-inference of rankr in an r+-derivation and at a correctedH-step
then the premise ofI is anΩ+1- and anΩ+1+-derivation (in addition to being
an r- or r+-derivation)

• If (Θ,H,A) is the premise of anFre inference andrk(e) = Ω + 1 then either
r ≤ o(H_{(e, ?)} ∪ΘS) or e ∈ A

This means that in anr or r+ derivation, allCut andFCut inferences have rank
belowr, while allH, Fr, FH, andFFr inferences have ranks greater thanr. Note
that we want the conclusion of theFFr inference to have rank at leastr, not just the
premise.PCut inferences are required to ’span’ the cut-rank, in the sense that the only
premise adding a temporary value adds an expression with rank at leastr while the
premises adding fixed values add expressions with rank belowr. CutFr andPCutFr
inferences are required to be situated precisely atr. ForCutFr this means the main
term has rankr, while forPCutFr, this means that the premise(n ∈ Iδ,>, t) which
distinguishes it fromPCut will have rankr.

We wish to measure the height ofr- andr+-derivations more precisely to ensure
that we do not take an overly constrictive upper bound which works before we collapse,
but is not generous enough when we try to collapse.

Definition 9.13. If d is anr- or r+-derivation andr ≥ Ω then we sayh(d) ≤ η only if
the following additional inductive criterion is met: for everyH-type axiom(Σ,H,A)
in d, h((Σ,H,A)) ≤ η implieso(H_Σ; r).
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Lemma 9.8. SupposeC is someCutFr∗e inference in anr-derivation of∅ for some
r < Ω, and suppose(Θ,H,A) is an axiom of typeAxPClFHn,Ω,α in Prem(C, u),
suppose the conclusion ofC is (Σ,H ′, A′). Theno(H) < o((H ′)_{(e, ?)} ∪ Σ).

In addition, ifOrd(Θ) = Ord(Σ) then

α < D(o((H ′)_{(e, ?)} ∪ Σ) + k((H ′)_{(e, ?)} ∪ Σ))

Proof. We haveH = (H ′)_〈S1, . . . , Sn and there existsn such thatextn(Si) = ΣS

for somen, ande(n, Si) = e, v(n, Si) = u for eachi ≤ n. But since||u||A < ||?||A,
it follows thato(H) < o((H ′)_{(e, ?)} ∪ Σ).

The second part follows from the definitions ofo andk.

Definition 9.14. (Θ0, . . . ,Θn) is ar-prepath(for Θn) if it is a path in somer-derivation
of Θ0 = ∅. A path is assumed to be given with an analysis of the inference rules con-
stituting the path.

(Θ0, . . . ,Θn) is an r-path(for Θn) if it is an r-prepath and if the inference from
Θi+1 to Θi is aCutFr∗ inference thenΘi+1 belongs toPrem(I, ?).

The key result is Lemma 9.33, which shows that, if we can eliminate cuts, we will
prove the termination of theH-process.

Lemma 9.9. 1. If Θ is a sequent in anr + 1 derivation of∅ thenΘt & r + 1,
Θf ≤ r

2. If Σ is a sequent in anr+ derivation ofΘ then:

(a) Θ≤r \Θt E Σ
(b) (Σf)≥r ⊆ Θ
(c) Θt ≥ r ⇒ Σt & r

(d) If (n ∈ I<α, ?, t) ∈ Θ then either there is someβ such that(n ∈ I<β , ?, t) ∈
Σ or there is someβ ≥ O(r) such that(n ∈ Iβ ,>, t) ∈ Σ.

Proof. 1. The statement is proved by bottom-up induction on the proof. It ob-
viously holds for∅, and in anr + 1-derivation viewed bottom up, temporary
components are added byFr, H, CutFr∗, FFr, PCut, FH, andClFH, and
these components all have rank at leastr + 1, unless they belong toΥ≤r \ Υ
for someΥ, in which case they must have rankr. Fixed components are added
by Cut, FCut, andPCut, and these components all have rank< r + 1, and
therefore≤ r. The remaining inferences cannot occur.

2. (a) Again by bottom-up induction. The statement obviously holds forΘ and
is trivially preserved byFr, Cut, CutFr, andCutFr∗. Also, since any
application of theH, FH, or ClFH rules is of rank at leastr, the only
term of rankr or less which is removed must be some(e, v, t), which is
not in Θ≤r \ Θt. Finally, any application ofFFr, FCut, PCutFr, or
PCut which removes some(n ∈ I<β , ?, f) adds in some(n ∈ I<α, ?, i)
or (n ∈ Iα,>, i) which satisfies the definition ofE.
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(b) Going downwards, the only points at which(e, u, f) can vanish are the
Cut,FCut,PCut, andPCutFr inferences, andCut(d),FCut(d),PCutF (d) <
r whilePCutFr(d) = r so if rk(e) ≥ r then(e, u, f) cannot be removed.

(c) SinceFr(d) > r,H(d), FH(d), ClFH(d) ≥ r,CutFr(d) = r,CutFr(d) ≥
r, PCut(d) > r, FFr(d) > r, andPCutFr(d) = r, all components
(e, u, t) added going upwards have rank at leastr, unless they belong to
Υ≤r \Υ for someΥ, in which case they have rankr − 1.

(d) By bottom-up induction,(e, u, t) cannot be removed by aCut, CutFr,
CutFr∗, Fr, orFFr inference. If any other inference removese, it much
be replaced by some component which ensures thatn ∈ I<β ↪→ΣS

⊥.

Lemma 9.10. If d is anr+-derivation ofΘ then there is anr-derivationd′ of Θ.

Proof. If r 6= Ω + 1, prune allCutFr inferences toFr inferences by deleting all
premises except the leftmost one and prune allPCutFr inferences toPCut inferences
by deleting the appropriate premise.

If r = Ω + 1, convert allCutFr inferences toCutFr∗ inferences.

Definition 9.15. LetΘ andΣ be two sequents. ThenΘ andΣ aremultiplicableif:

1. Whenever(e, u, i), (e, u′, i′) ∈ Θ ∪ Σ, u′ = u andi′ = i

2. If (n ∈ Iα,>, i), (n ∈ I<β , ?, i′) ∈ Θ ∪ Σ thenβ ≤ α

We defineRΘ,Σ by:

1. If (n ∈ Iα,>, i), (n ∈ I<β , ?, i′) ∈ Θ ∪ Σ then(n ∈ I<β , ?, i′) ∈ RΘ,Σ

2. If (n ∈ I<α, ?, i), (n ∈ I<β , ?, i) ∈ Θ ∪ Σ andβ < α then(n ∈ I<β , ?, i′) ∈
RΘ,Σ

3. If (n ∈ Iα,>, i), (n ∈ Iβ ,>, i′) ∈ Θ∪Σ andα < β then(n ∈ Iβ , ?, i′) ∈ RΘ,Σ

Θ ∗ Σ is defined and equal toΘ ∪ Σ \RΘ,Σ iff Θ andΣ are multiplicable.

RΘ,Σ is the set of redundant values inΘ∪Σ which are implied by other values also
present, so we remove them to make sure thatΘ ∗ Σ is still parsimonious.

Lemma 9.11. If Θ andΣ are multiplicable then:

1. If (e, u, i) ∈ RΘ,Σ thene ↪→(Θ∗Σ)S
u

2. Θ ∗ Σ is a sequent

Proof. 1. Suppose(n ∈ I<β , ?) ∈ (RΘ,Σ)S and there is some(n ∈ Iα,>) ∈
(Θ ∗ Σ)S . Then, sinceΘ andΣ are multiplicable, we must haveβ ≤ α, and
therefore, since(n ∈ Iα,>) ∈ (Θ ∗ Σ)S , the result follows. The only other
possible way there could be some(n ∈ I<β , ?) ∈ (RΘ,Σ)S is if there is some
(n ∈ I<α, ?) ∈ (Θ ∗ Σ)S with β < α, in which case again the result follows.

If (n ∈ Iβ ,>) ∈ (RΘ,Σ)S then we have(n ∈ Iα,>) ∈ (Θ ∗ Σ)S , so the result
follows.
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2. All we need to show is that(Θ ∗ Σ)S is anε-substitution. This follows directly
from the fact thatΘS andΣS areε-substitutions and there are non ∈ Iα, n ∈
Iβ ∈ dom(Θ ∗ Σ) with α 6= β since we removedRΘ,Σ from Θ ∗ Σ.

When we eliminate cuts, we will want to replace certainAxH-type axioms with
branches from the cut. To do this, it will be necessary to show that we can convert the
branch into a derivation of the axiom, since the two will have different components.
To do this, we will need to show that, under suitable conditions, the axiom and the
conclusion of the cut are multiplicable.

The following lemma will be needed when we wish to eliminate aCute inference.
Above that inference is someAxHe,v axiom, which we wish to replace with the suit-
able branch of theCut inference. We will replace the axiom with a derivation via anH
inference; the premise of this will beΣ. We will then want to show that the conclusion
of theCut inference,Θ, is sufficiently compatible withΣ, in the sense that we will be
able to convert the relevant branch of theCut inference into a derivation ofΣ. The
situation when we eliminateFCut or PCut inferences is similar, and will make use
of this lemma in the same way.

Lemma 9.12. Supposed is anr+ deduction ofΘ fromΣ, Σ . r, and there is anr+1
path forΘ. ThenΣ andΘ are multiplicable andΘ E Θ ∗ Σ.

Proof. Suppose(e, u, i), (e, u′, i′) ∈ Σ∪Θ. Σ andΘ are sequents, so assume, w.l.o.g.,
that(e, u, i) ∈ Σ and(e, u′, i′) ∈ Θ. We distinguish whethere is a term or a formula;
if e is a term then we haverk(e) ≤ r sinceΣ . r. But theni′ = f by Lemma 9.9(1),
and thereforee ∈ Θ≤r \Θt, so(e, u′, i′) ∈ Σ by 9.9(2)(a), sou = u′ andi = i′ since
Σ is a sequent. Ife is a formula thenu = u′ is determined bye (u = u′ =? if e has the
form n ∈ I<α, andu = u′ = > if e has the formn ∈ Iα). Now, if rk(e) > r then we
havei′ = t, and by 9.9(2)(b), we cannot havei = f , soi′ = i = t. If rk(e) ≤ r and
i′ = f then since(e, u, i) ∈ Σ andΣ is a sequent, by 9.9(2)(a),i′ = i = f . In the final
case,rk(e) ≤ r andi′ = t. But then by Lemma 9.9(1), it must be thate has the form
n ∈ I<β for β = O(r). Thenu = u′ =? ande ∈ dom(Σ), and by Lemma 9.9(2)(d),
it must be thati = t.

Next suppose(n ∈ Iα,>, i), (n ∈ I<β , ?, i′) ∈ Σ ∪ Θ whereα < β. Suppose
(n ∈ Iα,>, i) ∈ Θ. Then if rk(n ∈ Iα) ≤ r we must havei = f by Lemma 9.9(1),
so we must haven ∈ Iα ↪→ΣS

> sinceΘ≤r = Θ≤r \ Θt E Σ, contradicting the fact
that (n ∈ I<β , ?) ∈ Σ. On the other hand, ifrk(n ∈ Iα) > r then we cannot have
r < rk(n ∈ Iα) < rk(n ∈ I<β) ≤ r + 1.

On the other hand, suppose(n ∈ Iα,>, i) ∈ Σ. Thenrk(n ∈ Iα) ≤ r. But since
(n ∈ I<β , ?, t) ∈ Θ, by Lemma 9.9(2)(d), it must be thati = t andα ≥ O(r). But
r − 1 ≤ 3O(r), son ∈ Iα ≥ r + 1, a contradiction.

Suppose(e, u, i) ∈ Θ. If i = t then since there is anr + 1 path forΘ, by Lemma
9.9(1) eitherrk(e) > r, in which case(e, u, t) ∈ Θ ∗Σ sinceΣ . r, or rk(e) = r and
(e, u, t) ∈ Θ ∗ Σ by Lemma 9.9(2)(d). Ifi = f thenrk(e) ≤ r by Lemma 9.9(1), so
sinceΘ≤r = Θ≤r \Θt E Σ, alsoΘ≤r E Θ ∗ Σ.
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9.4 Cut Elimination

A number of technical lemmata are needed for cut-elimination, so a short outline is in
order. The core operation is a reduction of oneCut or FCut by replacing the axioms
representingH steps with the corresponding inference rule, using another branch,b,
of the cut to provide a derivation for the premise. Lemmata 9.13 through 9.16 provide
operations on derivations which we use to makeb fit on top of theH-inference even
when there are many steps between the cut and the axiom. Lemma 9.19 combines them
to show that we can indeed perform a correctH-inference from the branchb.

Lemma 9.23 uses this to remove aCut, while Lemmata 9.21 and 9.26 remove
FCuts andPCuts respectively. Lemma 9.27 applies these three lemmata inductively
to reduce the rank of a derivation of∅ from r + 1 to r.

This process is then iterated (Lemma 9.28) to reduce the cut-rank to a limit ordinal.
Lemma 9.30 states that we can move from a limit cut-rank to some lower cut-rank in a
countable derivation, and Lemma 9.31 lets us collapseΩ derivations to countable size.

The next two lemmata allows us to replace pairs(n ∈ I<α, ?) in our derivations
with some(e, u) which implies this (that is, either(n ∈ I<β , ?) for β > α or (n ∈
Iβ ,>) for β ≥ α).

Note that the lemmas below largely ignore the history portion of sequents. These
portions are changed appropriately as we alter corresponding sequents, but the only
situation in which these changes matters is when we changeC(H), and this case is
dealt with.

Lemma 9.13 (Persistency).Letd be a derivation such that:

1. d is anr+ derivation

2. The end-sequent ofd is of the form(n ∈ I<α, ?, f),Θ

3. There is some(e, u, t) ∈ Θ such thatrk(e) = r andu 6=?

4. h(d) ≤ η

Letβ ≥ α and supposerk(n ∈ Iβ) < r.
Then there is a derivationdΣ such that:

1. dΣ is anr+ derivation

2. The end-sequent ofdΣ is Σ = (n ∈ Iβ ,>, f),Θ

3. h(dΣ) ≤ η

Similarly, if rk(n ∈ I<β) < r, there is a derivationdΣ′ such that:

1. dΣ′ is anr+ derivation

2. The end-sequent ofdΣ′ is Σ′ = (n ∈ I<β , ?, f),Θ

3. h(dΣ′) ≤ η

Proof. Otherwise, by induction on the last inference ofd.
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1. Cut,CutFr,CutFr∗,Fr: The result follows directly from IH.

2. H, FH: Sincen ∈ I<α ↪→ΣS
⊥ andn ∈ I<α ↪→Σ′

S
⊥, any expression

computed by(n ∈ I<α, ?, f),Θ is also computed byΣ andΣ′ and has the same
value; so theH-expression is unchanged. In addition, while the history may
change, these changes will not changeC(H)

3. ClFH: As for anFH, with the additional condition that we must make sure the
ordinal does not change. But since there is somee ∈ dom(Θ) with rk(e) = r,
Ord(Θ) = Ord(Σ), Lemma 7.2 applies.

4. FCutm,γ,δ: if m 6= n then the result follows directly from IH. Ifm = n and
β ≥ γ then the result follows by applying IH to the subderivation of(n ∈
I<γ , ?, f),Θ. Otherwiseγ > β ≥ α = δ, so we trim theFCut to aFCutm,γ,β

to give a derivation ofΣ′, and just take the appropriate subderivation to giveΣ.

That is, if we start with:

(n ∈ I<γ , ?, f),Θ (n ∈ Iζ ,>, f),Θ, . . . ∀ζ(δ ≤ ζ < γ ∈ V O)
FCutn,γ,α

(n ∈ I<α, ?, f),Θ

we can take the subderivation of(n ∈ Iβ ,>, f),Θ for Σ and delete extra
premises ofFCutn,γ,α to obtain:

(n ∈ I<γ , ?, f),Θ (n ∈ Iζ ,>, f),Θ, . . . ∀ζ(β ≤ ζ < γ ∈ V O)
FCutn,γ,β

(n ∈ I<β , ?, f),Θ

for Σ′.

5. PCutm,γ,δ,ε: if m 6= n then the result follows directly from IH. Ifm = n then
take the appropriate subderivation forΣ and truncate toPCutn,γ,β,ε to giveΣ′.

6. PCutFrm,γ,δ,ε: if m 6= n then the result follows directly from IH. Ifm = n
then take the appropriate subderivation forΣ and truncate toPCutFrn,γ,β,ε to
giveΣ′.

7. FFrm,γ,δ: m = n is impossible by rank considerations, som 6= n and the result
follows directly from IH.

8. AxPClFH, AxClFH: SinceAx(d) ≤ r, the main term would have rank at
mostr. But since there is some(e, u, t) ∈ Θ with u 6=? andrk(e) = r, Lemma
9.1 requires that the rank of the axiom be greater thanr. Therefore these axioms
do not appear.

9. All axioms other thanAxPClFH andAxClFH remain valid

Lemma 9.14 (Persistency).Letd be a derivation such that:

1. d is anr+ derivation

2. The end-sequent ofd is of the form(n ∈ I<α, ?, i),Θ
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3. h(d) ≤ η

Letβ ≥ α and supposerk(n ∈ Iβ) = r and that there is some(e, u, t) ∈ Θ such
that rk(e) = r andu 6=?. Then there is a derivationdΣ such that:

1. dΣ is anr+ derivation

2. The end-sequent ofdΣ is Σ = (n ∈ Iβ ,>, t),Θ

3. h(dΣ) ≤ η

Similarly, ifβ = O(r) then there is a derivationdΣ′ such that:

1. dΣ′ is anr+ derivation

2. The end-sequent ofdΣ′ is Σ′ = ((n ∈ I<β , ?, t),Θ)

3. h(dΣ′) ≤ η

Proof. By induction on the last inference ofd.

1. Cut,CutFr,CutFr∗,Fr: The result follows directly from IH.

2. H, FH: Any expression computed by(n ∈ I<α, ?, i),Θ is also computed byΣ
andΣ′ and has the same value, so theH-expression is unchanged and the result
follows from IH using the same inference rule. In addition, while the history
may change,C(H) will not change.

3. ClFH: As for anFH, with the additional condition that we must make sure
the ordinal does not change. But if this adds an ordinal, we already have some
e ∈ dom(Θ) with rk(e) = r, soOrd(Θ) = Ord(Σ).

4. FCutm,γ,δ: if m 6= n then the result follows directly from IH. Ifm = n then
sincerk(n ∈ I<γ) < r, the result follows by applying IH to the subderivation
of (n ∈ I<γ , ?, f),Θ.

5. PCutm,γ,δ,ε: if m 6= n then the result follows directly from IH. Ifm = n
andα = γ then we have an appropriate subderivation, otherwise replace the
inference with anFFr inference.

6. PCutFrm,γ,δ,ε: if m 6= n then the result follows directly from IH. Ifm = n
then it must be thatα = δ andΣ is a conclusion of a subderivation.

7. FFrm,γ,δ: if m 6= n the result follows directly from IH. Ifm = n thenδ = β,
so we are done.

8. AxFHn,α,γ : replace with anAxPFHn,β,γ .

9. AxPClFH, AxClFH: In theΣ case, sinceAx(d) ≤ r, the main term would
have rank at mostr. But since there is some(e, u, t) ∈ Θ with u 6=? and
rk(e) = r, Lemma 9.1 requires that the rank of the axiom be greater thanr.
Therefore these axioms do not appear.

In the Σ′ case, these axioms remain valid except that someAxClFH axioms
might have to be replaced withAxPClFH axioms.
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10. Other axioms are unchanged

The same functions that measured can measuredΣ anddΣ′ .

Lemma 9.15 (Weakening).Letd be a derivation ofΘ andΣ a sequent such that:

1. d is anr+ derivation

2. There is some(e, u, t) ∈ Θ with u 6=? andrk(e) = r

3. Σ . r

4. (Σf)≥r ⊆ Θ

5. Σt & r

6. Θ≤r E Σ

7. Θ E Θ ∗ Σ

8. h(d) ≤ η

Then there is an derivationd ∗ Σ of Θ ∗ Σ such that:

1. d ∗ Σ is anr+ derivation

2. h(d′) ≤ η

This lemma is one of the core operations we will use when eliminating cuts. The
complicated statement hides the basic situation we are dealing with:Σ is the premise of
an inference which results from replacing someAxH-type axiom with the correspond-
ingH-type inference.Θ is a premise of theCut-type inference which first introduced
the main expression of that inference. Our goal here is to use the derivationd which we
can place on top of our newH-type inference to make this deduction into a derivation
(the conclusion ofd′ is not quiteΣ–the next lemma will resolve this).

Proof. By induction on the last inference ofd.

1. Cut: Let the main term bee. Thenrk(e) < r and either:

(a) There is someu such that(e, u, t) ∈ Σ: not possible, sinceΣt & r

(b) There is someu such that(e, u, f) ∈ Σ: then((e, u, f),Θ) ∗ Σ = Θ ∗ Σ,
and therefored ∗ Σ = Prem(I, u) ∗ Σ

(c) There is no suchu: then by I.H. for eachu, Prem(I, u)∗Σ is defined, and
d ∗ Σ just applies theCut rule to(Prem(I, u) ∗ Σ)u∈N∪{?}

2. CutFr, CutFr∗: Let the main term bee. Thenrk(e) ≥ r and either:

(a) There is someu such that(e, u, t) ∈ Σ: then((e, u, t),Θ) ∗ Σ = Θ ∗ Σ,
and therefored ∗ Σ = Prem(I, u) ∗ Σ
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(b) There isu such that(e, u, f) ∈ Σ: not possible, since(Σf)≥r ⊆ Θ and
(e, u, f) 6∈ Θ.

(c) There is no suchu: then by I.H. for eachu, Prem(I, u)∗Σ is defined, and
d ∗ Σ just applies theCutFr rule to(Prem(I, u) ∗ Σ)u∈N∪{?}

3. Fr: Let the main term bee. Then((e, ?, t),Θ) ∗ Σ is defined, sinceΣ . r <
rk(e), andd ∗ Σ is just theFr rule applied to the derivation ofΘ ∗ Σ.

4. H: Let the main term bee. Thenrk(e) ≥ r andΘ = (e, u, i),Υ is derived from
Θ′ = (e, v, t),Υ≤rk(e). SinceΣ . r ≤ rk(e), Σ′ = {(e′, u′, i′) ∈ Σ | e′ 6= e}
is also correct, and(Σ′f)≥r ⊆ Θ′.

Since Σ′ ⊆ Σ and Θ′ ⊆ Θ, Θ′ and Σ′ are multiplicable andΘ′ ∗ Σ′ =
(e, v, t),Υ≤rk(e) ∗Σ′ = (e, v, t), (Υ∗Σ′)≤rk(e), whileΘ∗Σ = (e, u, i),Υ∗Σ′.
Therefored∗Σ is obtained by applying the same inference to the derivation given
by I.H..

Now, supposeC(H) changes. Then this must be at a correctedH-step, and
rk(e) = r. But then the derivation above is also anΩ+1+ derivation, so, by IH,
we have a derivation ofd ∗ Σ ∪ {(e, u, t) | (e, u) ∈ C(H)}.

5. FCutn,α,β ,PCutn,α,β,δ,PCutFrn,α,β,δ: Call the inferenceI and letΘ = (n ∈
I<β , ?, f),Θ′.

(a) If there are non ∈ Iγ or n ∈ I<γ for anyγ in dom(Σ) then just apply
IH to each subderivation and end the derivation with the same inference
applied to the new subderivations.

(b) Suppose we haveΣ = (n ∈ Iγ ,>, i),Σ′. Then by IH, ifPrem(I, u) is
one of the immediate subderivations thenPrem(I, u)∗Σ′ is defined. Ifi =
t thenrk(n ∈ Iγ) = r, soR is not aPCut inference. IfI is aPCutFr
inference, there is a subderivation ending in(n ∈ Iδ,>, t),Θ′, and since
δ = γ, by IH there is a derivation of((n ∈ Iγ ,>, t),Θ′)∗Σ = Θ∗Σ. If R
is anFCut inference, we haveγ > α, so the result follows from Lemma
9.14 followed by IH.
If i = f then we cannot haverk(n ∈ Iγ) ≥ r, since(Σf)≥r ⊆ Θ
andn ∈ Iγ 6∈ dom(Θ). Sincerk(n ∈ Iγ) < r either we have some
subderivation ending in(n ∈ Iγ ,>, f),Θ, and we apply IH to that, or we
apply IH to the result of Lemma 9.13.

(c) Suppose we haveΣ = (n ∈ I<γ , ?, i),Σ′. Then by IH, ifPrem(I, u) is
some subderivation thenPrem(I, u) ∗ Σ′ is defined. Ifi = t thenr +
1 ≥ rk(n ∈ I<γ) ≥ r − 1. If I is a PCut inference then there is a
subderivation ending in(n ∈ I<α, ?, t),Θ′. If γ = α then we apply IH
to the subderivation of(n ∈ Iγ ,>, t),Θ′, otherwise we truncate thePCut
to anFFr inference. IfR is anFCUt inference, we haveγ > α, so the
result follows from Lemma 9.14 and IH. IfR is aPCutFr inference then
we truncate to anFFr inference and apply IH toPrem(I, α).
If i = f then we cannot haverk(n ∈ I<γ) ≥ r, since(Σf)≥r ⊆ Θ
andn ∈ I<γ 6∈ dom(Θ). If I is anFCut inference withα < γ, we
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apply Lemma 9.13 followed by IH, otherwise we prune the inference by
replacingβ with γ.

6. FFrn,α,β : There can be non ∈ Iγ in dom(Σ), and ifΣ = (n ∈ I<γ , ?, i),Σ′

theni = t since the sequents are multiplicable, andγ ≤ β, soΘ ∗ Σ = Θ ∗ Σ′,
and we just apply IH to the premise of theFFr inference, and add the same
FFr inference to give the required derivation.

7. FHn,α,β :

(a) If there are non ∈ Iγ or n ∈ I<γ for anyγ in dom(Σ) then just apply IH
to the subderivation and end the derivation with the same inference applied
to the new subderivation.

(b) We cannot haveΣ = (n ∈ Iγ ,>, i),Σ′, since eithern ∈ Iα ∈ dom(Θ) or
n ∈ I<α ∈ dom(Θ) andα > γ.

(c) SupposeΣ = (n ∈ I<γ , ?, i),Σ′. We haveΘ ∗ Σ = Θ ∗ Σ′, sinceα > γ
and the inference applied to the result of the inductive hypothesis remains
valid.

8. ClFHn,ξ: As with anFH inference, and note that since there is some(e, u, t) ∈
Θ with u 6=? andrk(e) = r, it follows thatr < rk(n ∈ Iβ). Then sinceΣ . r,
it follows by 7.2 that the ordinal remains unchanged.

9. AxPClFH, AxClFH: SinceAx(d) ≤ r, the main term would have rank at
mostr. But since there is some(e, u, t) ∈ Θ with u 6=? andrk(e) = r, Lemma
9.1 requirs that the rank of the axiom be greater thanr if r < Ω. Therefore these
axioms do not appear ifr < Ω.

10. Axioms: Otherwise, ifΘ is an axiom thenΘ ∗ Σ is an axiom of the same kind.

Lemma 9.16 (Repetition). Let p = (Θ0, . . . ,Θn) be ar + 1 path forΘ = Θn. Let
Σ . r be a correct sequent such thatΘ≤r E Σ, Θ ∗ Σ is defined, andΘ E Θ ∗ Σ.

Then there is a derivationd′ of Σ fromΘ ∗Σ consisting only ofFr,H, FFr, FH,
andClFH inferences of ranks> r copied fromp and in the same order.

This lemma completes the work of the previous one, providing a series of infer-
ences we can use to place the derivation given by the previous one on top of theH-type
inference we have created.

Proof. By induction onn, and trivial if n = 0. Supposen > 0 and letΘ′ = Θn−1.
SinceΘ is on anr+ 1 path, it follows thatΘ′

≤r E Θ≤r (since no inference in anr+ 1
path will remove elements of rank≤ r, nor elements of rank greater thanr which might
be inΘ′

≤r, without replacing them by something appropriate) andΘ′ ∗Σ is defined, so
by IH there is a derivation ofΣ from Θ′ ∗ Σ. Consider the inference fromΘ to Θ′.

1. Cut: We haveΘ = (e, u, f),Θ′ andrk(e) ≤ r. ThereforeΘ ∗ Σ = Θ′ ∗ Σ
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2. CutFr,PCutFr: impossible in anr + 1-path

3. CutFr∗: This must be the? branch, so anFr inference applies. Sincep is a
path forΘ, e ∈ A.

4. Fr: Θ = (e, ?, t),Θ′. Thenrk(e) > r, soΘ ∗Σ = (e, ?, t),Θ′ ∗Σ and the same
Fr inference applies.

5. H: Θ = (e, v, t),Υ≤rk(e) andΘ′ = (e, u, t),Υ. Then sincerk(e) > r, Θ ∗Σ =
(e, v, t), (Υ ∗ Σ)≤rk(e). And Θ′ ∗ Σ = (e, u, t),Υ ∗ Σ, so theH-rule applies to
Θ′ ∗ Σ and has the sameH-value.

6. FCutn,α,β : We haveΘ = (e, u, f),Θ− andΘ′ = (e′, u′, f),Θ−. Also,{(e, u, f)}∗
Θ′ = Θ, and sinceΘ≤r E Σ andrk(e) ≤ r, we haveΘ ∗ Σ = Θ′ ∗ Σ.

7. PCutn,α,β,δ: We haveΘ = (e, u, i),Θ− andΘ′ = (e′, u′, i′),Θ−. If i = f
thenrk(e) < r, soΣ ∗Θ = Σ ∗Θ′. Otherwise,e = n ∈ I<α andn ∈ I<O(r) ∈
dom(Σ), so anFFr inference applies orΣ ∗Θ = Σ ∗Θ′.

8. FFrn,α,β : sincerk(n ∈ I<α) > rk(n ∈ I<β) > r, we have(n ∈ I<β , ?, t) ∈
dom(Θ′ ∗ Σ), soFFrn,α,β is an inference fromΘ ∗ Σ to Θ′ ∗ Σ.

9. FH: Θ = (e, v, t),Υ≤rk(e) andΘ′ = (e′,>, t),Υ. Sincerk(e) > rk(e′) ≥
r + 1 > r, Θ ∗ Σ = (e, v, t), (Υ ∗ Σ)≤rk(e). And Θ′ ∗ Σ = (e′,>, t),Υ ∗ Σ, so
theFH-rule applies toΘ′ ∗ Σ and has the sameH-value.

10. ClFH: As for anFH. The rank of the ordinal is greater than any ordinal in
Ord(Σ) by Lemma 7.3, and unchanged by Lemma 7.4.

Lemma 9.17. Letd be anr+-derivation of(Θ,H,A) with r ≥ Ω andH ′ a sequence
of ε-substitutions, andS a substitution withrk(e(S)) = r. Supposeh(d) ≤ η. Then
there is anr+-derivationd′ of (Θ, (H ′)_S_H,A) with h(d′) ≤ o((H ′)_S; r) + η.

Proof. By induction ond. The only case we need to check is ifd is an axiom. Then
we hado(H; r) ≤ η, and therefore

o((H ′)_S_H; r) = o((H ′)_S; r) + o(H; r)

Lemma 9.18. Suppose that there is anr+ derivationd of Θ, Σ is a correct sequent
such that:

1. Σ . r

2. Θ ∗ Σ is defined

3. (Σf)≤r ⊆ Θ

4. Σt & r
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5. Θ≤r E Σ

6. Θ E Θ ∗ Σ

7. There is anr + 1 pathp for Θ

8. h(d) ≤ η

9. There is some(e, u, t) ∈ Θ such thatrk(e) = r

Then there is anr+-derivationd′ of Σ with h(d′) ≤ η#n for somen.

This lemma combines the previous two into a single operation: given the premise
of anH-type inference,Σ, and the appropriate subderivation of aCut-type inference,
this lemma produces a derivation ofΣ.

Proof. By Lemma 9.15 there is a derivationd∗ of (Θ ∗ Σ, a ∪ a′ � Ord(Θ ∗ Σ)) with
h(d∗) ≤ η, and by Lemma 9.16 there is a deduction of(Σ, a′) from (Θ ∗ Σ, a ∪ a′ �
Ord(Θ∗Σ)) consisting only ofFr,H, FFr, FH, andClFH inferences of rank> r.

To see that the height bound holds, note that the ’tail’ attached by Lemma 9.16
consists of finitely many inferences. By [Poh89], Lemma 24.16(iv),α� α# 1. If we
defined0 = d∗ anddi to bed∗ with the firsti inferences from the tail, by induction,
h(di) ≤ η# i, sinceη# i� η# i# 1, and thereforeh(d′) ≤ η#n for somen.

Lemma 9.19.Let((e, u, i),Υ,H,A) be some instance ofAxH,AxPFH orAxPClFH
with main expressione. LetS = ((e, u, i),Υ)S , e′ = e(S), u′ = v(S), andr = rk(e′).

Supposed is anr+ derivation of(e, u, i),Θ which contains one or more instances
of (e, u, i),Υ, and suppose there exists anr + 1 path p for (e, u, i),Θ and anr+

derivationd′ of (e′, u′, t),Θ.
Then there is anr+ derivationd∗ of (e, u, t),Θ in which the axiom(e, u, i),Υ is

not present, and ifh(d) ≤ η andh(d′) ≤ ζ thenh(d∗) ≤ ζ#ω# η.

This is the core lemma which we will actually apply in eliminating cuts. It applies
the previous ones to replace all occurances of an axiom, setting the stage for elimination
of aCut-type inference. The complexity is necessary to deal with the various kinds of
axioms which are all handled by this lemma.

Proof. First, observe that(e, u, i),Υ cannot be an axiom in the derivationd′ of (e′, u′, t),Θ.
We must have(e, u) ∈ P(e′, u′), and therefore(e, u, i) and(e′, u′, t) cannot be present
in the same sequent. We also haveu′ 6=?, so by bottom-up induction, the only place
(e′, u′, t) could disappear (going upwards) in anr+ derivation is at anH inference in
which it is replaced by(e′, v) with v < u′. But eitheru =? or u′ < u, so(e, u, i) does
not occur in any sequent ind′.

DefineΣ = (e′, u′, t),Υ≤r.
By Lemma 9.12, we have thatΣ andΘ are multiplicable andΘ E Θ ∗ Σ. Since

(e′, u′, t) ∈ Σ, we have((e′, u′, t),Θ) ∗ Σ = Θ ∗ Σ, so by Lemma 9.9(2)(b), we have
(((e, u, i),Υ)f)≤r ⊆ (e, u, i),Θ, and by Lemma 9.9(2)(c) we have((e, u, i),Θ)t ≥
r ⇒ ((e, u, i),Υ)t & r. SinceΘ has anr + 1 path,Θt & r + 1, so (Σf)≥r ⊆
(e, u, f),Θ andΣt & r. We haveΘ≤r \Θt E Σ by Lemma 9.9(2)(a).
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By Lemma 9.18, there is a derivationdh of Σ with h(dh) ≤ ζ#n for somen.
Now, we constructd∗ by induction on the last inference ofd. If d is the axiom

(e, u, i),Υ, replace it with anH, FH, or ClFH inference as appropriate fromΣ to
(e, u, t),Υ. If r ≥ Ω, we apply Lemma 9.17 todh (the lemma applies sincerk(e′) =
r).

Let δ = u′ if e is anO-term andu′ 6∈ Ord(Θ), let δ = β if the axiom is
AxPFHn,α,β andβ 6∈ Ord(Θ), and0 otherwise. Sinceδ ∈ Ord(Υ), δ ≤ ζ. Also, if
r ≥ Ω, o(H; r) ≤ ζ. Thereforeh(d∗) ≤ ζ#ω# η (this is trivial if δ = 0; otherwise
it follows from the fact thatδ�

-
η).

If d is some other axiom thend∗ = d.
If d ends in some inferenceI, replace eachPrem(I, u) with Prem∗(I, u) using

IH, and letd∗ be the result of applyingI to thePrem∗(I, u), changing(e, u, f) to
(e, u, t) in the conclusion ofI if necessary (this can be done since a fixed expres-
sion will not be removed going up). Leth(Prem(I, u))) ≤ ηu; then since each
h(Prem∗(I, u)) ≤ ζ#ω# ηu, h(Prem∗(I, u)) ≤ ζ#ω# η.

...
d′ ∗ Σ Θ ∗ Σ

...
(e′, u′, t),Υ≤r

He,v
(e, u, t),Υ

d
...

(e, u, t),Θ

Lemma 9.20. Let d be anr+ derivation ending in(n ∈ I<α, ?, f),Θ with rk(n ∈
I<α) = r. Then there is anr+ derivationd′ ending in(n ∈ I<α, ?, t),Θ and if
h(d) ≤ η thenh(d′) ≤ η.

Let d be anr+ derivation ending in(n ∈ Iα,>, f),Θ with rk(n ∈ Iα) = r.
Then there is anr+ derivationd′ ending in(n ∈ Iα,>, t),Θ and if h(d) ≤ η then
h(d′) ≤ η.

This lemma, simple in concept, if not statement, lets us transform the branches
above anFCut orPCut, which add fixed main expressions, into derivations which end
with a temporary main expression, which we will need for cut-elimination to proceed
below that inference.

Proof. Replace anyAxFHn,α,β axioms withAxPFHn,α,β axioms andAxClFHn,β

axioms withAxPClFHn,β axioms. Then all inferences remain valid.

Lemma 9.21. Letd be an derivation ending in anFCutn,α,β with rk(n ∈ I<α) = r
such that the immediate subderivations arer+ derivations andp is an r + 1 path
for the end-sequent(n ∈ I<β , ?, f),Θ. Then there is anr+ derivationd′ of (n ∈
I<β , ?, f),Θ and ifh(d) ≤ η thenh(d′) ≤ η.

This lemma replaces anFCut with aPCut.
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Proof. Replace theFCut inference with aPCut inference and apply Lemma 9.20.

Lemma 9.22. Letd be an derivation
d?

...
(e, ?, f),Θ

du

...
(e, u, f),Θ u ∈ V ι(e)

CuteΘ
such thatrk(e) = r, the immediate sub-derivations ofd are r+ derivations, and

there exists anr+ 1 pathp for the end-sequentΘ of d. Then for eachu ∈ V ι(e) ∪ {?}
there is anr+ derivationd′u of (e, u, t),Θ. Also ifh(d) ≤ η then

h(d′u) ≤ (ω# η)× ||u||≺ι

where

||u||≺ι
=

 u If u ∈ N or u is an ordinal
ω If u =? andι = N
ι(e) If u =? andι(e) is an ordinal

This lemma constructs the new branch we will need when we eliminate aCut
inference.

Proof. By transfinite induction onu.
Suppose we have already constructedPrem′(I, v) for all v < u (or v <O u), or

for all v ∈ V ι(e) if u =?. Then for eachAxHe,v appearing ind which conflicts with
(e, u, t) but not withΘ, we already have anr+ derivation ofPrem′(I, v), since when
u 6=?, v < u (or v <O u). This satisfies the conditions of Lemma 9.19, so we apply
this to eachAxHe,v to getPrem′(i, u).

If AxHe,v conflicts withΘ, replace it withAxPHe,v.
Note that ife is anO-term andu 6∈ Ord(Θ) thenh(Prem(I, u)) ≤ η + u, and

h(Prem(I, u)) ≤ η otherwise.
If h(Prem′(I, v)) ≤ ζ thenh(Prem′(I, u)) ≤ ζ#ω# η, so by IH:

h(Prem′(I, u)) ≤ (ω# η)× ||u||≺ι
#ω# η = (ω# η)×(||u||≺ι

+ 1)

Lemma 9.23. Let d be a derivation ending with aCut inferenceC of rank r such
that the immediate sub-derivations ofd are r+-derivations andp is anr + 1-path for
the end-sequentΘ of d. Then there is anr+-derivationd′ of Θ and if h(d) ≤ η then
h(d′) ≤ (ω# η)×(max{r, ω}+ 1) + 1.

This lemma shows that it is possible to eliminate a singleCut.

Proof. By Lemma 9.22, for each premisedu : (e, u, f),Θ, there arer+ derivationsd′u
of (e, u, t),Θ, so we apply aCutFr to these to give the desired derivation.

The height bound follows since||?||≺ι(e) ≤ max{r, ω}: ||?||≺N
= ω, while

||?||≺α
= α.
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Lemma 9.24. Let d be a derivation ending with aCutFr∗e inferenceC such that
the immediate sub-derivations ofd are r+-derivations andp is anr + 1-path for the
end-sequentΘ of d. Then there is anr+-derivationd′ of Θ and if h(d) ≤ η then
h(d′) ≤ η + ω + η.

Proof. Let (Σ,H) be someAxHe′,v in d which conflicts with(e, ?, t), but does not
conflict withΘ. Then(e, u) ∈ H(H) for someu.

SetΥ = {(e, u, t) | (e, u) ∈ C(H)} ∪ Θ≤r. Observe thatΥ . r, Υf ⊆ Θ,
Υt = Ω + 1, Θ≤r E Υ, andΘ E Θ ∗Σ. Then by Lemma 9.15, sincedu is anΩ + 1+

derivation, we have a derivation ofdu ∗Υ. Now we can apply Lemma 9.19 to give an
r+-derivation ofΘ.

Lemma 9.25 (Path Weakening).Supposep is ans-path forΘ and there is somer < s
such thatCut(p), FCut(p) ≤ r. Then there is anr + 1-pathp′ for Θ that is obtained
by changing the subscripts of some of thePCutn,α,β,δ inferences inp.

In general, ans-path will not be anr-path for r 6= s; however, if theCut and
FCut inferences all have ranks at mostr, the only problem is excess branches on
PCut inferences. These can be pruned to given anr+ 1-path. We will need to do this
in order to make our lemmata general enough to handle cut-elimination past a limit
ordinal.

Proof. By induction on the length ofp. Letp = (Θ0, . . . ,Θ′,Θ). If the inference from
Θ to Θ′ is anything other than somePCutn,α,β,δ then the result follows from IH and
the fact thatCut(p), FCut(p) ≤ r.

If the inference isPCutn,α,β,δ then we prune it toPCutn,α,β,γ whereγ is the
least ordinal such thatrk(n ∈ Iγ) ≥ r.

Lemma 9.26. Letd be an derivation ending in aPCutn,α,β,δ with rk(n ∈ I<α) > r,
such that the immediate subderivations arer+ derivations, and there is ans pathpwith
s > r for the end-sequent(n ∈ I<β , ?, f),Θ such thatCut(p), FCut(p) ≤ r. Then
there is anr+ derivationd′ for (n ∈ I<β , ?, f),Θ such that everyAxPFHn,α,γ or
AxPClFHn,γ in d′ satisfiesrk(n ∈ Iγ) < r and ifh(d) ≤ η thenh(d′) ≤ η#ω# η.

This lemma takes aPCut which would be unacceptable in anr+-derivation and
converts it to an inference which is allowed in anr+-derivation. The resulting inference
will be aPCutFr if r = rk(n ∈ Iγ) for someγ, and aPCut inference otherwise.
Note that this lemma allows for the possibility of jumping multiple ranks, whens >
r + 1.

Proof. If r = rk(n ∈ Iγ) for a suitableγ then we apply Lemma 9.20 to the subderiva-
tionsPrem(I, γ) to giver+ derivationsPrem′(I, γ) of (n ∈ Iγ ,>, t),Θ and prune
the inference toPCutFrn,α,β,γ . If there is noγ such thatr = rk(n ∈ Iγ) then we
just prune to aPCutn,α,β,γ inference.

If anyAxPFHn,α,γ axioms withrk(n ∈ Iγ) ≥ r appear in this derivation, apply
Lemma 9.19 to them andPrem′(I, γ), using Lemma 9.25 to get ans′ path fors ≥
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s′ > r. The height bound holds sinceh(Prem′(I, γ)) ≤ η if γ is in the ordinals of the
end-sequent, andh(Prem′(I, γ)) ≤ η + γ otherwise.

If anyAxPClFHn,α,γ axioms withrk(n ∈ Iγ) ≥ r appear in this derivation, we
do the same thing, but must ensure that the height bound holds. But, by the definition
of γ, we must haveγ�

-
η, soh(Prem′(I, γ)) ≤ η.

Lemma 9.27. If d is anr + 1 derivation ofΘ andΘ has anr + 1 pathp then there is
an r+ derivationd′ of Θ and ifh(d) ≤ η then

h(d′) ≤ (max{r, ω}+ ω)ω # η # η+2

Recall that we may use Definition 2.2 to shorten this toh(d′) ≤ (α+ ω)1(η).

Proof. By induction ond.
If d is an axiom andr < Ω then the result is trivial.
If d is anH-type axiom(Σ,H,A), r ≥ Ω, we already haveo(H_ΣS ; r + 1) ≤

η. Since this exists in a derivation of∅, for each substitutionS in this sequence,
rk(e(S)) > r. Therefore

o(H_ΣS ; r) = (Ω + ω)o(H_ΣS ;r+1) ≤ (Ω + ω)ω # η # η+2

Otherwise, letI be the last inference ofd, let {Prem(I, u)} be the family of
immediate sub-derivations ofd, and letΘu be the end-sequent ofPrem(I, u). Then by
I.H., for eachu there is anr+ derivationPrem′(I, u) of Θu with h(Prem′(I, u)) ≤
(max{r, ω} + ω)ω # h(Prem(I,u)) # h(Prem(I,u))+2. Let d+ be the derivation ofΘ by
I from {Prem′(I, u)}.

If I is aCut of rankr, we apply Lemma 9.23 tod+ to get anr+ derivationd′ such
that

h(d′) ≤ (ω#h(d+))× (max{r, ω}+ 1) + 1
= (ω#(max{r, ω}+ ω)ω # h(d) # h(d))× (max{r, ω}+ 1) + 1
≤ (ω × (max{r, ω}+ 1))#(max{r, ω}+ ω)ω # h(d) # h(d)+1 + 1
≤ (max{r, ω}+ ω)ω # h(d) # h(d)+2

(Note that we use standard ordinal exponentiation rather than theαβ operation
which corresponds to the iteration of×. This is justified sincemax{r, ω} + ω is a
limit, so the two operations agree in all cases we are interested in [Bac55](§23.1).)

If I is an appropriatePCut inference not allowable in anr+ derivation, apply
Lemma 9.26, and ifI is an appropriateFCut inference not allowable in anr+ deriva-
tion, apply Lemma 9.21.

If I is aCutFr∗ inference, we deal with two cases. If there is someu 6=? such that
Prem(I, u) is not anr+-derivation (note that we cannot apply IH to these premises,
because there is not a valid path) then trim this to aFr inference. This can only
happen whenr ≤ o(H_{(e, ?} ∪ ΘS)), so the derivation remains valid. Otherwise,
apply Lemma 9.24.

Otherwised+ is anr+ derivation ofΘ.
We must check thatAx(d) ≤ r is met. LetΣ be an axiom appearing indwith target

rank≥ r. If Σ is anAxH, AxFH, or AxClFH axiom then by Lemma 9.9(2)(b),
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(Σf)≥r ⊆ Θ, so it follows thate ∈ dom(Θ). But Θf ≤ r by Lemma 9.9(1). The
target rank must ber, sinced together withp gives anr + 1-derivation of∅.

If Σ is anAxPH which conflicts with the premise ofI, but not the conclusion,
thenΣ is at a correctedH-step, sor = 3α + 1 for someα. Consider the element in
the premise ofI whichΣ conflicts with. If it is(e(Σ), ?, t) thenI is aCute, and since
α ∈ Ord(e) and there is anr + 1-path forΘ, n ∈ Iα ∈ dom(Θ). But this conflicts
with Σ.

If the element in the premise isn ∈ Iα thenI must be aClFH inference, so the
H-rule applies toΘ, and therefore

(εx¬|B[I<Ω, n, x]|Σ≤r
, ?) = (εx¬|B[I<Ω, n, x]|Θ≤r

, ?) ∈ Θ

Finally, if the element in the premise is(εx¬|B[I<Ω, n, x]|Σ≤r
, ?) thenI is either

anFr or aCutFr∗ inference. But if this is anFr inference then we must haver >
h(Θ) since(εx¬|B[I<Ω, n, x]|Σ≤r

, ?) ∈ ΣS . But thene ∈ A, so Σ conflicts with
(Θ,H,A).

If I is aCutFr∗ inference then since(e, ?, t) ∈ Σ, it follows from Lemma 9.8
thano(H_{(e, ?)}∪ΘS) < r, so this axiom was eliminated when we applied Lemma
9.24.

SupposeΣ is either anAxPClFHn,β orAxPFHn,β axiom which conflicts with
a premise ofI but not the conclusion. Lete(Σ) ≡ n ∈ Iα. Then it must conflict with
somen ∈ Y with rk(n ∈ Y ) ≥ rk(n ∈ X). But thenI must be aPCut inference (it
cannot be anFFr inference, since then the conflicting component would be replaced
by another conflicting component). But then we eliminatedΣ when we applied Lemma
9.26.

Lemma 9.28. If d is anα + r-derivation ofΘ with r < ω such thath(d) ≤ η andΘ
has anα + r-pathp in which allCut andFCut inferences have rank≤ α then there
is anα derivationd′ of Θ such thath(d′) ≤ (α+ ω)r(η).

Proof. Note that for alln such that0 ≤ n ≤ r, we have anα + n pathpn by Lemma
9.25.

By induction onr. If r = 0 then we are done; otherwise, letr = s + 1. Then
by Lemmata 9.27, there is ans+ derivationd∗ of Θ with h(d∗) ≤ (α + ω)1(η). By
Lemma 9.10, there is ans derivation ofΘ.

Lemma 9.29. Letλ0 < λ, and define(ϕλ0)nη to be the result of iteratingϕλ0 n-times
onη. Then(ϕλ0)n(ϕλη + 1) ≤ ϕλ(η + 1).

Proof. Clearlyϕλη + 1 < ϕλ(η + 1), and therefore

(ϕλ0)n(ϕλη + 1) ≤ (ϕλ0)n(ϕλ(η + 1))

By straightforward induction onn, (ϕλ0)n(ϕλ(η + 1)) = ϕλ(η + 1).

Lemma 9.30. If d is anr + ωλ derivation ofΘ with λ a limit, h(d) ≤ η, andΘ has
anr+ ωλ-pathp such thatCut(p), FCut(p) ≤ r, then there is anr+ derivationd′ of
Θ with h(d′) ≤ ϕ(λ+ 1)(r + ωλ + η + 1).
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Proof. By main induction onλ and side induction onh(d). Assume that the lemma
holds for all limit ordinals< λ.

Consider the last inference ofd:

1. A Cut or FCut, of rankσ ≥ r. If λ = 0 then by Lemma 9.28, there is ad′

with h(d′) ≤ ϕ(λ+ 1)(r + ωλ + η + 1). If λ > 0 then there aren andλ0 such
thatσ < r + nωλ0 . Let Prem(I, u) be theλ-subderivations of the premise of
I with h(Prem(I, u)) ≤ ηu; then by the side induction, we have(r + nωλ0)+

derivationsPrem′(I, u) with h(Prem′(I, u)) ≤ φ(λ+1)(r+ωλ + η). Let the
derivationc be the result of applyingCut or FCut to thePrem′(I, u).

Applying the main IHn times gives anr+ derivationd′ of Θ with

h(d′) ≤ (ϕ(λ0 + 1))n(ϕ(λ+ 1)(r+ωλ + η) + 1) ≤ ϕ(λ+ 1)(r+ωλ + η+ 1)

by Lemma 9.29.

2. A PCutn,α,β,δ. Let Prem(I, γ) be theλ-subderivations of its premises. By
the side induction, eachPrem(I, γ) can be tranformed into anr+ derivation
Prem′(I, γ). Let c be the result of applyingPCut to thePrem′(I, γ).

Applying Lemma 9.26 gives anr+ derivationd′ of Θ. The height bound is
trivial.

3. Otherwise, using IH, replace each subderivationPrem(I, u) with anr+ deriva-
tion Prem′(I, u), and the resulting derivation,d′, is anr+ derivation and the
height bound is trivial.

Lemma 9.31 (Collapsing).Supposed is anΩ-derivationΘ such thath(d) ≤ η. Then
for everyr ≥ Dh(d), there is anr-derivationd′ of Θ with h(d′) ≤ Dη.

Proof. By induction ond. If d is an axiom, the result is trivial, since if0 � η, also
0 � Dη. Otherwise, apply IH to each premise of the final inferenceI of d. If I is
anH,FH,Fr, or FFr inference, the result follows directly from IH, since the only
premised′ has index0, so0 � η andh(d′) � h(d) impliesDh(d′) � Dη.

If I is aCut, CutFr∗, or FCut inference then we may applyI to the result of
applying IH to each premise. Then each premise is indexed by an ordinal≤ γ < Ω,
whereγ � η, and thereforeγ � Dη, so by definition, if some premise has heightα
thenDα� Dη, and we are done.

Now supposeI is a PCutn,Ω,β . If (Σ,H,A) is someAxPClFHn,Ω,α axiom
above this, we haveα = D(o(H_Σ; Ω)+k(H_Σ)). But since this is anΩ-derivation,
h((Σ,H,A)) ≤ η implieso(H_Σ; Ω) ≤ η, and using Lemma 9.2,α � Dη, so we
may trim this to aPCutn,r,β inference with height≤ Dη for anyr ≥ Dη.

Lemma 9.32. If d is anΩ + r-derivation of∅ with r < ω then there is a0-derivation
d′ of ∅, and ifh(d) < ΩΩ3+Ω2+1 thenh(d′) < DεΩ+1.
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Proof. By Lemma 9.28 there is anΩ-derivationd1 of ∅with h(d1) ≤ (Ω+ω)r(ΩΩ3+Ω2+1).
By Lemma 9.31, there is aDh(d1)-derivationd2 of ∅with h(d2) ≤ D(Ω+ω)r(ΩΩ3+Ω2+1).
Finally, by Lemma 9.30 there is a0-derivationd′ of ∅ with

h(d′) ≤ ϕ(D(Ω + ω)r(ΩΩ3+Ω2+1) + 1)(2D(Ω + ω)r(ΩΩ3+Ω2+1) + 1) < DεΩ+1

Lemma 9.33. In a 0-derivationd of ∅ all sequents are correct, the top sequent is an
AxS, and all other inferences are eitherFr,H, FFr, FH, or ClFH.

Proof. Sinced is a0-derivation, there are noCut,CutFr, FCut, PCut, orPCutFr
inferences, sod is linear. By bottom-up induction, all sequents ind are correct and and
Θf = ∅ for every sequentΘ in d. Sinced is well-founded, there is a top-sequentΥ
which must be an axiom, and since it must be correct,Υf = ∅, and sinceAx(d) ≤ 0
and the endsequent is∅, it must be anAxS.

Lemma 9.34. If there is a0-derivationd of ∅ then theH-process terminates.

Proof. By Lemma 9.33, all inferences ind areFr, H, FFr, FH, or ClFH. Since
the derivation is wellfounded, it corresponds to a finite sequenceΘ0, . . . ,Θn. Define
Si = {(e, u) ∈ (Θi)S | u 6=?}. SinceFr andFFr inferences only add or remove
expressions with default values, we have a sequence ofε-substitutions and ifSi 6= Si+1

thenSi+1 = H(Si) since the inference must be one ofH, FH, orClFH. SinceΘn

is an instance ofAxS, it follows that theH-process terminates.

Theorem 1. TheH-process terminates.

Proof. By Lemma 9.7 there is anr derivation of∅ for somer < Ω+ω. If r ≥ Ω, apply
Lemma 9.32, otherwise just apply Lemma 9.30. The result is a supported0-derivation
of ∅, so by Lemma 9.34, theH-process terminates.
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