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21-370 Discrete Time Finance Fall 2010

CHAPTER 9

AMERICAN DERIVATIVE SECURITIES, RANDOM MATURITY, AND
STOPPING TIMES IN THE MULTIPERIOD BINOMIAL MODEL

American Derivative Securities: A First Look

European put and call options have only one possible exercise date (also called
the expiration date) and this date is specified when an option is purchased. Although
the payoff amount of such an option is random, the date at which the payoff will be
made is deterministic.

American puts and calls have expiration dates, but can be exercised at any time
up to and including the expiration date. If all option parameters are the same, an
American option must cost at least as much as the European counterpart. Indeed,
if an American option were selling for strictly less than the European counterpart
an investor could purchase the American option, sell the corresponding European
option, invest the difference in the bank, store the American option in a drawer until
the expiration date and then use the American option to cover any liability created
by sale of the European option, thus creating an arbitrage.

The act of exercising an American option prior to the expiration date is known as
early exercise. The difference in price between an American option and the European
counterpart can be thought of as an early exercise premium. Assuming that the stock
does not pay dividends, we shall prove that the price of an American call is the same
as the price of a European call having the same strike price and expiration date; in
other words, there is no early exercise premium in this case. On the other hand, we
shall see that American puts can be worth strictly more than European puts having
the same strike price and expiration date.

Remark 9.1: In situations where the stock pays dividends, there is sometimes an
early exercise premium for American calls. The reason for this is that the stock price
drops when a dividend is paid, and consequently the holder of a call option may be
able to “capture a dividend payment” by exercising a call shortly before a dividend
is paid. The issue will be explored in Problem (...).

There is also the class of so-called Bermudan Options that have more than one
possible exercise date, but also have dates on which they cannot be exercised. In the
N -period binomial model, a Bermudan put or call option on the stock will have a
strike price K and a set E of possible exercise dates. The set E is a proper subset of
{0, 1, · · · , N} having at least two elements. Assuming that N ∈ E , the initial price of
a Bermudan put with strike price K must lie between the initial prices of a European
put and an American put with strike price K and expiration date N . Bermudan
options will be treated in the exercises.
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There are also much more general types of American derivative securities. Before
we begin a treatment of such securities it seems worthwhile to analyze a simple
numerical example.

Example 9.2: Consider the binomial model with N = 2, u = 2, d = 1
2
, r = .25, and

S0 = 4. Let U be a European put option on the stock with expiration date 2 and
strike price K = 5, and let V be an American put option on the stock having the
same expiration and strike.

We begin by computing the values (Un)0≤n≤2:

U2(H,H) = (5−16)+ = 0, U2(H,T ) = U2(T,H) = (5−4)+ = 1, U2(T, T ) = (5−1)+ = 4,

U1(H) =
4

5

[

1

2
(0) +

1

2
(1)

]

= .40, U1(T ) =
4

5

[

1

2
(1) +

1

2
(4)

]

= 2.00,

U0 =
4

5

[

1

2
(.40) +

1

2
(2)

]

= .96.

We can see immediately that V0 > U0, because if the American put is exercised at
t = 0, the holder will collect $1, so we must have V0 ≥ 1 > .96 = U0.

In analyzing the American put, we will always need to be aware of how much
could be collected if the option is exercised at the present time. At each time
n ∈ {0, 1, · · · , N}, the amount that the holder could collect by exercising the op-
tion immediately is known as the intrinsic value of the option at time n and will be
denoted by Gn.

The American put option with strike price K = 5 has intrinsic values

Gn(ω) = (5 − Sn(ω))+.

A simple computation shows that

G0 = 1

G1(H) = 0, G1(T ) = 3,

G2(H,H) = 0, G2(H,T ) = 1, G2(T,H) = 1, G2(T, T ) = 4.
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Let us determine the values (Vn)0≤n≤2 of the option. (When we speak of the value
Vn of the option at time n, we mean the value assuming that the option has not
been exercised yet.) If we arrive at time 2, and the option has not previously been
exercised, then V2(ω) = G2(ω), i.e.

V2(H,H) = 0, V2(H,T ) = 1, V2(T,H) = 1, V2(T, T ) = 4.

Consider the situation at time 1.

1. Suppose the first toss is heads. The intrinsic value of the option is G1(H) = 0,
so there is no point in exercising immediately and the value of the option is

V1(H) =
1

1 + r
[p̃V2(H,H) + q̃V2(H,T )] =

4

5

[

1

2
(0) +

1

2
(1)

]

= .40.

2. Suppose the first toss is tails. The holder can either exercise the option now
and receive G1(T ) = 3, or wait for the second coin toss. The value at time 1 of
the potential payments at time 2 is

1

1 + r
[p̃V2(T,H) + q̃V2(T, T )] =

4

5

(

1

2
(1) +

1

2
(4)

)

= 2.

Therefore, the holder should exercise the option immediately and collect G1(T ) =
3. We see that V1(T ) = 3. Even if the holder believes that the stock is very
likely to go down and that she will most likely receive $4 by waiting, she should
still exercise the option at t = 1. (Indeed, using only $2 at time 1, she can
replicate a payoff at time 2 of $1 if the second toss is heads and $4 if the second
toss is tails.)

To find V0, we compute

1

1 + r
[p̃V1(H) + q̃V1(T )] =

4

5

[

1

2
(.4) +

1

2
(3)

]

= 1.36.

The intrinsic value of the option at time 0 is only G0 = 1, so the holder should not
exercise at t = 0. The arbitrage-free price of the option is

V0 = 1.36.

(Actually, some care must be used in defining precisely what we mean by the arbitrage-
free price of an American option. This issue will be addressed carefully in Section
(...).)
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It is important to observe that (Vn)0≤n≤2 are not the capitals of a self-financing
strategy. Indeed let us consider a broker who sells one American put for $1.36 and
wishes to hedge his short position. He needs to be able to pay $.40 at t = 1 if the first
toss is heads and $3.00 at t = 1 if the first toss results in tails. Therefore he should
purchase

∆0 =
.4 − 3

8 − 2
= −

13

30

shares of stock (i.e., sell short 13
30

shares) at t = 0 and invest the proceeds of the short
sale plus $1.36 in the bank. Therefore at t = 0, the broker will hold −13

30
shares of

stock and will have $232
75

in the bank.

(i) If the first toss is heads, the broker’s portfolio will be worth

(

232

75

)(

5

4

)

−

(

13

30

)

8 = .40

at t = 1. He should readjust his portfolio to be worthless at t = 2 if the second
toss is heads and to have capital $1 if the second toss is tails. The reader should
verify that this can be accomplished by holding − 1

12
shares of stock between

t = 1 and t = 2 and having $16
15

in the bank at t = 1.

(ii) If the first toss results in tails, the broker’s portfolio will be worth

(

232

75

) (

5

4

)

−

(

13

30

)

2 = 3.

If the holder of the option chooses to exercise at t = 1, then the broker simply
pays out $3 and the transaction will be complete. If the option holder decides
not to exercise at t = 1, then the broker must adjust his portfolio so that it
will be worth $1 at t = 2 if the second toss is heads and worth $4 if the second
toss is tails. However, the broker needs only $2 at t = 1 in order to create the
required capitals at t = 2. Consequently the broker can safely consume $1 at
t = 2.

¤

We see from the example that hedging strategies for short positions on American
options allow for the possibility of consumption if the holder of the option fails to
exercise in an optimal fashion!

The mathematical analysis of American derivative securities presents a number
of interesting challenges. The time at which the payoff will be made is not known
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initially. To complicate matters even more, if a broker sells the same option to more
than one client, the clients may choose different exercise dates. In other words, the
payment date depends not only on the result of the coin tosses, but also on the decision
process (or exercise policy) adopted by the holder. In order to understand American
options properly, it is very useful to first analyze a class of derivative securities in
which the payment date is random, but for which all holders of a given security will
receive exactly the same amount on precisely the same date (i.e., the holder of the
security has no influence on the payoff.) We shall refer to such securities as derivative

securities with random maturity. (There does not seem to be a standard name for the
class of securities described above. Nevertheless, these securities will play a central
role in our treatment of American options and it will be very convenient to have a
name for them. The term “derivative securities with random maturity” is admittedly
not ideal. An important point is that the randomness manifests itself only through
the coin tossing and not through the holder of the security. If anyone has a better
suggestion, please let me know.)

Derivative Securities with Random Maturity

We begin with an example.

Example 9.3: Consider a binomial model with N = 3, u = 2, d = 3
4
, r = 3

8
, and

S0 = 8. Let V denote a rebate option that pays $1 at the first time the stock price
hits or crosses the upper barrier K = $9, and expires worthless at time 3 if the stock
price is always below the barrier. More precisely:

(i) If Sn(ω) < 9 for all n = 0, 1, 2, 3 then the holder of the option receives nothing.

(ii) If max
0≤n≤3

Sn(ω) ≥ 9 then the holder of the option receives $1 at the smallest time

n such that Sn(ω) ≥ 9.

Roughly speaking, by the maturity of such a security, we mean the smallest time at
which it is known for sure that the holder of the security will not receive a payment
at a future date. (A precise definition will be based on a type of random variable
called a stopping time.) Here the maturity (which depends on ω) will be the smallest
n such such that Sn(ω) = 9, if such an n exists, and will be 3 if no such n exists.

We begin by recording the possible stock prices.

S0 = 8,

S1(H) = 16, S1(T ) = 6,

S2(H,H) = 32, S2(H,T ) = 12, S2(T,H) = 12, S2(T, T ) = 4.5,
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S3(H,H,H) = 64, S3(H,H, T ) = 24, S3(H,T,H) = 24, S3(H,T, T ) = 9,

S3(T,H,H) = 24, S3(T,H, T ) = 9, S3(T, T,H) = 9, S3(T, T, T ) = 3.375.

1. Suppose that the first toss is heads. Since S0 = 8 < 9 and S1(H) = 16 > 9, the
holder of the option receives $1 at time 1 and the options expires. (The holder
is not entitled to any further payments from this option.)

2. Suppose that the first toss is tails. Since S0 = 8 < 9 and S1 = 6 < 9, the holder
receives nothing at time 1 and must await the results of subsequent coin tosses.

2.1: Suppose that the second toss is heads, i.e. (T,H) occurs. Then, since
S0 < 9, S1 < 9, and S2 = 12 > 9, the holder of the options receives $1 at
time 2 and the option expires.

2.2: Suppose that the second toss is tails, i.e. (T, T ) occurs. Then, since
S0 < 9, S1 < 9, and S2 < 9, the holder receives nothing at time 2 and
must await the result of the third coin toss.

3. Suppose that the first two tosses are both tails. Then the following situations
can occur at time 3.

3.1: (T, T,H) Holder receives $1 at time 3 and the option expires.

3.2: (T, T, T ) Holder receives nothing at time 3 and the option expires worth-
less.

We can summarize the option payment possibilities as follows.

V1(H) = 1

V2(T,H) = 1

V3(T, T,H) = 1, V3(T, T, T ) = 0.

In order to determine the arbitrage-free price of the option at time 0, we shall try
to find a replicating strategy X. An important observation arises here: The capital
of a replicating strategy is not well defined at times that are (strictly) greater than
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the time at which the option matures, unless we make an assumption about what the
option holder does with the payment.

In this example, we can expect to determine

X0

X1(H), X1(T )

X2(T,H), X2(T, T ),

X3(T, T,H), X3(T, T, T ).

Notice that we must have

X3(T, T,H) = 1, X3(T, T, T ) = 0 (1)

X2(T,H) = 1, (2)

X1(H) = 1 (3)

in order to reflect the option payments. We determine X2(T, T ), X1(T ), and X0 by
backward recursion. Observe that

p̃ =
1 + 3

8
− 3

4

2 − 3
4

=
1

2
, q̃ = 1 − p̃ =

1

2
.

We find that

X2(T, T ) =
1

1 + r
[p̃X3(T, T,H) + q̃X3(T, T, T )] =

8

11

[

1

2
(1) +

1

2
(0)

]

= .3636 (4)

X1(T ) =
1

1 + r
[p̃X2(T,H) + q̃X2(T, T )] =

8

11

[

1

2
(1) +

1

2
(.3636)

]

= .4959 (5)

X0 =
1

1 + r
[p̃X1(H) + q̃X1(T )] =

8

11

[

1

2
(1) +

1

2
(.4959)

]

= .5440. (6)
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It follows that the arbitrage-free price of the option is .5440.

Capitals such as X1(H,H) are not uniquely determined because we don’t know
how the $1 payment received at time 1 will be invested (or if this payment will even
be invested at all).

A very natural way to obtain values for X2(H,H), X2(H,T ), X3(H,H,H), X3(H,H, T ),
X3(H,T,H), X3(H,T, T ), X3(T,H,H), X3(T,H, T ) is to assume that when a pay-
ment is received, it is put into the bank and left there until time 3. This leads to the
following values:

X2(H,H) = X2(H,T ) =
11

8
, (7)

X3(H,H,H) = X3(H,H, T ) = X3(H,T,H) = X3(H,T, T ) =

(

11

8

)2

, (8)

X3(T,H,H) = X3(T,H, T ) =
11

8
. (9)

This gives us a self-financing strategy whose capitals at the option payment times
are consistent with the option payments. However, it must be emphasized that there
are numerous other strategies having this property. Only the capitals expressed by
(1) through (6) are uniquely determined. ¤

We now formalize some ideas from Example 9.3. We need a mathematical way to
express the time at which the securities matures. In other words we want a random
variable τ such that τ(ω) expresses the maturity of the option as a function of the
outcome ω of the coin tosses. Such a random variable will be called a stopping time

or a stopping rule.

Before giving a formal definition, let us write the stopping rule for Example 9.3.
Let

A(ω) = {n = 0, 1, 2, 3 : Sn(ω) ≥ 9}.

If A(ω) = ∅, we put τ(ω) = 3. If A(ω) 6= ∅, we put

τ(ω) = min A(ω),

i.e. τ(ω) is the smallest element of A(ω). Observe that the values of τ are given by
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ω τ(ω)

(H,H,H) 1

(H,H, T ) 1

(H,T,H) 1

(H,T, T ) 1

(T,H,H) 2

(T,H, T ) 2

(T, T,H) 3

(T, T, T ) 3

.

In the N -period binomial model, a stopping rule τ must take values in {0, 1, 2, . . . , N}
and must have the property that whether or not τ(ω) = n depends only on the out-
come of the first n coin tosses, i.e. the decision on whether or not to stop at time n

must be based solely on the information available at time n.

Definition 9.4: By a stopping rule or stopping time in the N -period binomial model
we mean a random variable τ on Ω such that

(i) τ(ω) ∈ {0, 1, 2, . . . , N} for all ω ∈ Ω, and

(ii) For every n ∈ {0, 1, 2, . . . , N} and every ω1, ω2, . . . , ωN ∈ {H,T}, if
τ(ω1, . . . , ωn, ωn+1, . . . , ωN) = n then

τ(ω1, ω2, . . . , ωn, ω̂n+1, . . . , ω̂N) = n for all ω̂n+1, ω̂n+2, . . . , ω̂N ∈ {H,T}.

Remark 9.5: Although the term “stopping time” is more commonly used in practice,
we shall generally use the term “stopping rule”, because it is really a procedure or
rule used to determine the maturity of the option, rather than a single maturity time.

Remark 9.6: Observe that if there exist ω∗ ∈ Ω such that τ(ω∗) = 0, then τ(ω) = 0
for all ω ∈ Ω. This situation is, of course, not very interesting. Nevertheless, it is
permitted by the definition.
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In the N -period binomial model, a derivative security with random maturity is
characterized by a stopping rule τ and a payment function V∗ : Ω → R. The holder of
the security receives the amount V∗(ω) at time τ(ω). It is assumed that V∗ satisfies the
following property: For every n ∈ {0, 1, . . . , N} and every ω1, ω2, . . . , ωN ∈ {H,T}, if

τ(ω1, ω2, . . . , ωn, ωn+1, . . . , ωN) = n (10)

then we have

V∗(ω1, ω2, . . . , ωn, ωn+1, . . . , ωN) = V∗(ω1, ω2, . . . , ωn, ω̂n+1, . . . , ω̂N) (11)

for all ω̂n+1, ω̂n+2, . . . , ω̂N ∈ {H,T}.

(In other words, the payment function cannot look into the future. Payments made
at time n can depend only on the first n coin tosses.)

Before making some general observations about derivative securities with random
maturity, let us describe the function V∗ corresponding to the rebate option in Exam-
ple 9.3. There is only one path for which the holder of the option receives nothing,
namely (T, T, T ). Along each other path the holder of the security receives $1 (al-
though for different paths, the payment is received at different times). We summarize
the values of V∗ and τ for Example 9.3 in the table below.

ω V∗(ω) τ(ω)

(H,H,H) 1 1

(H,H, T ) 1 1

(H,T,H) 1 1

(H,T, T ) 1 1

(T,H,H) 1 2

(T,H, T ) 1 2

(T, T,H) 1 3

(T, T, T ) 0 3
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.

Remark 9.7: Observe that the random variable τ defined by

τ(ω) = N for all ω ∈ Ω

satisfies the conditions of a stopping rule. In this case, any random variable V∗ on
Ω satisfies the condition described by (10),(11). Consequently, a derivative security
with (deterministic) maturity N is a special case of a derivative security with random
maturity.

In order to write a replication algorithm for derivative securities with random
maturity, it is convenient to define

Vτ(ω)(ω) = V∗(ω) for all ω ∈ Ω. (12)

By a replicating strategy for such a security we mean a (self-financing) strategy with
capitals (Xn)0≤n≤N such that

Xτ(ω)(ω) = Vτ(ω)(ω) for all ω ∈ Ω. (13)

In general, such a replicating strategy will not be unique. However, for a given
security, all replicating strategies will have the same initial capital. The arbitrage-
free price of the security at time 0 is defined to be the initial capital of any replicating
strategy.

Proposition 9.8: Let V be a derivative security with random maturity described by
the stopping rule τ and payment function V∗ in the N -period binomial model. Then
there is at least one replicating strategy. For n ≤ τ(ω), the capital Xn(ω) is uniquely
determined by the following backward induction algorithm:

(i) XN(ω) = VN(ω) if τ(ω) = N

(ii) For each n ∈ {0, 1, . . . , N − 1},

Xn(ω1, . . . , ωn) =























Vn(ω1, . . . , ωn) if τ(ω) = n.

1
1+r

[p̃Xn+1(ω1, . . . , ωn, H) + q̃Xn+1(ω1, . . . , ωn, T )]

if τ(ω) > n.

It is very useful to be able to express the initial capital X0 in a replicating strategy
(and hence the arbitrage-free initial price) as a risk-neutral expected value. We can
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do so by constructing a terminal capital XN : Ω → R of a replicating strategy. As
mentioned previously, terminal capitals generally are not unique; however, all terminal
capitals of replicating strategies for a given derivative security with random maturity
will have the same risk-neutral expected value (because the initial capital is uniquely
determined).

Consider a derivative security with random maturity described by the stopping
rule τ and the payment function V∗. For each path ω, we can think of taking the
payment V∗(ω) and depositing it in the bank when it is received at time τ(ω). The
value of this deposit at time N will be V∗(ω)(1 + r)N−τ(ω). Therefore we define
XN : Ω → R by

XN(ω) = V∗(ω)(1 + r)N−τ(ω) (14)

for all ω ∈ Ω. It follows that the arbitrage-free price of the security is given by

V0 =
1

(1 + r)N
Ẽ[(V∗)(1 + r)N−τ ] = Ẽ

[

V∗

(1 + r)τ

]

. (15)

Equation (15) will play a central role in pricing American derivative securities.

Example 9.9: Consider the binomial model and the rebate option described in
Example 9.3. Observe that

P̃(ω) =
1

8
for all ω ∈ Ω.

There are four paths ω along which the option pays $1 at t = 1, two paths along
which the option pays $1 at t = 2, one path along which the option pays $1 at t = 3,
and one path along which the option pays nothing. Employing (15), we find that

V0 =
1

8

[

4

(

8

11

)

+ 2

(

8

11

)2

+

(

8

11

)3
]

= .5440,

which agrees with the price determined in Example 9.3 using backward induction.
¤

General American Derivative Securities

An American option, or an American derivative security, in the N -period binomial
model is characterized by its payment process (Gn)0≤n≤N which we assume to be a
nonnegative adapted process (Gn(ω) ≥ 0 for all ω ∈ Ω and all n = 0, 1, . . . , N). The
random variable Gn is called the intrinsic value of the option at time n.
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The holder of the option may choose any time n ∈ {0, 1, . . . , N} at which to
exercise. If the holder exercises at time n, then she receives the amount Gn(ω) and
the option expires. (Once the option has been exercised, the holder is not entitled
to any future payments.) Of course, the decision of whether or not to exercise the
option at time n must be based solely on the information that is available at time n,
i.e. the outcomes of the first n coin tosses. In other words, the procedure used by the
holder to determine the exercise time must be a stopping rule.

The most popular American options are calls and puts whose intrinsic values are
given as follows.

1. Standard American call option with strike price K:

Gn(ω) = (Sn(ω) − K)+.

2. Standard American put option with strike price K:

Gn(ω) = (K − Sn(ω))+.

Two central questions concerning American options are:

1. How should the exercise time be chosen?

2. What is the arbitrage-free price of the option at time 0?

Observe that for a given stopping rule τ , an American option is the same to the
holder as the derivative security with random maturity have stopping rule τ and
payment function V∗ given by

V∗(ω) = Gτ(ω)(ω) for all ω ∈ Ω. (16)

It is standard to use the notation Gτ to denote the random variable defined in (16).
We denote by P0(τ) the corresponding arbitrage-free price of this security, i.e.

P0(τ) = Ẽ

[

Gτ

(1 + r)τ

]

. (17)

(The reader should verify that the payment function in (??) satisfies the condition
described by (10) and (11.)

An optimal exercise policy, or optimal exercise rule, for an American option is
defined to be a stopping rule τ ∗ such that
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P0(τ) ≤ P0(τ
∗) for all stopping rules τ.

In other words, an optimal exercise policy is a stopping rule that gives the largest pos-
sible initial value to the corresponding option with random maturity. The arbitrage-
free price of the option is defined to be

P∗
0 = P0(τ

∗),

where τ ∗ is any optimal exercise policy.

Remark 9.10:

(i) Since the set of stopping rules is nonempty and finite, it is clear that an optimal
exercise policy always exists.

(ii) It is not difficult to give examples in which there is more than one optimal
exercise policy.

If we denote by S the collection of all stopping rules, we can express the arbitrage-
free price by the formula

P∗
0 = max

τ∈S
Ẽ

[

Gτ

(1 + r)τ

]

. (18)

We do not want to call the arbitrage-free price V0 yet because we want to reserve
the symbol V0 to denote the value at t = 0 of a process defined by the American
backward recursion procedure. We shall then prove that P∗

0 = V0.

Remark 9.11: We shall show later that if the stock does not pay dividends then
τ ∗(ω) = N is always an optimal exercise policy for an American call option on the
stock. In other words, within the context of the N -period binomial model there is
no early exercise premium for an American call option. For this reason we will not
devote much attention now to American calls.

It is generally not possible to replicate an American derivative security with a
single (self-financing) strategy because different holders may use different exercise
policies. It is possible to replicate an American derivative security together with a
specified exercise policy. However, for different exercise policies, the initial capitals
of the replicating strategies may be different. A broker who sells an American option
and wants to hedge her short position must have enough capital to cover all possible
exercise policies, i.e. she needs the maximum of the initial capitals of the replicating
strategies corresponding to all exercise policies. This is the idea behind the definition
of P∗

0 .
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To understand the idea behind the American backward recursion algorithm, it is
useful to think about Example 9.2. If we arrive at time N and the option has not
yet been exercised, then clearly VN = GN . At a time n ∈ {0, 1, · · · , N − 1}, if the
option has not yet been exercised and Vn+1 has been determined then the value of
the option at time n should be the maximum of the intrinsic value and the value at
time n of a payment of Vn+1 that will be received at time n + 1.

Proposition 9.12: Consider an American option with payment process (Gn)0≤n≤N .
Define the adapted process (Vn)0≤n≤N by

(i) VN(ω) = GN(ω)

(ii) For n < N ,

Vn(ω) = max

{

Gn(ω),
1

1 + r
[p̃Vn+1(ω1, . . . , ωn, H) + q̃Vn+1(ω1, . . . , ωn, T )]

}

Then V0 is the arbitrage-free price of the option at time 0 and the random variable
τ ∗ defined by

τ ∗(ω) = min {n = 0, 1, . . . , N : Gn(ω) = Vn(ω)}

is an optimal exercise policy.

Remark 9.13: It is important to understand that (Vn)0≤n need not be the capitals
of a self-financing strategy. It is also important to observe

Vn = max

{

Gn,
1

1 + r
Ẽn [Vn+1]

}

≥
1

1 + r
Ẽn [Vn+1]

for all n = 0, 1, · · · , N − 1, which shows that the process
(

Vn

(1+r)n

)

0≤n≤N
is a super-

martingale under P̃.

Before proving Proposition 9.12, we look at several examples. We begin with a
3-period version of Example 9.3.

Example 9.14: Consider the binomial model with N = 3, u = 2, d = 1
2
, r = .25,

and S0 = 4. An American put option on the stock with K = 5 has intrinsic value

Gn(ω) = (5 − Sn(ω))+.
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In particular, it is easy to check that

G3(H,H,H) = G3(H,H, T ) = G3(H,T,H) = G3(T,H,H) = 0

G3(H,T, T ) = G3(T,H, T ) = G3(T, T,H) = 3, G3(T, T, T ) = 4.5,

so that

V3(H,H,H) = V3(H,H, T ) = V3(H,T,H) = V3(T,H,H) = 0,

V3(H,T, T ) = V3(T,H, T ) = V3(T, T,H) = 3, V3(T, T, T ) = 4.5.

We shall compute two values of V2 in detail and then simply list the other relevant
values of V in a table.

1. Suppose that (T, T ) has occurred. The current stock price is S2(T, T ) = 1, so
the intrinsic value of the option is G2(T, T ) = 4. Using the algorithm we find
that

V2(T, T ) = max

{

4,
4

5

(

1

2
(3) +

1

2
(4.5)

)}

= max {4, 3} = 4.

2. Suppose that (T,H) has occurred. The current stock price is S2(T,H) = 4, so
the intrinsic value of the option is G2(T,H) = 1. Using the algorithm we find
that

V2(T,H) = max

{

1,
4

5

(

1

2
(0) +

1

2
(3)

)}

= max {1, 1.20} = 1.20.

We summarize all of the relevant G and V values in a table:

17



ω G3(ω) V3(ω) G2(ω) V2(ω) G1(ω) V1(ω) G0(ω) V0(ω)

(H,H,H) 0 0 0 0 0 .48 1 1.392

(H,H, T ) 0 0 0 0 0 .48 1 1.392

(H,T,H) 0 0 1 1.20 0 .48 1 1.392

(H,T, T ) 3 3 1 1.20 0 .48 1 1.392

(T,H,H) 0 0 1 1.20 3 3 1 1.392

(T,H, T ) 3 3 1 1.20 3 3 1 1.392

(T, T,H) 3 3 4 4 3 3 1 1.392

(T, T, T ) 4.5 4.5 4 4 3 3 1 1.392

.

We see that an optimal exercise policy is given by

ω τ ∗(ω)

(H,H,H) 2

(H,H, T ) 2

(H,T,H) 3

(H,T, T ) 3

(T,H,H) 1

(T,H, T ) 1

(T, T,H) 1

(T, T, T ) 1

. ¤

Next, we look at a 2-period example in which there is more than one optimal
exercise policy.
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Example 9.15: Consider a two-period binomial model with u = 2, d = 1
2
, r = 1

4
,

and S0 = 4. For each n = 0, 1, 2 and all ω ∈ Ω let

Mn(ω) = max
0≤k≤n

Sk(ω), Ln = min
0≤k≤n

Sk(ω).

Consider the American derivative security with intrinsic values given by

Gn(ω) = Mn(ω) − Ln(ω).

The reader should check that

G0 = 0, G1(H) = 4, G1(T ) = 2,

G2(H,H) = 12, G2(H,T ) = 4, G2(T,H) = 2, G2(T, T ) = 3.

We find that

V1(H) = max

{

4,
4

5

[

1

2
(12) +

1

2
(4)

]}

= max{4, 6.4} = 6.4,

V1(T ) = max

{

2,
4

5

[

1

2
(2) +

1

2
(3)

]}

= max{2, 2} = 2,

V0 = max

{

0,
4

5

[

1

2
(6.4) +

1

2
(2)

]}

= max{0, 3.36} = 3.36.

We see that an optimal exercise policy is given by

τ ∗(H,H) = 2, τ ∗(H,T ) = 2, τ ∗(T,H) = 1, τ ∗(T, T ) = 1.

Another optimal exercise policy is given by the stopping rule τ ∗∗(ω) = 2 for all
ω ∈ Ω. This is because if the first coin toss results in tails, the time-1 value of the
payoff that one would obtain by waiting until time 2 is the same as the intrinsic value.
¤

In the following simple, but important, example every stopping rule is an optimal
exercise policy.
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Example 9.16: In a general N -period binomial model, consider an American option
with intrinsic values given by

Gn(ω) = Sn(ω)

for all ω ∈ Ω and all n = 0, 1, · · · , n. Intuitively,we should expect the arbitrage-free
price of this option to be S0 because this option gives us exactly the same financial
benefit as owning a share of stock. Also, it seems clear intuitively that there can be no
strategy for selling stock that would give a strictly higher value to the corresponding
derivative security with random maturity than would any other stopping rule would
give, because strategies cannot look into the future. (In particular, the reader should
be convinced that a random variable τ that chooses a value of n corresponding to a
time at which Sn is maximized is not a stopping rule.) Lemma 9.17 below can be
used to verify that for the American derivative security of this example we have

Ẽ

[

Gτ

(1 + r)τ

]

= S0

for every stopping rule τ . This shows that every exercise policy is, in fact, optimal.
¤

Lemma 9.17: Let k ∈ {0, 1, · · · , N} be given and let τ be a stopping rule with
τ(ω) ≥ k for all ω ∈ Ω. Let (Mn)0≤n≤N be an adapted process,

(i) If (Mn)0≤n≤N is a martingale under P̃ then Ẽk[Mτ ] = Mk.

(ii) If (Mn)0≤n≤N is a submartingale under P̃ then Ẽk[Mτ ] ≥ Mk.

(iii) If (Mn)0≤n≤N is a supermartingale under P̃ then Ẽk[Mτ ] ≤ Mk.

We shall prove a result that is more general than Proposition 9.12. For this more
general result, we need a notion of the arbitrage-free value of an American derivative
security at each time n, assuming that exercise has not yet occurred. In the general
N -period binomial model, we consider an American derivative security with intrinsic
values given by the process (Gn)0≤n≤N . For each n ∈ {0, 1, · · · , N}, let Sn denote
the collection of all stopping rules τ satisfying τ(ω) ≥ n for all ω ∈ Ω. Notice that
S0 = S and that

Sn+1 ⊂ Sn for all n = 0, 1, · · · , N.

For each n = 1, 2, · · · , N we define
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P∗
n = max

τ∈Sn

Ẽn

[

Gτ

(1 + r)τ−n

]

. (19)

Notice that if we put n = 0 then formula (19) agrees with (18) since S0 = S.

We shall now show that

P∗
n = Vn for all n = 0, 1, · · ·N,

(Vn)0≤n≤N is the process determined by the American backward induction algorithm
described in Proposition 9.12. We have already observed that the discounted process

(

Vn

(1 + r)n

)

0≤n≤N

is a supermartingale under P̃, and that Vn ≥ Gn for all n = 0, 1, · · · , N . For future
reference we summarize these two properties in a lemma.

Lemma 9.18: The process (Vn)0≤n≤N satisfies

(i) Vn ≥ Gn for all n = 0, 1, · · · , N .

(ii) The discounted process (Vn(1 + r)−n)0≤n≤N is a supermartingale under P̃.

The next lemma indicates that the process (P∗
n)0≤n≤N shares these properties.

Lemma 9.19: The process (P∗
n)0≤n≤N satisfies

(i) P∗
n ≥ Gn for all n = 0, 1, · · · , N .

(ii) The discounted process (P∗
n(1 + r)−n)0≤n≤N is a supermartingale under P̃.

Proof: To prove (i), we fix a value of n ∈ {0, 1, · · · , N} and define the stopping rule
τ̂ by τ̂(ω) = n for all ω ∈ Ω. Notice that τ̂ ∈ Sn. It follows that

P∗
n ≥ Ẽn

[

Gτ̂

(1 + r)τ̂−n

]

= Ẽn[Gn] = Gn.

To prove (ii), we fix n ∈ {0, 1, · · · , N − 1} and choose τ ∗ ∈ Sn+1 such that
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P∗
n+1 = Ẽn+1

[

Gτ∗

(1 + r)τ∗−n−1

]

. (20)

Observe that τ ∗ ∈ Sn which implies that

P∗
n ≥ Ẽn

[

Gτ∗

(1 + r)τ∗−n

]

. (21)

Using iterated conditioning and factoring (1 + r) out of the denominator, we have

Ẽn

[

Gτ∗

(1 + r)τ∗−n

]

= Ẽn

[

1

1 + r
Ẽn+1

[

Gτ∗

(1 + r)τ∗−n−1

]]

. (22)

Combining (20), (21), and (22) we obtain

P∗
n ≥ Ẽn

[

P∗
n+1

1 + r

]

. (23)

The desired conclusion is obtained by dividing (23) by (1 + r)n. ¤

Lemma 9.20: Let (Yn)0≤n≤N be an adapted process and assume that (i) and (ii)
below hold:

(i) Yn ≥ Gn for all n = 0, 1, · · · , N .

(ii) The discounted process (Yn(1 + r)−n)0≤n≤N is a supermartingale under P̃.

Then Yn ≥ P∗
n for all n = 0, 1, · · · , N .

Proof Let n ∈ {0, 1, · · · , N} and τ ∈ Sn be given. Using (i), (ii), and Lemma 9.17,
we have

Ẽn

[

Gτ

(1 + r)τ

]

≤ Ẽn

[

Yτ

(1 + r)τ

]

≤
Yn

(1 + r)n
. (24)

Taking the maximum over all τ ∈ Sn and recalling (19), we arrive at

P∗
n ≤ Yn. ¤

Combining Lemmas 9.18 and 9.20 we obtain
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Lemma 9.21: Vn ≥ P∗
n for all n = 0, 1, · · · , N .

The next lemma will allow us to obtain the reverse inequality.

Lemma 9.22: Let (Wn)0≤n≤N be an adapted process and assume that (i) and (ii)
below hold:

(i) Wn ≥ Gn for all n = 0, 1, · · · , N .

(ii) The discounted process (Wn(1 + r)−n)0≤n≤N is a supermartingale under P̃.

Then Vn ≤ Wn for all n = 0, 1, · · · , N .

Proof: We proceed by backward induction. Observe first that

VN = GN ≤ WN .

Let n ∈ {0, 1, · · · , N − 1} be given and assume that Vn+1 ≤ Wn+1. We need to show
that Vn ≤ Wn. Since Vn+1 ≤ Wn+1 we conclude that

Ẽn[Vn+1] ≤ Ẽn[Wn+1].

It follows from (ii) that

1

1 + r
Ẽn[Wn+1] ≤ Wn.

Finally, we observe that

Vn = max

{

Gn,
1

1 + r
Ẽn[Vn+1]

}

≤ max

{

Gn,
1

1 + r
Ẽn[Wn+1]

}

≤ max{Gn,Wn} = Wn. ¤

Combining Lemmas 9.19 and 9.22 we obtain

Lemma 9.23: Vn ≤ P∗
n for all n = 0, 1, · · · , N .

Combining Lemmas 9.21 and 9.23 we obtain

Theorem 9.24: P∗
n = Vn for all n = 0, 1, · · · .

We now prove a result on optimal exercise.
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Lemma 9.25: The random variable τ ∗ defined by

τ ∗(ω) = min{n = 0, 1, · · · , N : Vn(ω) = Gn(ω)}

is an optimal exercise policy.

Proof: The reader is asked to verify that τ ∗ is a stopping rule. Define the process
(Yn)0≤n≤N by

Yn(ω) =
Vτ∗(ω)∧n

(1 + r)τ∗(ω)∧n
,

where k ∧ m = min{k,m}. Observe that (Yn)0≤n≤N is an adapted process. We shall
show that (Yn)0≤n≤N is a martingale under P̃. To this end, let n ∈ {0, 1, · · · , N − 1}
and ω̂1, · · · , ω̂n ∈ {H,T} be given. Let A denote the set of all continuations of the
string (ω̂1, · · · , ω̂n), i.e.

A = {ω ∈ Ω : ωi = ω̂i for all i = 1, · · · , n}.

Since τ ∗ is a stopping rule, either (i) or (ii) below must hold:

(i) τ ∗(ω) ≤ n for all ω ∈ A.

(ii) τ ∗(ω) ≥ n + 1 for all ω A.

If (i) holds then

Yn+1(ω̂1, · · · , ω̂n, H) = Yn+1(ω̂1, · · · , ω̂n, T ) = Yn(ω̂1, · · · , ω̂n),

and clearly we have

Yn(ω̂1, · · · , ω̂n) = Ẽn[Yn+1](ω̂1, · · · , ω̂n).

If (ii) holds then

Yn+1(ω̂1, · · · , ω̂n, H) =
Vn+1(ω̂1, · · · , ω̂n, H)

(1 + r)n+1
,

Yn+1(ω̂1, · · · , ω̂n, T ) =
Vn+1(ω̂1, · · · , ω̂n, T )

(1 + r)n+1
,
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and consequently we have

Ẽn[Yn+1](ω̂1, · · · , ω̂n) =
Vn(ω̂1, · · · , ω̂n)

(1 + r)n
= Yn(ω̂1, · · · , ω̂n),

which completes the proof that (Yn)0≤N is a martingale under P̃.

Notice that

Y0 = V0 = P∗
0 .

Furthermore, since (Yn)0≤n≤N is a martingale under P̃, we have

Y0 = Ẽ[YN ].

Using the definitions of τ ∗ and YN we see that

YN =
Vτ∗

(1 + r)τ∗
=

Gτ∗

(1 + r)τ∗
.

We conclude that

P∗
0 = Y0 = Ẽ[YN ] = Ẽ

[

Gτ∗

(1 + r)τ∗

]

,

which shows that τ ∗ is optimal. ¤

Remark 9.26: Consider an American option in which the intrinsic value at time n

depends only on the stock price at time n, i.e.

Gn(ω) = gn(Sn(ω))

for some functions g0, g1, . . . , gN : R → R. It can be shown that the process (Vn)0≤n≤N

described in Proposition 9.12 can be determined by the following algorithm.

(i) vN(s) = gN(s)

(ii) For n < N , vn(s) = max
{

gn(s), 1
1+r

[p̃vn+1(us) + q̃vn+1(ds)]
}

. The process
(Vn)0≤n≤N is given by

Vn(ω) = vn(Sn(ω)).
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This observation can streamline the computations very significantly when N is large.

American Call Options

In this section we prove a theorem which shows that there is no early exercise
premium for an American call when r ≥ 0. (As usual, we assume that the stock does
not pay dividends.) In order to get a feel for why it is sometimes optimal to exercise
American puts early, but not American calls, we look at an example involving options
that are always in the money.

Example 9.27: Consider a general N -period binomial model with up factor u, down
factor d, interest rate r and initial stock price S0. Let Kp and Kc be given real
numbers satisfying

Kp > S0u
N , and 0 < Kc < S0d

N .

Let us consider an American put with strike Kp and expiration N and an American
call with strike Kc and expiration N . The inequalities we assumed regarding the
strike prices ensure that both options will always be “in the money”. The intrinsic
values of the put and call are therefore given by

Gp
n = Kp − Sn, Gc

n = Sn − Kc.

When the put is exercised the holder receives Kp and pays the stock price. When
the call is exercised, the holder receives the stock price and pays Kc. The value at
time 0 of a security that pays Sτ(ω) at time τ(ω) is S0 for every stopping rule τ .
Consequently, as far as the put and call are concerned optimal exercise is determined
by when it is optimal to receive Kp and when it is optimal to pay Kc. Notice that
these amounts are independent of the exercise time. Assuming that r > 0, it is better
to receive Kp as early as possible and to pay Kc as late as possible.

To cast this idea into formulas, let τ be a stopping rule. Then we have

Ẽ

[

Gp
τ

(1 + r)τ

]

= Kp
Ẽ

[

1

(1 + r)τ

]

− S0, (25)

Ẽ

[

Gc
τ

(1 + r)τ

]

= S0 − Kc
Ẽ

[

1

(1 + r)τ

]

. (26)

If r ≥ 0 then clearly the quantity in (25) is maximized by taking τ(ω) = 0 and the
quantity in (26) is maximized by taking τ(ω) = N for all ω ∈ Ω. The reader is invited
to think about what happens if r < 0 and if the strike prices depend on time. ¤
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Before giving the main result of this section, we state a lemma that will be used
in the proof.

Lemma 9.28: Let τ be a stopping rule and assume that (Mn)0≤n≤N is a submartin-
gale under P̃. Then we have

Ẽ[Mτ ] ≤ Ẽ[MN ].

Theorem 9.29: Assume that r ≥ 0 and let g : R → R be a nonnegative convex
function with g(0) = 0. Let V A

0 denote the price at time 0 of the American derivative
security having intrinsic values given by Gn(ω) = g(Sn(ω)) and let V E

0 denote the price
at time 0 of the European derivative security that pays the amount V E

N (ω) = g(SN(ω))
at time N . Then we have

V A
0 = V E

0 .

Proof: Since g is convex we have

g(λs) = g(λs + (1 − λ)0) ≤ λg(s) + (1 − λ)g(0) for all λ ∈ [0, 1], s ∈ R.

Since g(0) = 0, we conclude that

g(λs) ≤ λg(s) for all λ ∈ [0, 1], s ∈ R. (27)

The idea will be to show that the process

(

g(Sn)

(1 + r)n

)

0≤n≤N

is a submartingale under P̃ and apply Lemma 9.28.

Since

Sn = Ẽn

[

Sn+1

1 + r

]

,

we may write

g(Sn) = g

(

Ẽn

(

Sn+1

1 + r

))

. (28)
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Using Jensen’s inequality and (27) (with λ = (1 + r)−1) in (28) we find that

g(Sn) ≤ Ẽn

[

g(Sn+1)

1 + r

]

.

We conclude that

(

g(Sn)

(1 + r)n

)

0≤n≤N

is a submartingale under P̃.

Applying Lemma 9.28 we find that

Ẽ

[

g(Sτ )

(1 + r)τ

]

≤ Ẽ

[

g(SN)

(1 + r)N

]

,

for all stopping rules τ . Taking the maximum over all stopping rules we obtain the
inequality

V A
0 ≤ V E

0 .

Since we already know that V E
0 ≤ V A

0 , the proof is complete. ¤
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