
Assignment 15: Assigned Wed 12/03. Due never

1. (a) If
∫
Rd(1 + |x|)|f(x)| dx < ∞, show that f̂ is differentiable and ∂j f̂(ξ) =

−2πi(xjf(x))
∧

(ξ). [Note: (xjf(x))
∧

(ξ) means ĝ(ξ), where g(x) = xjf(x).]

(b) If f ∈ C1
0 (Rd), and ∇f ∈ L1 show that (∂jf)

∧
(ξ) = +2πiξj f̂(ξ).

(c) Show that the mapping f 7→ f̂ is a bijection in the Schwartz space.

2. If µ is a finite Borel measure on Rd define µ̂(ξ) =
∫
e−2πi〈x,ξ〉 dµ(x). If µ̂(ξ) = 0

for all ξ, show that µ = 0. [Hint: Show that
∫
f dµ = 0 for all f ∈ S.]

3. For f ∈ L1, the formula f̂(ξ) =
∫
f(x)e−2πi〈x,ξ〉 allows us to prove many

identities: E.g. (δλf)∧(ξ) = f̂(λξ), etc. For f ∈ L2, the formula f̂(ξ) =∫
f(x)e−2πi〈x,ξ〉 is no longer valid, as the integral is not defined (in the Lebesgue

sense). However, most identites remain valid, and can be proved using an ap-
proximation argument. I list a couple here.

(a) For f ∈ L1 we know (τxf)∧(ξ) = e−2πi〈x,ξ〉f̂(ξ). Prove it for f ∈ L2.

(b) Similarly, show that (δλf)∧(ξ) = f̂(λξ) for all f ∈ L2.

(c) Let F denote the Fourier transform operator (i.e. Ff = f̂), and R denote
the reflection operator (i.e. Rf(x) = f(−x)). Note that our Fourier inver-
sion formula (for f ∈ L1, f̂ ∈ L1) is exactly equivalent to saying F 2f = Rf .
Prove F 2f = Rf for all f ∈ L2.

4. (Uncertainty principle) Suppose f ∈ S(R). Show that(∫
R
|xf(x)|2 dx

)(∫
R
|ξf̂(ξ)|2 dξ

)
>

1

16π2
‖f‖2L2‖f̂‖2L2

[This illustrates a nice localisation principle about the Fourier transform. The first integral
measures the spread of the function f . The second the spread of the Fourier transform f̂ .
Here you show that this product is bounded below! The proof, once you know enough Physics,
reduces to the above inequality.

Hint: Consider
∫
R xf(x)f ′(x) dx. ]

5. (Central limit theorem) Let f ∈ L1(R) be such that f > 0 and
∫
x2f(x) dx <∞.

Define gn = (f ∗· · ·∗f) (n-times), and hn(x) = δ1/
√
ngn(x) =

√
ngn(

√
nx). Show

ĥn(ξ)
n→∞−−−−→ exp

(
−2πiµξ − 2π2iσ2ξ2

)
,

where µ =
∫
xf(x) dx and σ2 =

∫
(x − µ)2f(x) dx. [The central limit theorem says

that tabulating results of a large number of independent trials of any experiment produces a
“bell curve”. The key step in the proof, which you will no doubt see next semester, is showing
that any function convoved with itself often enough looks like a Gaussian.]

6. (Sobolev spaces) For f ∈ L2(Rd) and s > 0 define

‖f‖2Hs =

∫
(1 + |ξ|s)2|f̂(ξ)|2 dξ, and Hs = {f ∈ L2

∣∣ ‖f‖Hs <∞}.
Intuitively, we think of Hs as the space of functions with “s” “weak-derivatives”
in L2. (This will be formalized in your functional analysis course.)

(a) If f ∈ Cn0 (Rd) and Dαf ∈ L2 for all |α| < n, then show that f ∈ Hn(Rd).
(b) Let s ∈ (0, 1) and f ∈ L2(Rd). Show that f ∈ Hs(Rd) if and only if∫ ∞

0

(‖τhf − f‖L2

hs

)2 dh

h
<∞.

7. (Sobolev embedding) If n ∈ N and f ∈ Hs(Rd) for s > n + d
2 then show that

f ∈ Cn, and further the inclusion map Hs → Cn is continuous.

8. (a) (Elliptic regularity) Let Lu =
∑
aij∂i∂ju+

∑
bi∂iu+cu, where aij , bi, c are

constants. Suppose ∃λ > 0 such that aij = aji and |
∑
aijξiξj | > λ|ξ|2 for

all ξ ∈ Rn (this assumption is called ellipticity). If fS and u, ∂iu, ∂i∂ju ∈
L2 ∩ C0 are such that Lu = f , show that u ∈ C∞. [To emphasize why this
is surprising, choose for example L = ∆. Then ∆u = f makes no mention of a mixed
derivative ∂1∂2u. Yet, all such mixed derivatives exist and are smooth. Hint: If f ∈ Hs

show that u ∈ Hs+2.]

(b) Show by example that the previous subpart is false without the ellipticity
assumption.

9. (Trace theorems) Let p ∈ Rm be fixed. Given f : Rm+n → R define Spf : Rn →
R by Spf(y) = f(p, y).

(a) Let s > m/2, and s′ = s −m/2. Show that there exists a constant c such
that ‖Spf‖Hs′ (Rn) 6 c‖f‖Hs(Rm+n).

(b) Show that the section operator Sp extends to a continuous linear operator
from Hs(Rm+n) to Hs′(Rn). [Given an arbitrary L2 function on Rm+n it is of
course impossible to restrict it to an m-dimensional hyper-plane. However, if your func-
tion has more than n/2 “Sobolev derivatives”, then you can make sense of this restriction,
and the restriction still has s− n/2 “Sobolev derivatives”.]

10. (Reliech Lemma) Let K ⊂ Rd be compact, 0 6 s1 < s2, and suppose {fn} are a
sequence of functions supported in K. If the sequence {fn} is bounded in Hs2 ,
then show that it has a convergent subsequence in Hs1 . [This is the generalization
of the Arzella-Ascolli theorem in this context.]


