Assignment 15: Assigned Wed 12/03. Due never

1. (a) If $\int_{\mathbb{R}^{d}}(1+|x|)|f(x)| d x<\infty$, show that \hat{f} is differentiable and $\partial_{j} \hat{f}(\xi)=$ $-2 \pi i\left(x_{j} f(x)\right)^{\wedge}(\xi)$. [Note: $\left(x_{j} f(x)\right)^{\wedge}(\xi)$ means $\hat{g}(\xi)$, where $g(x)=x_{j} f(x)$.]
(b) If $f \in C_{0}^{1}\left(\mathbb{R}^{d}\right)$, and $\nabla f \in L^{1}$ show that $\left(\partial_{j} f\right)^{\wedge}(\xi)=+2 \pi i \xi_{j} \hat{f}(\xi)$.
(c) Show that the mapping $f \mapsto \hat{f}$ is a bijection in the Schwartz space.
2. If μ is a finite Borel measure on \mathbb{R}^{d} define $\hat{\mu}(\xi)=\int e^{-2 \pi i\langle x, \xi\rangle} d \mu(x)$. If $\hat{\mu}(\xi)=0$ for all ξ, show that $\mu=0$. [Hint: Show that $\int f d \mu=0$ for all $f \in \mathcal{S}$.]
3. For $f \in L^{1}$, the formula $\hat{f}(\xi)=\int f(x) e^{-2 \pi i\langle x, \xi\rangle}$ allows us to prove many identities: E.g. $\left(\delta_{\lambda} f\right)^{\wedge}(\xi)=\hat{f}(\lambda \xi)$, etc. For $f \in L^{2}$, the formula $\hat{f}(\xi)=$ $\int f(x) e^{-2 \pi i\langle x, \xi\rangle}$ is no longer valid, as the integral is not defined (in the Lebesgue sense). However, most identites remain valid, and can be proved using an approximation argument. I list a couple here.
(a) For $f \in L^{1}$ we know $\left(\tau_{x} f\right)^{\wedge}(\xi)=e^{-2 \pi i\langle x, \xi\rangle} \hat{f}(\xi)$. Prove it for $f \in L^{2}$.
(b) Similarly, show that $\left(\delta_{\lambda} f\right)^{\wedge}(\xi)=\hat{f}(\lambda \xi)$ for all $f \in L^{2}$.
(c) Let F denote the Fourier transform operator (i.e. $F f=\hat{f}$), and R denote the reflection operator (i.e. $R f(x)=f(-x)$). Note that our Fourier inversion formula (for $f \in L^{1}, \hat{f} \in L^{1}$) is exactly equivalent to saying $F^{2} f=R f$. Prove $F^{2} f=R f$ for all $f \in L^{2}$.
4. (Uncertainty principle) Suppose $f \in \mathcal{S}(\mathbb{R})$. Show that

$$
\left(\int_{\mathbb{R}}|x f(x)|^{2} d x\right)\left(\int_{\mathbb{R}}|\xi \hat{f}(\xi)|^{2} d \xi\right) \geqslant \frac{1}{16 \pi^{2}}\|f\|_{L^{2}}^{2}\|\hat{f}\|_{L^{2}}^{2}
$$

[This illustrates a nice localisation principle about the Fourier transform. The first integral measures the spread of the function f. The second the spread of the Fourier transform \hat{f}. Here you show that this product is bounded below! The proof, once you know enough Physics, reduces to the above inequality.
Hint: Consider $\int_{\mathbb{R}} x f(x) f^{\prime}(x) d x$.]
5. (Central limit theorem) Let $f \in L^{1}(\mathbb{R})$ be such that $f \geqslant 0$ and $\int x^{2} f(x) d x<\infty$. Define $g_{n}=(f * \cdots * f)(n$-times $)$, and $h_{n}(x)=\delta_{1 / \sqrt{n}} g_{n}(x)=\sqrt{n} g_{n}(\sqrt{n} x)$. Show

$$
\hat{h}_{n}(\xi) \xrightarrow{n \rightarrow \infty} \exp \left(-2 \pi i \mu \xi-2 \pi^{2} i \sigma^{2} \xi^{2}\right)
$$

where $\mu=\int x f(x) d x$ and $\sigma^{2}=\int(x-\mu)^{2} f(x) d x$. [The central limit theorem says that tabulating results of a large number of independent trials of any experiment produces a "bell curve". The key step in the proof, which you will no doubt see next semester, is showing that any function convoved with itself often enough looks like a Gaussian.]
6. (Sobolev spaces) For $f \in L^{2}\left(\mathbb{R}^{d}\right)$ and $s \geqslant 0$ define

$$
\|f\|_{H^{s}}^{2}=\int\left(1+|\xi|^{s}\right)^{2}|\hat{f}(\xi)|^{2} d \xi, \quad \text { and } \quad H^{s}=\left\{f \in L^{2} \mid\|f\|_{H^{s}}<\infty\right\}
$$

Intuitively, we think of H^{s} as the space of functions with " s " "weak-derivatives" in L^{2}. (This will be formalized in your functional analysis course.)
(a) If $f \in C_{0}^{n}\left(\mathbb{R}^{d}\right)$ and $D^{\alpha} f \in L^{2}$ for all $|\alpha|<n$, then show that $f \in H^{n}\left(\mathbb{R}^{d}\right)$.
(b) Let $s \in(0,1)$ and $f \in L^{2}\left(\mathbb{R}^{d}\right)$. Show that $f \in H^{s}\left(\mathbb{R}^{d}\right)$ if and only if

$$
\int_{0}^{\infty}\left(\frac{\left\|\tau_{h} f-f\right\|_{L^{2}}}{h^{s}}\right)^{2} \frac{d h}{h}<\infty .
$$

7. (Sobolev embedding) If $n \in \mathbb{N}$ and $f \in H^{s}\left(\mathbb{R}^{d}\right)$ for $s>n+\frac{d}{2}$ then show that $f \in C^{n}$, and further the inclusion map $H^{s} \rightarrow C^{n}$ is continuous.
8. (a) (Elliptic regularity) Let $L u=\sum a_{i j} \partial_{i} \partial_{j} u+\sum b_{i} \partial_{i} u+c u$, where $a_{i j}, b_{i}, c$ are constants. Suppose $\exists \lambda>0$ such that $a_{i j}=a_{j i}$ and $\left|\sum a_{i j} \xi_{i} \xi_{j}\right| \geqslant \lambda|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ (this assumption is called ellipticity). If $f \mathcal{S}$ and $u, \partial_{i} u, \partial_{i} \partial_{j} u \in$ $L^{2} \cap C^{0}$ are such that $L u=f$, show that $u \in C^{\infty}$. [To emphasize why this is surprising, choose for example $L=\Delta$. Then $\Delta u=f$ makes no mention of a mixed derivative $\partial_{1} \partial_{2} u$. Yet, all such mixed derivatives exist and are smooth. Hint: If $f \in H^{s}$ show that $u \in H^{s+2}$.]
(b) Show by example that the previous subpart is false without the ellipticity assumption.
9. (Trace theorems) Let $p \in \mathbb{R}^{m}$ be fixed. Given $f: \mathbb{R}^{m+n} \rightarrow \mathbb{R}$ define $S_{p} f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} by $S_{p} f(y)=f(p, y)$.
(a) Let $s>m / 2$, and $s^{\prime}=s-m / 2$. Show that there exists a constant c such that $\left\|S_{p} f\right\|_{H^{s^{\prime}}\left(\mathbb{R}^{n}\right)} \leqslant c\|f\|_{H^{s}\left(\mathbb{R}^{m+n}\right)}$.
(b) Show that the section operator S_{p} extends to a continuous linear operator from $H^{s}\left(\mathbb{R}^{m+n}\right)$ to $H^{s^{\prime}}\left(\mathbb{R}^{n}\right)$. [Given an arbitrary L^{2} function on \mathbb{R}^{m+n} it is of course impossible to restrict it to an m-dimensional hyper-plane. However, if your function has more than $n / 2$ "Sobolev derivatives", then you can make sense of this restriction, and the restriction still has $s-n / 2$ "Sobolev derivatives".]
10. (Reliech Lemma) Let $K \subset \mathbb{R}^{d}$ be compact, $0 \leqslant s_{1}<s_{2}$, and suppose $\left\{f_{n}\right\}$ are a sequence of functions supported in K. If the sequence $\left\{f_{n}\right\}$ is bounded in $H^{s_{2}}$, then show that it has a convergent subsequence in $H^{s_{1}}$. [This is the generalization of the Arzella-Ascolli theorem in this context.]
