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Abstract. Consider a discrete time Markov process Xε on Rd that makes
a deterministic jump prescribed by a map φ : Rd → Rd, and then takes a
small Gaussian step of variance ε2. For certain chaotic maps φ, the effective
diffusivity of Xε may be bounded away from 0 as ε → 0. This is known as
residual diffusivity, and in this paper we prove residual diffusivity occurs for a
class of maps φ obtained from piecewise affine expanding Bernoulli maps.

1. Introduction
1.1. Main Result. The goal of this paper is to study the long time behavior of the
Markov process {Xε

n}n⩾0 on Rd defined by
(1.1) Xε

n+1 = φ(Xε
n) + εξn+1 .

Here {ξn}n⩾1 is a family of independent standard Gaussian random variables,
and φ : Rd → Rd is a Lebesgue measure preserving map with a periodic displacement
(i.e. the function x 7→ φ(x) − x is Zd periodic). Since φ has a periodic displacement,
it projects to a well-defined map φ̃ : Td → Td defined by

φ̃(x) = φ(x) (mod Zd) .

Residual diffusivity is the phenomenon that the asymptotic variance (i.e. the
limit as n → ∞ of var(ei · Xn)/n) remains bounded and non-degenerate as ε → 0.
It has been conjectured [Tay21,BCVV95,MCX+17] to occur in certain situations
when φ̃ : Td → Td is “chaotic”. The main result of this paper shows that the
processes Xε exhibit residual diffusion when φ is obtained from a piecewise affine
linear, expanding Bernoulli map (see Section 2, below). To the best of our knowledge,
this is the only chaotic map for which residual diffusion has been rigorously proved.

Theorem 1.1. Suppose φ is obtained from an expanding, piecewise affine linear,
Bernoulli map satisfying the conditions in Assumption 2.1, below. There exists a
constant c > 0 such that for all v ∈ Rd, and all initial distributions µ we have

(1.2) lim inf
ε→0

lim
n→∞

varµ(v · Xε
n)

n
⩾ c var

(
v · ⌊φ(U)⌋

∣∣ U ∼ unif([0, 1)d)
)

.

We use varµ(v · Xε
n) to denote the variance of v · Xε

n given Xε
0 ∼ µ. For x ∈ Rd

the notation ⌊x⌋ used above denotes the unique n ∈ Zd such that x ∈ n + [0, 1)d.
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Unless ⌊φ(x)⌋ is a constant for (almost every) x ∈ [0, 1)d, the right side of (1.2)
will be positive. A heuristic argument, supported by numerics, indicates that the
bound (1.2) is sharp. While we are currently unable to prove a matching upper
bound, we can prove an upper bound that grows like O(|ln ε|) as ε → 0.

Proposition 1.2. Let φ be the same map from Theorem 1.1. There exists a
constant C < ∞ such that for all v ∈ Rd and all sufficiently small ε > 0 we have

(1.3) lim
n→∞

var(v · Xε
n)

n
⩽ C|ln ε||v|2 .

1.2. Motivation and Literature review. Our interest in this problem stems
from understanding the long time behavior of diffusions with a chaotic (but periodic)
drift. That is, consider the continuous time diffusion process Xε

t defined by the SDE

(1.4) dXε
t = u(Xε

t ) dt + ε dWt on Rd ,

where u : Rd → Rd is a periodic and divergence-free vector field. One physical
situation where this is relevant is in the study of diffusive tracer particles being
advected by an incompressible fluid.

On small (i.e. O(1)) time scales, it the process of Xε stays close to the deter-
ministic trajectories of u, and a large deviations principle can be established (see
for instance [FW12]). On intermediate (i.e. O(|ln ε|/εα) for α ∈ [0, 2)) time scales
certain non-Markovian effects arise and lead to anomalous diffusion [You88,YPP89,
Bak11, HKPG16, HIK+18]. On long (i.e. O(1/ε2)) time scales, homogenization
occurs and the net effect of the drift can be averaged and the process Xε can be
approximated by a Brownian motion with covariance matrix Dε

eff called the effective
diffusivity. This was first studied in this setting by Freidlin [Fre64], and is now the
subject of many standard books with several important applications [BLP78,PS08].

The effective diffusivity matrix Dε
eff is formally given by

eiD
ε
effej = lim

t→∞

cov(ei · Xε
t , ej · Xε

t )
t

,

where ei ∈ Rd is the ith standard basis vector. This, however, is hard to compute
explicitly and authors usually characterize it in terms of a cell problem on Td. In a
few special situations (such as shear flows, or cellular flows) the asymptotic behavior
of Dε

eff as ε → 0 is known [Tay53,CS89,FP94,FP97,MK99,Hei03,Kor04,NPR05,
RZ07].

The motivation for the present paper comes from thinking about the case when the
deterministic flow of u is chaotic or exponentially mixing on the torus (see [SOW06]).
In this case it has been conjectured that Dε

eff is O(1) as ε → 0, a phenomenon known
as “residual diffusivity”. Study of this was initiated by Taylor [Tay21] over 100 years
ago, and has since been extensively studied by many authors [ZSW93, BCVV95,
MK99,Zas02,MCX+17]. While this has been confirmed numerically and studied for
elephant random walks [LXY17,LXY18,MCZ+20,WXZ21,WXZ22,LWXZ22,KLX22],
a rigorous proof is of this in even one example is still open.
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2 IYER AND NOLEN

We now present a heuristic explanation as to why residual diffusivity is expected.
As before, let X̃ε be the projection of Xε to the torus Td, and let Tε = tmix(X̃ε)
be the mixing time of X̃ε on the torus Td. In general, due to the Gaussian noise,
we are guaranteed Tε ⩽ O(1/ε2). The chaotic dynamics of φ may cause enhanced
dissipation, and reduce Tε significantly (see for instance [FW03,FNW04,FNW06,
CKRZ08,FI19,CZDE20,ELM23, ILN24,TZ24]). However, for reasons that will be
explained shortly, having Tε ≪ 1/ε2 does not necessarily imply residual diffusion.

Now, after the mixing time Tε the distribution of X̃ε is close to the uniform
distribution on Td. Thus, it is reasonable to expect that the distribution of Xε can
be approximated by a linear combination of indicator functions of unit cubes in Rd

whose vertices lie in the integer lattice Zd (see Figure 2, right). By the Markov
property this should imply that for every v ∈ Rd we have

(1.5) lim
t→∞

var(v · Xε
t )

t
=

var(v · Xε
Tε

| Xε
0 ∼ unif([0, 1)d)
Tε

.

Let X0 be the (deterministic) solution to (1.4) with ε = 0. If we knew
(1.6) |Xε

Tε
− X0

Tε
| = o(Tε)

then
var(v · Xε

Tε
| Xε

0 ∼ unif([0, 1)d)
Tε

≈
var(v · X0

Tε
| X0

0 ∼ unif([0, 1)d)
Tε

.

If the deterministic flow of u is chaotic and if X0
0 ∼ unif([0, 1)d) then X0

n should
behave like a random walk after n steps. Since the variance of a random walk grows
linearly with time, we expect

(1.7) lim
ε→0

lim
t→∞

var(v · Xε
t )

t
= var(v · X0

1 | X0
0 ∼ unif([0, 1)d) .

Unfortunately the above heuristic has not been proved for even one example, and
there are two main technical obstructions to making it rigorous. First, after time Tε,
even though the density of X̃ε

Tε
is roughly uniform on Td, the density of Xε

Tε
need

not be well approximated by a linear combination of indicator functions of unit
cubes with vertices on the integer lattice. Second, the distance between Xε

t and X0
t

may grow exponentially with t, and the bound (1.6) need not hold.
The goal of this paper is to rigorously exhibit residual diffusivity in a simple

setting. In continuous time, examples of exponentially mixing flows are not easy
to construct. The canonical example of an exponentially mixing flows is the
geodesic flow on the unit sphere bundle of negatively curved manifolds [Dol98].
On the 3-torus, however, the existence of a divergence free, C1, time independent,
exponentially mixing velocity field is an open question. To the best of our knowledge,
there are only examples of lower regularity [EZ19], and several time dependent
examples [Pie94,BBPS19,MHSW22,BCZG23,ELM23,CFIN23].

On the other hand, there are several simple, well known, examples of regular,
Lebesgue measure preserving, exponentially mixing dynamical systems on the
torus [SOW06]. Therefore, instead of studying a continuous-time system, we
study the discrete time system (1.1), and choose φ so that its projection to the
torus generates an exponentially mixing dynamical system. Such systems are

interesting in their own right, and various aspects of them have been extensively
studied [FW03,FNW04,TC03,FI19,OTD21, ILN24].

In this time-discrete setting, the analog of (1.7) is

(1.8) lim
ε→0

lim
n→∞

varx(v · Xε
n)

n
= var

(
v · ⌊φ(U)⌋

∣∣ U ∼ unif([0, 1)d)
)

.

Our main result (Theorem 1.1) establishes a lower bound that obtains (1.8) to up
to a constant factor. For the upper bound we will prove the discrete time version
of (1.5). However, the best estimate we can presently obtain on the right hand
side of (1.5) is suboptimal, leading to the logarithmically growing upper bound in
Proposition 1.2.

Plan of this paper. In Section 2 we describe piecewise linear expanding Bernoulli
maps, and precisely state the assumptions required for Theorem 1.1. Next, in
Section 3 we prove a general upper bound for the asymptotic variance of Markov
processes with a transition density that is invariant under Zd shifts. We use this
bound to prove the upper bound Proposition 1.2. The proof of the lower bound
can be broken down into two steps. The first step is to prove a lower bound
for the asymptotic variance of Markov processes whose transition density can
be suitably minorized. The second step is to prove that the process we study
satisfies this minorization condition. Section 4 states these two steps precisely, and
proves Theorem 1.1 assuming these steps. Section 5 uses an argument of Kipnis
and Varadhan to prove the first step, and finally Section 6 proves the required
minorization condition for the processes Xε.

Acknowledgements. The authors would like to thank Jack Xin and Albert Fan-
njiang for helpful discussions.

2. Piecewise Affine Linear Expanding Bernoulli Maps.
We begin by precisely describing the piecewise affine linear, expanding Bernoulli

map φ : Rd → Rd, and stating the assumptions required for Theorem 1.1. Partition
Rd into unit cubes {Qk | k ∈ Zd}, where Qk = k + [0, 1)d. Let M ⩾ 2 and
E1, . . . , EM ⊆ Q0 be a partition of Q0, with

|E1| ⩽ |E2| · · · ⩽ |EM | .

For each i ∈ {1, . . . , M} let φi : Ei → Rd be an affine linear map of the form

φi(x) = Oix

|Ei|1/d
+ oi , ∀ x ∈ Ei,

for some vectors oi ∈ Rd, and orthogonal matrices Oi (one example of such a map
is shown in Figure 1). Given x ∈ Rd we let n = ⌊x⌋ denote the unique element in
Zd such that x ∈ Qn = n + Q0, and define
(2.1) φ(x) = n + φi(x − n) if x − n ∈ Ei .

The function x 7→ φ(x) − x is Zd periodic, and φ is Lebesgue measure preserving.
We now precisely describe the assumptions required for Theorem 1.1.

Assumption 2.1. Let φ : Rd → Rd be the affine linear expanding map defined
by (2.1), and assume that the following conditions hold.
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(1) If d = 1, then each Ei is an interval. If d > 1, then each Ei is a non-degenerate
d-dimensional cube with edges parallel to the coordinate axes (as in the left
figure in Figure 1).

(2) For each i ∈ {1, . . . , M} there exists σ0(i) ∈ Zd such that φ : E̊i → Q̊σ0(i) is a
bijection. (E̊ denotes the interior of a set E.)

(3) For every x ∈ ∂Q0, there exists k ∈ Zd, y ∈ Q̊k such that φ(y) = x.

Remark 2.2. The right hand side of (1.2) is strictly positive if there exists some
i, j ∈ {1, . . . , M} such that σ0(i) ̸= σ0(j). This is equivalent to saying that the
image of Q0 under φ does not coincide with Qk for some k ∈ Zd.

Figure 1. A visual example of φ in two dimensions. Each square
region in the left figure is expanded to the corresponding unit cube
in the right figure.

3. Proof of the upper bound (Proposition 1.2)
The upper bound (1.3) follows from a more general fact about Markov processes

whose transition density is invariant under Zd shifts. Since the proof is short and
elementary we present it first.

Let Yn be a Markov process on Rd and pY
n denote its n-step transition density.

For brevity, when n = 1 we will write pY for pY
1 . We will assume pY is invariant

under Zd-shifts. That is, for every k ∈ Zd, y, z ∈ Rd we assume
(3.1) pY (y + k, z + k) = pY (y, z) .

Let Ỹn, defined by

(3.2) Ỹn
def= Yn (mod Zd) ,

denote the projection of the process Y onto the torus Td. The Zd-shift invariance (3.1)
implies that the process Ỹ is also a Markov process on Td with transition density
given by

(3.3) pỸ (ỹ, z̃) =
∑

k∈Zd

pY (y, z + k)

where y, z ∈ Rd are any two elements such that

ỹ = y (mod Zd) , and z̃ = z (mod Zd) .

We will assume that the stationary distribution of Ỹ is the Lebesgue measure on Td.
By (3.3) this is equivalent to assuming

(3.4)
∑

n∈Zd

ˆ
y∈Q0

pY (y, z + n) dy = 1 for every z ∈ Q0 .

By (3.1), is equivalent to the condition

(3.4′)
ˆ
Rd

pY (y, z) dy = 1 , for every z ∈ Rd .

We will now prove Proposition 1.2 by proving an upper bound on the asymptotic
variance of Y in terms of the mixing time of Ỹ .

Proposition 3.1. Let T = tmix(Ỹ ) be the first time for which

sup
ỹ∈Td

∥pỸ
T (ỹ, ·) − 1∥L1(Td) <

1
2 .

There exists a universal constant C such that for all v ∈ Rd

(3.5) lim
n→∞

varx(v · Yn)
n

⩽ C|v|2tmix(Ỹ ) sup
y∈Q0

Ey|Y1 − Y0|2 .

Remark 3.2. In this generality the upper bound in Proposition 3.1 can not be
improved and it is easy to produce examples where the upper bound (3.5) is
attained. One such example can be obtained using the flow map of a shear flow.
Explicitly, let f : R → R be a periodic function. The flow map at time t = 1 of the
shear flow with profile f directed along the x axis is given by

φ(x, y) = (x + f(y), y), (x, y) ∈ R2 .

If we choose Y = Xε (i.e. the system (1.1) with φ defined in this way), then tmix(Ỹ ) =
O(1/ε2), and if v = e1, then both sides of (3.5) are O(1/ε2) as ε → 0.

Proposition 3.1 immediately implies Proposition 1.2, and we now present the
proof. Here, and throughout this paper, we will allow C to be a generic finite ε-
independent constant, whose value is unimportant and may increase from line to
line.

Proof of Proposition 1.2. Let Yn = Xε
n. The upper bound (3.5) implies that for

any v ∈ Rd we have

lim
n→∞

varx(v · Xε
n)

n
⩽ C|v|2tmix(X̃ε) sup

y∈Q0

E|φ(y + εξ1) − y|2 .

By [ILN24] we know tmix(X̃ε) ⩽ C|ln ε|, from which (1.3) follows immediately. □

Remark 3.3. Before proceeding further, we briefly comment on why we expect
the upper bound (1.3) is not optimal in our setting and misses by a |ln ε| factor.
Let T ′ = tmix(X̃ε) be the mixing time of X̃ε on the torus Td. By [ILN24] we recall
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that T ′ ⩽ C|ln ε|. Applying Proposition 3.1 to the Markov processes Yn = Xε
nT ′

gives

lim
n→∞

varx(v · Xε
n)

n
= 1

T ′ lim
n→∞

varx(v · Yn)
n

⩽ C|v|2 tmix(Ỹ )
T ′ sup

y∈Q0

Ey|Xε
T ′ − y|2 .

By definition of T ′, we know tmix(Ỹ ) = 1. If φ is sufficiently mixing, then suc-
cessive steps of Xε should decorrelate. In this case, in the absence of a drift, we
expect Ey|Xε

T ′ − y|2 ⩽ CT ′, from which we immediately obtain

lim
n→∞

varx(v · Xε
n)

n
⩽ C|v|2 .

While this suggests an ε-independent upper bound for the asymptotic variance, it
seems challenging to prove rigorously.

We will now prove Proposition 3.1. The first step is to obtain a decorrelation
bound on the increments of Y .

Lemma 3.4. Let ∆n = Yn+1 − Yn, where Y is the process defined in (4.8). Then

| covx(v · ∆m, v · ∆m+n+1)| ⩽ 4|v|2 sup
ỹ∈Td

∥pỸ
n (ỹ, ·) − 1∥L1(Td) sup

y∈Rd

Ey|∆0|2 .

Proof. Note first for any i, j ∈ {1, . . . , d},

(3.6) covx(∆i
m, ∆j

m+n+1) =
ˆ
R2d

f(y′)pY
n (y′, z)g(z) dy′ dz ,

where

f(y′) =
ˆ

y∈Rd

pY
m(x, y)pY

1 (y, y′)(y′
i − yi − Ex∆i

m) dy ,

g(z) =
ˆ

z′∈Rd

pY
1 (z, z′)(z′

j − zj − Ex∆j
m+n+1) dz′ .

Clearly ˆ
Rd

f(y′) dy′ = Ex∆i
m − Ex∆i

m = 0 .

Moreover, for any k ∈ Zd we note

g(z + k) =
ˆ

z′∈Rd

pY
1 (z + k, z′)(z′

j − zj − kj − Ex∆j
m+n+1) dz′

=
ˆ

z′∈Rd

pY
1 (z, z′ − k)((z′

j − kj) − zj − Ex∆j
m+n+1) dz′ = g(z) ,

and so g is Zd periodic. Thus using the identity (3.3) we seeˆ
R2d

f(y′)pY
n (y′, z)g(z) dy′ dz =

∑
k∈Zd

ˆ
Rd×Q0

f(y′)pY
n (y′, z + k)g(z) dy′ dz

=
ˆ
Rd×Td

f(y′)pỸ
n (ỹ′, z̃)g(z̃) dy′ dz̃

=
ˆ
Rd×Td

f(y′)(pỸ
n (ỹ′, z̃) − 1)g(z̃) dy′ dz̃

⩽ ∥f∥L1(Rd) sup
ỹ′∈Td

∥pỸ
n (ỹ′, ·) − 1∥L1(Td) sup

z̃∈Td

|g(z̃)| .(3.7)

Here we used the convention that ỹ = y (mod Zd) denotes the projection of y ∈ Rd

to the point ỹ ∈ Td.
Observe that

∥f∥L1(Rd) ⩽ Ex
[∣∣∆i

m − Ex[∆i
m]
∣∣]

and
sup
z∈Td

|g(z)| ⩽ sup
z∈Td

Ez
[∣∣∣∆j

0 − Ex[∆j
m+n+1]

∣∣∣]
For any integer k ⩾ 1, the Markov property implies

Ex|∆i
k| =

ˆ
Rd

pY
k (x, y)Ey|Y1 − y| dy ⩽ sup

y∈Rd

Ey|∆i
0| .

Combining this with (3.6) and (3.7) gives

|covx(∆i
m, ∆j

m+n+1)| ⩽ 4 sup
y∈Rd

Ey|∆i
0| sup

y∈Rd

Ey|∆j
0| sup

ỹ′∈Td

∥pỸ
n (ỹ′, z̃) − 1∥L1(Td)

The lemma now follows from the Cauchy–Schwarz inequality. □

Proposition 3.1 follows quickly from Lemma 3.4.

Proof of Proposition 3.1. Let ∆k = Y ε
k+1 − Y ε

k , and note

varx(v · YN ) = varx
(N−1∑

n=0
v · ∆n

)
=

N−1∑
n=0

varx(v · ∆n) + 2
N−1∑
n=0

N−n−1∑
k=0

covx(v · ∆n, v · ∆n+k+1)

⩽ N |v|2 sup
y∈Rd

Ey|∆0|2
(

1 + C

∞∑
k=0

sup
ỹ∈Td

∥pk(ỹ, ·) − 1∥L1(Td)

)
.(3.8)

Since T = tmix(Ỹ ), for every ỹ ∈ Td, n ∈ N and j ∈ {0, . . . , T − 1}, we have

(3.9) ∥pỸ
nT +j(ỹ, ·) − 1∥L1(Td) ⩽

1
2n

.

Thus the series on the right hand side of (3.8) is bounded by 2T . This implies

varx(v · YN ) ⩽ CN |v|2tmix(Y ) sup
y∈Rd

Ey|∆0|2 ,

which immediately yields (3.5). □

4. Proof of the lower bound (Theorem 1.1)
The proof of Theorem 1.1 can be broken down into two steps. We first prove a

general result obtaining a lower bound for the effective diffusivity, provided there
is an increasing sequence of stopping times at which the transition density of the
stopped process satisfies a Doeblin minorization condition. Building on our analysis
in [ILN24], we will then show that the expanding Bernoulli maps we consider satisfy
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this condition. Numerical simulations indicate that other systems may also satisfy
this Doeblin condition; however, we are not presently able to prove this rigorously.

4.1. A general lower bound on the asymptotic variance. Our aim in this
section is to consider general Markov processes Y whose transition density is invariant
under Zd shifts as we did in Section 3. The main result in this section obtains a
lower bound on the asymptotic variance of Y , provided the transition density is
minorized by a distribution that is constant on each of the unit cubes {Qn}. To
state this precisely let w : Rd × Zd → [0, 1] be a function such that for every y ∈ Rd,
w(y, ·) is a probability distribution on Zd. Moreover, suppose w is invariant under
Zd-shifts in the sense that for every y ∈ Rd, m, n ∈ Zd we have

w(y + n, m + n) = w(y, m) and
∑

k∈Zd

w(y, k) = 1 .

For every y ∈ Rd, let Dw(y) be the covariance matrix of the distribution w(y, ·).
That is, let Dw(y) be the positive semi-definite matrix whose i, j-th entry is given by

(Dw(y))i,j
def= cov(ei · K, ej · K) ,

where K is a Zd valued random variable for which P (K = k) = w(y, k), and ei ∈ Rd

is the ith elementary basis vector. Also define the average covariance matrix D̄w by

D̄w
def=
ˆ

Q0

Dw(y) dy .

We will now show that if the transition density of Y is minorized by w, then so is
the effective diffusivity.

Proposition 4.1. Let Y be a Markov process with finite variance whose transition
density pY satisfies (3.1) and (3.4). If there exists β > 0 such that

(4.1) pY (y, z) ⩾ βw(y, ⌊z⌋) for every y, z ∈ Rd ,

then

lim
n→∞

var(v · Yn)
n

⩾ βv · D̄wv .

Here, we recall ⌊z⌋ is the unique element in Zd such that z ∈ ⌊z⌋ + Q0.

In general, we expect to apply Proposition 4.1 as follows. Let X̃ε = Xε (mod Zd)
be the projection of Xε to the torus. If Tε = t∞

mix(Xε) denotes the uniform mixing
time of X̃ε, then one might expect that the Markov process Yn = Xε

nTε
satisfies

the minorization condition (4.1). Applying Proposition 4.1 would now get a lower
bound on the effective diffusivity of Xε and show

(4.2) lim
n→∞

var(v · Xε
n)

n
⩾

c

Tε
v · D̄wεv ,

where
wε(m, n) = P (Xε

Tε
∈ Qn | Xε

0 ∼ unif(Qm)) .

One would now need to to estimate the right hand side of (4.2) and show that it
does not vanish as ε → 0.

Both the minorization condition (4.10) for Yn = Xε
nTε

, and an ε-independent
lower bound for (4.2) are not easy to prove in general. We will prove Theorem 1.1
by proving a version of the above when Tε is a time that depends on the starting
point. We will then require a slightly stronger version of Proposition 4.1, which we
now state.

Corollary 4.2. Let Y be as in Proposition 4.1, and assume the same minorization
condition (4.1). If γ > 0 is a constant and τn is an sequence of bounded stopping
times such that τn ⩾ γn almost surely for all n ∈ N, then then

(4.3) lim inf
n→∞

var(v · Yτn
)

n
⩾ βγv · D̄wv .

We prove Proposition 4.1 and Corollary 4.2 in Section 5, below.

4.2. Minorizing by the transition density. Our aim in this section is to show
that the process Xε defined in (1.1) can be time-changed to satisfy the assumptions
of Corollary 4.2, with a constant β that is independent of ε. While this minorization
condition is intuitive and pictorially evident, proving it rigorously is somewhat
technical and takes up the bulk of this paper.

Figure 2. A plot of θε for two values of ε (left, center), and the
distribution of Y ε

1 given Y ε
0 ∼ unif(Q0) (right).

Since φ is constructed from an expanding Bernoulli map, every application of φ
induces an expansion. Because the random perturbations in (1.1) have length scale ε,
an important time scale in the dynamics is the time required for sets at the O(ε)
scale to be expanded to a set at the O(1) scale. The expansion time, however, is
not constant as different points expand at different rates. We will divide Rd into
cubes of side length O(ε) (see Figure 2, left) and consider the number of iterations
of φ required to expand each of these cubes to the unit cube. Explicitly, define the
(deterministic, Zd-periodic) function θε : Rd → Zd by

(4.4) θε(x) = min
{

m ∈ N
∣∣∣ m∏

k=1
|det Dφ(X0

k(x))| ⩾ 1
εd

}
.

If we start (1.1) with a delta distribution, the noise will minorize it on cubes of
side length O(ε), and after θε steps it is reasonable to expect that the distribution
can be minorized on unit cubes. Unfortunately, the noise also “leaks mass” through
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the boundary making it hard to obtain minorization estimates with a uniform lower
bound on cubes. We will, instead, minorize the density by a bump distribution
supported on unit cubes. Explicitly, we will show
(4.5) pXε

1+θε(x)(x, y) ⩾ χF∗(y)1Q(X0
1+θε (x))(y) ,

where χ > 0 is a constant that is independent of ε, x, y and F∗ is a specific (explicit)
periodic function defined in (6.3) below. We clarify that X0

θε(x) above denotes
X0

θε(x)(x), the deterministic dynamical system X0 run for time θε(x).
Now, when we apply φ to the distribution 1Qk

F∗, it may fragment over many
cubes and we are not guaranteed a uniform minorization condition in the form
of (4.1). We thus introduce an auxiliary Markov process Z to de-fragment the
density by solving (1.1) for 2+θε steps, and subtracting a Zd valued “defragmenting”
shift.

To make this precise, choose an i.i.d. Zd valued sequence of random vari-
ables I1, I2, . . . such that
(4.6) P (In = σ0(i)) = |Ei| for all i ∈ {1, . . . , M} , n ∈ N ,

where we recall σ0 is defined in Assumption 2.1. Next, define an increasing sequence
of stopping times Nε

k along which the cumulative expansion factor is roughly constant.
Explicitly, set

Nε
1 = 2 + θε(Xε

0) ,

and inductively define
(4.7) Nε

k+1 = Nε
k + 2 + θε(Xε

Nε
k
) .

Finally define our auxiliary process Zε inductively starting with Zε
0 = Xε

0 . Then,
given Zε

n, set

Ẑε
n,Nε

n
= Zε

n , Ẑε
n,k+1 = φ(Ẑε

n,k) + εξk for k > Nε
n ,

and define
(4.8) Zε

n+1 = Ẑε
n,Nε

n+1
− In+1 .

Since φ has a periodic displacement it is easy to see that

(4.9) Zε
n − Xε

Nε
n

=
n∑

k=1
Ik ∈ Zd .

Since θε is Zd periodic, equation (4.7) implies
Nε

k+1 = Nε
k + 2 + θε(Zε

k) .

This implies Zε is a Markov process, and we will now show that its transition density
can be minorized on cubes.

Using (4.5) and the definition of Zε we will show (see Lemma 6.5, below) that
the density z 7→ pZε

1 (x, y) of Zε after one step is bounded below by a constant over
the cube Q(X0

1+θε(x)). If we directly use this along with Proposition 4.1 we only
get an O(1) lower bound for the asymptotic variance of Zε. This isn’t sufficient to
complete the proof of Theorem 1.1. However, if we iterate this process once, and
obtain a lower bound on the two step transition density of Zε, we obtain a lower

bound that is sufficient to complete the proof of Theorem 1.1. Precisely, we will
prove the following lower bound.

Lemma 4.3. There exists a constant c > 0 such that the two step transition density
of Zε satisfies
(4.10) pZε

2 (x, y) ⩾ cw̌ε(X0
1+θε(x), ⌊y⌋) , for all x, y ∈ Rd .

Here w̌ε is defined by

(4.11) w̌ε(z, k) def= P (X0
1+θε(U) ∈ Qk | U ∼ unif(Q⌊z⌋), z ∈ Rd, k ∈ Zd .

Because w̌ε depends on z only via the integer part ⌊z⌋, the covariance matrix
Dw̌ε(x) does not depend on x: D̄w̌ε = Dw̌ε(x) for all x, so we write simply Dw̌ε .
Proposition 4.1 can now be used to show estimate the asymptotic variance of Zε

in terms of the diffusivity matrix D̄w̌ε . This matrix can be computed explicitly as
an ε-independent matrix times an O(|ln ε|) factor. This is our next result.

Lemma 4.4. Let wε(x, y) = w̌ε(X0
1+θε(x), ⌊y⌋). The covariance of y 7→ wε(x, y)

does not depend on x, and for all ε > 0, this covariance matrix Dwε is given by
(4.12) Dwε = (1 + θ̄ε)Dw0

where

θ̄ε def=
ˆ

y∈Q0

θε(y) dy ,

w0(m, k) def= P (φ(U) ∈ Qk | U ∼ unif(Qm)), m, k ∈ Zd .

Lemmas 4.3 and 4.4 will be proved in Section 6, below.

4.3. Proof of Theorem 1.1. We will now prove Theorem 1.1. Proposition 4.1 and
Lemma 4.3 immediately give a lower bound on the asymptotic variance of Zε. To
obtain the asymptotic variance of Xε from Zε, we need to undo the shifts by the
process I, and time change by Nε. We carry out the details here.

Proof of Theorem 1.1. Here and subsequently we use the convention that C < ∞ is
a large ε-independent constant whose value is unimportant and may increase from
line to line. We also use c > 0 to denote a small ε-independent constant whose value
is unimportant and may decrease from line to line. Define the family of stopping
times Mε

n by
Mε

n = inf{k ∈ 2N | Nε
k ⩾ |ln ε|n}, n = 1, 2, 3, . . . .

We claim
(4.13) cn ⩽ Mε

n ⩽ Cn, ∀ n = 1, 2, 3, . . . .

To see this, note
1

|EM |
⩽ |det Dφ| ⩽ 1

|E1|
,

which implies

(4.14) d ln ε

ln|E1|
⩽ θε(x) <

d ln ε

ln|EM |
+ 1 ,



RESIDUAL DIFFUSIVITY 7

for every x ∈ Rd. This in turn implies

n
(

2 + d ln ε

ln|E1|

)
⩽ Nε

n < n
(

3 + d ln ε

ln|EM |

)
and immediately yields (4.13) as claimed.

Now, consider the Markov chain Zε
2n. By Lemma 4.3, the transition density for

Zε
2n satisfies the minorization condition required in Corollary 4.2, with wε(x, k) =

w̌ε(X0
1+θε(x), k). By (4.13), Mε is a bounded sequence of stopping times, and so

Corollary 4.2 applied to the process Zε
2n gives

(4.15) lim
n→∞

1
n

var(v · Zε
Mε

n
) ⩾ cvD̄w̌εv = c(1 + θ̄ε)vDw0v ,

where the last equality above followed from (4.12).
Next we note that (4.9) and independence of I and Y imply

var(v · Xε
Nε

Mε
n

) = var(v · Zε
Mε

n
) + EMε

n var(v · I1) .

Combining this with (4.13) and (4.15) implies

(4.16) lim
n→∞

1
n

var(v · Xε
Nε

Mε
n

) ⩾ c(1 + θ̄ε)vDw0v − C|v|2 .

The above computes variance of Xε evaluated at a sequence of stopping times Nε
Mε

n
.

In order to compute the variance of Xε along a sequence of deterministic times we
use (4.14) to note

d ln ε

ln|E1|
+ 1 < Nε

n+1 − Nε
n ⩽

d ln ε

ln|EM |
+ 2 .

This implies

(4.17) nε ⩽ Nε
Mε

n
⩽ nε + 2d ln ε

ln|EM |
+ 2 where nε def= ⌊n|ln ε|⌋ ,

showing Nε
Mε

n
differs from the deterministic time nε by an O(|ln ε|) time that does

not grow with n.
This allows us to estimate var(Xε

nε) as follows. First note,

(4.18) var(v · Xε
nε) ⩾ 1

2 var(v · Xε
Nε

Mε
n

) − 2 var(v · (Xε
Nε

Mε
n

− Xε
nε)) .

Next we note (1.1) implies

|Xε
n+1 − Xε

n| ⩽ sup
x∈Rd

|φ(x) − x| + ε|ξn+1|

and hence

|Xε
Nε

Mε
n

− Xε
nε | ⩽ C(Nε

Mε
n

− nε) + ε

Nε
Mε

n∑
k=nε

|ξk| .

Using (4.17) this implies

(4.19) E|Xε
Nε

Mε
n

− Xε
nε |2 ⩽ C|ln ε|2 .

Substituting (4.19) in (4.18) gives

var(v · Xε
nε) ⩾ 1

2 var(v · Xε
Nε

Mε
n

) − C|v|2|ln ε|2 .

Hence

lim
n→∞

var(Xε
n)

n
= lim

n→∞

var(Xε
nε)

nε
⩾ lim

n→∞

1
nε

(1
2 var(v · Xε

Nε
Mε

n

) − C|v|2|ln ε|2
)

= 1
2 lim

n→∞

var(v · Xε
Nε

Mε
n

)

n
lim

n→∞

n

nε

⩾
1

|ln ε|
(
c(1 + θ̄ε)vDw0v − C|v|2

)
,

where the last inequality above followed from (4.16). Using (4.14) this implies

lim
n→∞

var(Xε
n)

n
⩾ cvDw0v − C|v|2

|ln ε|
,

which immediately implies (1.2) and concludes the proof. □

5. A lower bound on the asymptotic variance (Proposition 4.1)
In this section we prove Proposition 4.1 using an idea that can be traced back to

Kipnis and Varadhan [KV86] and has been widely used in the analysis of markov
processes [KLO12]. The result of Kipnis and Varadhan [KV86] gives an explicit
formula for the asymptotic variance, in terms of a corrector. In the context of (1.1)
when φ is chaotic, the corrector is not well behaved and it is not easy to obtain
enough bounds on the corrector which are good enough to yield the lower bound in
Theorem 1.1. We will, instead, show that if a minorizing condition holds then one
can obtain bounds on the asymptotic variance without requiring any bounds on the
corrector.

Let Y be a Markov process that satisfies the assumptions in Proposition 4.1. The
strategy is to write Yn as Mn+ns̄−χ(Yn) where each component of the vector-valued
process Mn is a martingale, s̄ is a constant drift, and χ(y) is a bounded function.
Let L be the operator

Lf(y) = Ey(f(Y1) − f(y)) =
ˆ
Rd

pY
1 (y, z)(f(z) − f(y)) dz .

In view of the assumptions on the density p, this is well-defined for any measureable
function f that satisfies a bound of the form |f(y)| ⩽ C(1 + |y|2), for y ∈ Rd.

Lemma 5.1. There exists a bounded, Zd-periodic function χ : Rd → Rd and a
vector s̄ ∈ Rd such that the function ζ defined by

(5.1) ζ(y) def= y + χ(y)
satisfies

Lζ = s̄ .(5.2)

Remark 5.2. Here ζ(y) = (ζ1(y), . . . , ζd(y)) ∈ Rd, and so the equation Lζ = s̄ means
Lζi = s̄i holds for every i = 1, . . . , d.
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Lemma 5.1 can be proved by writing down an explicit series representation for ζ.
To avoid distracting from the main idea, we momentarily postpone the proof. For
any v ∈ Rd, define the function Vv : Rd → R by

Vv(y) def= Ey(v · (ζ(Y1) − ζ(Y0) − s̄))2 = var(v · ζ(Y1) | Y0 = y) .

Since the transition density of Y is invariant under Zd shifts (3.1), the function Vv

is Zd-periodic. We will now show that the asymptotic variance of v · Y is exactly
the integral of Vv.
Theorem 5.3 (Kipnis, Varadhan [KV86]). For any v ∈ Rd we have

(5.3) lim
n→∞

var(v · Yn)
n

=
ˆ

Q0

Vv(y) dy .

Proof. We first show that for all n ∈ N and v ∈ Rd we have

(5.4) var(v · ζ(Yn)) =
n−1∑
k=0

EVv(Yk) .

To see this, note that
Ey(ζ(Y1) − ζ(y)) = Lζ(y) = s̄, y ∈ Rd.

Hence, if Fn is the filtration generated by Y0, Y1, . . . , Yn, we have
E[ζ(Yn+1) − ζ(Yn) | Fn] = Lζ(Yn) = s̄ .

As a result, each component of the vector-valued process

(5.5) Mn
def= ζ(Yn) − ns̄

is a martingale. Thus

var(v · (ζ(Yn) − ζ(Y0))) = E(v · (Mn − M0)2) =
n−1∑
k=0

E(v · (Mk+1 − Mk))2

=
n−1∑
k=0

E(v · (ζ(Yk+1) − ζ(Yk) − s̄))2

=
n−1∑
k=0

EEYk (v · (ζ(Y1) − ζ(Y0) − s̄))2 =
n−1∑
k=0

EVv(Yk) ,(5.6)

proving (5.4).
To see that (5.4) implies (5.3), recall that y = ζ(y) − χ(y), where χ is periodic

and bounded. Hence, we have

lim
n→∞

var(v · Yn)
n

= lim
n→∞

var(v · (Yn − Y0))
n

= lim
n→∞

var(v · (ζ(Yn) − ζ(Y0) − χ(Yn) + χ(Y0)))
n

= lim
n→∞

var(v · (ζ(Yn) − ζ(Y0)))
n

.

Let Ỹ denote the projection of Y to the torus. Since Vv is periodic, we have
Vv(Yk) = Vv(Ỹk). The minorizing condition (4.1) for Y implies that the projected

chain Ỹ on Td is ergodic. In fact, this condition implies that the mixing time of
this chain on Td satisfies tmix(Ỹ ) ⩽ 1/β (see for instance [LP17,MT06]). Therefore,
applying the ergodic theorem to (5.4), we conclude

□lim
n→∞

var(v · Yn)
n

= lim
n→∞

1
n

n−1∑
k=0

EVv(Ỹk) =
ˆ

Q0

Vv(y) dy .

We will now use Theorem 5.3 to prove Proposition 4.1.

Proof of Proposition 4.1. By Theorem 5.3 it suffices to show

(5.7)
ˆ

Q0

Vv(y) dy ⩾
ˆ

Q0

βv · Dw(y)v dy ,

for all v ∈ Rd. To see this, observeˆ
Q0

Vv(y) dy =
ˆ

y∈Q0

Ey(v · (ζ(Y1) − ζ(Y0) − s̄))2 dy

=
ˆ

y∈Q0

Ey(v · (Y1 + χ(Y1) − y − χ(y) − s̄))2 dy

=
ˆ

y∈Q0

ˆ
z∈Rd

p(y, z)(v · (z + χ(z) − y − χ(y) − s̄))2 dz dy

⩾ β

ˆ
y,z∈Q0

∑
k∈Zd

w(y, k)(v · (k + z + χ(z) − y − χ(y) − s̄))2 dy dz.(5.8)

Now let K be a Zd valued random variable with P (K = k) = w(y, k). Then

v · Dw(y)v = var(v · K) =
∑

k∈Rd

w(y, k)(v · (k − EK))2

= inf
b∈Rd

∑
k∈Rd

w(y, k)(v · (k − b))2 .

Hence, (5.8) impliesˆ
Td

Vv(y) dy ⩾ β

ˆ
y,z∈Q0

∑
k∈Zd

w(y, k)(v · (k + z + χ(z) − y − χ(y) − s̄))2 dy dz

⩾
ˆ

y∈Q0

βv · Dw(y)v dy = βv · D̄wv ,

yielding (5.7), and concluding the proof. □

The proof of Corollary 4.2 is very similar to that of Proposition 4.1, and we
outline it here.

Proof of Corollary 4.2. Let Mn be the martingale defined in (5.5), and use the same
argument used to derive (5.6) to obtain

var(v · (ζ(Yτn
) − ζ(Y0))) = E

τ−1∑
k=0

Vv(Yk) .
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Since Vv ⩾ 0, this implies

var(v · (ζ(Yτn) − ζ(Y0))) ⩾ E

γn−1∑
k=0

Vv(Yk) .

Now following the same argument as in the proof of Proposition 4.1 will yield (4.3)
as desired. □

It remains to prove existence of the corrector function χ, as stated in Lemma 5.1.

Proof of Lemma 5.1. Define the function s : Rd → Rd and the vector s̄ ∈ Rd by

s(y) def= Ey(Y1 − y) , and s̄
def=
ˆ

Q0

s(y) dy .

The property (3.1) implies that s is a periodic function of y. Although s(y) need
not be continuous, it is bounded by

sup
y∈Rd

|s(y)| ⩽
√

d + sup
y∈Q0

ˆ
Rd

pY (y, z)|z| dz < ∞.

Our goal is to construct a bounded, periodic function χ satisfying
(5.9) Lχ(y) = s̄ − s(y) .

We claim that the series

(5.10) χ(y) =
∞∑

n=0
Eỹ(s(Ỹn) − s̄) , y ∈ Rd

is well-defined and gives the desired function. Here ỹ ∈ Td is the equivalence class y
(mod Zd) ∈ Td, and Ỹn = Yn (mod Zd) (as in (3.2)) is the projection of Y onto the
torus Td.

Let pỸ be the transition density on Td for the projected chain Ỹ . Then

Ey(s(Ỹn) − s̄) =
ˆ
Td

pỸ
n (ỹ, z̃)(s(z̃) − s̄) dz̃ =

ˆ
Td

(pỸ
n (ỹ, z̃) − 1)(s(z̃) − s̄) dz̃

⩽ ∥s − s̄∥L∞(Td) sup
ỹ∈Td

ˆ
Td

|pỸ
n (ỹ, z̃) − 1| dỹ .

Now let T = tmix(Ỹ ) be the mixing time of Ỹ . As in the proof of Theorem 5.3,
the minorizing condition (4.1) implies that T ⩽ 1/β < ∞. Since the right hand
side decreases geometrically (exactly as in (3.9)), the series on the right hand side
of (5.10) converges and

∥χ∥L∞(Td) ⩽ 2tmix(Ỹ )∥s − s̄∥L∞(Td) .

By shift invariance (3.1), the function χ is Zd periodic.
Finally, we check that χ satisfies (5.9). Notice

Lχ(y) = Ey

( ∞∑
k=0

EY1(s(Yk) − s̄)
)

− χ(y)

=
( ∞∑

k=0
Ey(s(Yk+1) − s̄)

)
− χ(y)

= −Ey(s(Y1) − s̄) = s̄ − s(y) ,

which implies χ solves (5.9) as desired. Since ζ is defined by (5.1), we this implies ζ
satisfies (5.2), concluding the proof. □

6. Minorizing the transition density (Lemmas 4.3, 4.4)
Finally, we conclude this paper by proving the minorization condition for the

process Zε (Lemma 4.3), and estimating the effective diffusivity of the minorizing
distribution (Lemma 4.4). The proof of this relies on the Bernoulli structure of φ,
and requires some notational preparation.

6.1. Cylinder sets and shifts. We begin by setting up our notation for cylinder
sets and shifts that will be used in the proof. Let I = {1, . . . , M}, and T denote
the set of all finite length I-valued tuples. Explicitly,

T = {0} ∪
∞⋃

m=1
Im,

where 0 denotes the empty tuple. Given a tuple s = (s0, . . . , sm−1) ∈ T we use
|s| = m to denote the length of the tuple s, with |0| = 0 by convention.

Let σ̃ : T → T be the Bernoulli left shift. That is, σ̃(s) removes the first
coordinate of s and shifts the other coordinates left. More precisely, we define

σ̃(s0, . . . , sm−1) = (s1, . . . , sm−1) , and σ̃(0) = 0 .

Let σ̃k denote the k-fold composition of the map σ̃. The map σ̃ is the Bernoulli
shift corresponding to the periodic map φ̃ : Td → Td induced by φ.

Given k ∈ Zd and s = (s0, . . . , sm−1) ∈ T , define

σ(k, s) = (k + σ0(s0), σ̃(s)) ,

where σ0 : I → Zd is the function defined in Assumption 2.1. We now define the
cylinder set associated to (k, s) ∈ Zd × T by

Ck,s
def= {x ∈ Qk | φn(x) − ⌊φn(x)⌋ ∈ Esn for all n ⩽ |s|} .

When s = 0, the associated cylinder set Ck,s is the cube Qk ⊆ Rd. When s = (s0) is a
tuple of length 1, the associated cylinder set Ck,s is simply the domain k + Es0 ⊂ Qk.
When |s| > 1, each of these cylinder sets get subdivided further, forming finer and
finer partitions of one of the cubes Qn. Observe that for any s ∈ T ,

Ck,s = (k − j) + Cj,s, ∀ k, j ∈ Zd.

In particular, the volume |Ck,s| does not depend on k. Recall by Assumption 2.1,
all cylinder sets are intervals for d = 1 and axis-aligned cubes for d > 1. We will
use ℓs denote the length of the interval Ck,s when d = 1, and the side length of
the cube Ck,s when d > 1; ℓs does not depend on the integer coordinate k. For
convenience define λs = 1/ℓs. Explicitly,

ℓs = |Ck,s|1/d , and λs = 1
ℓs

= 1
|Ck,s|1/d

.
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6.2. Minorizing by a bump function. In this section we will show that the
distribution of Xε(x) after time θε is minorized by a bump function on a cube (as
in (4.5)). If s ∈ T then notice

φ(C̊k,s) =


C̊σ(k,s) s ̸= 0 ,⋃
j∈I

Qk+σ0(j) − N s = 0 ,

for some null set N . In particular, this means that if |s| ⩾ 1,

(6.1) φ|s|(C̊k,s) = Q̊J(k,s), where J(k, s) = k +
|s|−1∑
i=0

σ0(si) ∈ Zd.

Thus, an initial distribution that is supported on Ck,s becomes spread over Q(J(k, s))
after |s| iterations of φ.

Since the process Xε is constructed by intertwining the action of φ with noise,
this suggests that if Xε

0 is concentrated on one cylinder set Ck,s, then the distribution
of Xε

|s| should be spread out over some cube Qn. This, however, is not easy to prove
as the action of the noise does not commute with the dynamics of φ. The main idea
introduced in [ILN24] is to construct a family of distributions Fk,s whose evolution
under Xε is controlled.

For any k ∈ Zd, s ∈ T , define

(6.2) Fk,s(x) =


1Qk

(x)F∗(x) s = 0 ,

1
|Ck,s|

1Ck,s
F∗ ◦ φ|s|(x) s ̸= 0 ,

where

(6.3) F∗(x) def= 2
π

d∏
i=1

| sin(πxi)| .

Note F∗ is Zd periodic, vanishes on ∪k∈Zd∂Qk. Moreover, for any cube Qk, F∗
restricted to Q̄k is the principal Dirichlet eigenfunction of the Laplace operator,
normalized to have integral 1 over Qk.

Lemma 6.1. For any k ∈ Zd, s ∈ T , Fk,s is supported on Ck,s, strictly positive
on C̊k,s, has integral 1. Moreover, there exists a > 0 such that for all k ∈ Zd, s ̸= 0,
we have the pointwise inequality

(6.4) T∗,εFk,s ⩾ e−a(λsε)2
Fσ(k,s) where λs = 1

|Ck,s|1/d
.

Here T∗,ε is the evolution operator defined by

T∗,εf(y) =
ˆ
Rd

f(x)pXε

1 (x, y) dx ,

where pXε

1 is the one step transition density of Xε.

Remark 6.2. The explicit form of Fk,s in (6.2) only works when the noise ξ is
Gaussian. When the noise ξn is not a Gaussian, the construction of a suitable family

of functions Fk,s surprisingly difficult. Following Section 3.5 in [ILN24] one can
find a, γ > 0 and a family of functions Fk,s such that

T∗,εFk,s ⩾ (1 − a(λsε)γ)Fσ(k,s) ,

which is good enough for our purposes.

Proof of Lemma 6.1. The proof is identical to that of Lemma 3.1 in [ILN24]. The
only difference is that here the ambient space is Rd rather than Td. The only
change required to the proof of Lemma 3.1 in [ILN24] is to additionally keep track
of the Zd-index of cylinder sets (i.e. (k, s) rather than s), so that φ maps Ck,s to
Cσ(k,s). □

Lemma 6.3. Let a be as in Lemma 6.1. There exist constants β ∈ (0, 1] such that
for all ε > 0 and all s ∈ T such that ℓs ⩾ ε, we have
(6.5) T n

∗,εFk,s ⩾ βFσn(k,s), ∀ n ⩽ |s|

In particular,

T
|s|
∗,εFk,s ⩾ β1QJ(k,s)(x)F∗(x),

where J(k, s) is defined in (6.1).

Proof of Lemma 6.3. Iterating (6.4) shows that for any n ⩽ |s| we have

(6.6) T n
∗,εFs ⩾ exp

(
−aε2

n∑
j=1

λ2
σj(k,s)

)
Fσn(k,s) .

The sum in the exponential is easily bounded. Indeed, if s = (s0, . . . , sn′−1) ∈ T ,
then

λσ(k,s) = 1
π(Cσ(k,s))1/d

= |Es0 |1/d

π(Ck,s)1/d
⩽ |EM |1/dλk,s .

Hence for every n ⩽ |s| we have

aε2
n∑

j=1
λ2

σj(k,s) ⩽
(ελσ(k,s))2

1 − |EM |2/d
⩽

1
1 − |EM |2/d

,

which is finite and independent of n and ε. Using this in (6.6) shows that for all
n ⩽ |s|, (6.5) holds with

□β = exp
( −1

1 − |EM |2/d

)
.

6.3. Defragmenting the density. Since φ may fragment each cube Qn, we now
use the integer shifts I to defragment the density with small probability. This will
be used to minorize the distribution of Xε(x) after time 2 + θε(x), and leads to the
proof of Lemma 4.3.

Lemma 6.4. Suppose Z ′ is a random variable and c > 0 are such that for every
Borel set A ⊆ Rd we have

(6.7) P (Z ′ ∈ A) ⩾ c

ˆ
A∩Q0

F∗(x) dx .
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Let I be an independent random variable with distribution (4.6), and ξ be an
independent standard normal. There exists a constant c′ > 0 such that for all ε > 0
we have

P (φ(Z ′) + εξ − I ∈ A) ⩾ c′|A ∩ Q0|

for all Borel set A ⊆ Rd.

Proof. For i ∈ {1, . . . M}, define φ̂i : Ēi → Q̄0 by

φ̂i(z) = φ(z) − σi = φ(z) − ⌊φ(z)⌋ .

Observe that φ̂i is invertible on Q0. For any Borel set A we note

P (φ(Z ′) − I ∈ A) ⩾
M∑

i=1
P (Z ′ ∈ E̊i, I = σ0(i), φ(Z ′) − I ∈ A)

⩾ pmin

M∑
i=1

P (Z ′ ∈ E̊i, φ̂(Z ′) ∈ A)

⩾ cpmin

M∑
i=1

ˆ
E̊i

F∗(z)1A ◦ φ̂(z) dz

= cpmin

ˆ
Q0

g(z)1A(z) dz ,

where

g(z) def=
M∑

i=1
F∗ ◦ φ̂−1

i (z)|Ei| dz .

By Assumption 2.1 item (2), and the fact that F∗ > 0 in Q̊0 we know that g > 0
on Q̄0. Since g is continuous on Q̄0, this implies

min
Q0

g > 0 .

This in turn implies that

P (φ(Z ′) − I ∈ A) ⩾ c|A ∩ Q0| .

Let fε be the density of the random variable φ(Z ′) − I + εξ, and Gε2 be the
density of a Gaussian with variance ε2. The above implies

f0 ⩾ c1Q0 .

Thus

fε = f0 ∗ Gε ⩾
c

2d
1Q0 ,

which implies (6.7) as desired.
□

Lemma 6.5. The one step transition density of the process Zε is bounded below by

(6.8) pZε

1 (x, y) ⩾ c1Q(X0
1+θε (x))(y) .

Proof. The first step is to show that the distribution of Xε
1 is bounded below by

one of the functions Fk,s with ℓs = O(ε). For this, we will now partition Rd into
cylinder sets with side length O(ε) as follows. Define

(6.9) Sε =
{

(k, s) ∈ Zd × T
∣∣∣ ℓ(k,s′) > ε , ℓk,s ⩽ ε

}
,

where s′ ∈ S is obtained by removing the last element of s. That is, if s =
(s0, . . . , sm−1) then we define s′ = (s0, . . . , sm−2)). Observe that {Ck,s | (k, s) ∈ Sε}
is a partition of Rd (see Figure 2 for an illustration).

Fix x ∈ Rd, and let N = θε(x), and let fε
n be the density of the random

variable Xε
n(x). Let (k, s) ∈ Sε be the unique element such that φ(x) ∈ Ck,s. Since

ε|E1|1/d < ℓk,s ⩽ ε ,

and Xε
1(x) is a Gaussian with mean φ(x) and covariance matrix ε2I, there is a

constant c, independent of ε, k, s and x, such that
fε

1 ⩾ cFk,s .

Now we note that for any j ∈ Zd, t ∈ T and y ∈ Cj,t we have

|Cj,t| =
|t|−1∏
n=0

|Cσn(j,t)|
|Cσn+1(j,t)|

=
|t|−1∏
n=0

1
|det Dφ(φn(y))|

Hence for the (k, s) chosen above we know
|s|∏

n=1

1
|det Dφ(φn(y))| ⩽ εd , and

|s|−1∏
n=1

1
|det Dφ(φn(y))| > εd ,

The definition of θε in (4.4) now implies
(6.10) N = θε(x) = |s| .

Using Lemma 6.3 we obtain
fN+1 ⩾ cβ1Q(J(k,s))F∗ ,

following which Lemma 6.4 yields
fN+2 ⩾ cβ1Q(J(k,s)) .

Since
J(k, s) = ⌊φN (φ(x))⌋ = ⌊X0

1+θε(x)⌋ ,

this implies (6.8) as claimed. □

Lemma 4.3 follows immediately from Lemma 6.5, and we conclude this section
by presenting the proof.

Proof of Lemma 4.3. Using Lemma 6.5 and the Markov property we see

pZε

2 (x, y) =
ˆ
Rd

pZε

1 (x, x′)pZε

1 (x′, y) dx′ ⩾ c

ˆ
Q(X0

1+θε (x))
pZε

1 (x′, y) dx′

⩾ c2
ˆ

Q(X0
1+θε (x))

1Q(X0
1+θε (x′)(y) dx′ = c2w̌ε(x, )



12 IYER AND NOLEN

where w̌ε is defined in (4.11). □

6.4. Bounding the effective diffusivity (Lemma 4.4). Lemma 4.4 follows
immediately from the Bernoulli structure of φ, and we present the proof here.

Proof of Lemma 4.4. Let x ∈ Q0 be arbitrary, U ∼ unif(Q0) and define
Kn = ⌊X0

n(U)⌋ .

The Bernoulli structure of φ ensures that Kn is a random walk on Zd with i.i.d.
increments. To see this, define the filtration {Fn} by

Fn = {U ∈ C0,s | |s| ⩽ n} .

For any event A ∈ Fn, item 2 in Assumption 2.1 will ensure that the density
of 1AX0

n(U) is constant on each of the cubes {Qm}m∈Zd . Since
P (Kn+1 − Kn = i | X0

n(U) ∈ Qk) = P (φ(V ) − k = i | V ∼ unif(Qk)) = |Ei| ,

the process K must have i.i.d. increments.
Now let Sε be as in (6.9), and using (4.4) (as we did in (6.10)) we obtain

{θε(U) = n} =
⋃

{U ∈ C0,s | C0,s ∈ Sε , |s| = n} ∈ Fn .

This implies τ = 1 + θε(U) is a stopping time for the filtration Fn.
Thus, for any u, v ∈ Rd we have

u · Dw̌ε(x)v = cov(u · ⌊Kτ ⌋, v · ⌊Kτ ⌋) = Eτ cov(u · ⌊K1⌋, v · ⌊K1⌋)
= (1 + θ̄ε)u · Dw0v ,

proving (4.12). □
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