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1. Preface.
These are the notes I used while teaching an undergraduate course on Continuous

time finance at Carnegie Mellon University in Fall 2022. I filled in all proofs
and details by hand during lectures, and these notes only contain statements and
definitions. A PDF of these notes is on the class website, and the source code is
available on git.

If you find these notes useful, you may modify them as needed to suit your
purposes. In this case, please consider contributing your changes back here.



2. Introduction.
(1) Binomial model: Trade at discrete time intervals (370).
(2) Suppose now we can trade continuously in time.
(3) Consider a market with a bank and a stock, whose spot price at time t is

denoted by St.
(4) The continuously compounded interest rate is r (i.e. money in the bank

grows like ∂tC(t) = rC(t).
(5) Assume liquidity, neglect transaction costs (frictionless), and the borrow-

ing/lending rates are the same.
(6) In the Black-Scholes setting, we model the stock prices by a Geometric

Brownian motion with parameters α (the mean return rate) and σ (the
volatility).

(7) (Black-Scholes Formula) The price at time t of a European call with maturity
T and strike K is given by

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x)) ,

where d± = 1
σ

√
τ

(
ln

( x

K

)
+

(
r ± σ2

2

)
τ
)

, N(x) = 1√
2π

∫ x

−∞
e−y2/2 dy .

(8) Can be obtained as the limit of the Binomial model as N → ∞ by choosing:

rbinom = r

N
, u = uN = 1 + r

N
+ σ√

N
d = dN = 1 + r

N
− σ√

N

Remark 2.1. There’s no explicit formula for the option price for fixed N in the
Binomial model. But there’s a “nice” explicit formula when N → ∞.

3. Central limit theorem (review).
Definition 3.1. We say X is a normally distributed random variable with mean µ
and variance σ2 if the PDF of X is

p(x) = 1√
2πσ2

exp
(

− (x − µ)2

2σ2

)
.

Remark 3.2. Notation: X ∼ N (µ, σ2).

Remark 3.3. Normally distributed random variables are also called Gaussian.

Let X1, . . . , Xn be a sequence of i.i.d. random variables, with EXn = 0 and
Var Xn = 1. Let S0 = 0, Sn =

∑n
k=1 Xk.

Question 3.4. How does Sn behave as n → ∞.

Theorem 3.5 (Law of large numbers). Sn/n → 0 as n → ∞.

Remark 3.6. Easy check: Compute Var(Sn/n).

Theorem 3.7 (Central limit theorem). Sn/
√

n → N (0, 1). That is, for any bounded
continuous function f ,

Ef
( Sn√

n

)
= Ef

(
N (0, 1)

)
.

Let X be a random variable.

Definition 3.8. The characteristic function of X is defined by φX(λ) = EeiλX .



Definition 3.9. The moment generating function (MGF) of X is defined by
MX(λ) = EeλX .
Example 3.10. If X ∼ N(0, 1) then φX(λ) = e−λ2/2, and MX(λ) = eλ2/2.

Theorem 3.11. EXn = (−i)nφ
(n)
X (0) = M

(n)
X (0). In particular, EX = −iφ′

X(0) =
M ′

X(0), and EX2 = −φ′′
X(0) = M ′′

X(0).
Remark 3.12. Here f (n)(0) denotes the nth derivative of f at 0.

Let X, Y be two random variables.
Theorem 3.13. The following are equivalent.

(1) X and Y have the same distribution (PDF)
(2) X and Y have the same CDF.
(3) X and Y have the same characteristic function.
(4) X and Y have the same moment generating function.

Theorem 3.14. A sequence of random variables (Xn) → X (in distribution) if and
only if φXn

→ φX pointwise.
Theorem 3.15. A sequence of random variables (Xn) → X (in distribution) if and
only if MXn → MX pointwise.
Remark 3.16. The proofs of Theorem 3.13–3.15 are beyond the scope of this course;
we will use them without proof.
Proof of Theorem 3.7.

4. Stochastic Processes.
4.1. Brownian motion.
• Discrete time: Simple Random Walk.

▷ Xn =
∑n

1 ξi, where ξi’s are i.i.d. Eξi = 0, and Range(ξi) = {±1}.
• Continuous time: Brownian motion.

▷ Yt = Xn + (t − n)ξn+1 if t ∈ [n, n + 1).
▷ Repeat more frequently: Flip a coin every ε seconds, and take a step of size√

ε.
▷ Rescale: Y ε

t =
√

εYt/ε. (Chose
√

ε factor to ensure Var(Y ε
t ) ≈ t.)

▷ Let Wt = lim
ε→0

Y ε
t .

Definition 4.1 (Brownian motion). The process W above is called a Brownian
motion.
▷ Named after Robert Brown (a botanist).
▷ Definition is intuitive, but not as convenient to work with.

• If t, s are multiples of ε: Y ε
t − Y ε

s ∼
√

ε

(t−s)/ε∑
i=1

ξi
ε→0−−−→ N (0, t − s).

• Y ε
t − Y ε

s only uses coin tosses that are “after s”, and so independent of Y ε
s .

Definition 4.2. A (standard) Brownian motion is a continuous process such that:
(1) W0 = 0, Wt − Ws ∼ N (0, t − s),
(2) Wt − Ws is independent of Fs.

Remark 4.3. We will define Fs shortly. Intuitively, Fs is the set of all events that
are “known” at time s.



4.2. Sample space, measure, and filtration.
• Discrete time: Sample space Ω = (ω1, . . . , ωN ).
• View (ω1, . . . , ωN ) as the trajectory of a random walk.
• Continuous time: Sample space Ω = C([0, ∞)) (space of continuous functions).

▷ It’s infinite. No probability mass function!
▷ Mathematically impossible to define P (A) for all A ⊆ Ω.

• Restrict our attention to G, a subset of some sets A ⊆ Ω, on which P can be
defined.
▷ G is a σ-algebra. (Closed countable under unions, complements, intersections.)

• P is called a probability measure on (Ω, G) if:
▷ P : G → [0, 1], P (∅) = 0, P (Ω) = 1.
▷ P (A ∪ B) = P (A) + P (B) if A, B ∈ G are disjoint.

▷ If An ∈ G, P
( ∞⋃

1
An

)
= lim

n→∞
P (An).

• Random variables are measurable functions of the sample space:
▷ Require {X ∈ A} ∈ G for every “nice” A ⊆ R.
▷ E.g. {X = 1} ∈ G, {X > 5} ∈ G, {X ∈ [3, 4)} ∈ G, etc.
▷ Recall {X ∈ A} = {ω ∈ Ω | X(ω) ∈ A}.

• Expectation is a Lebesgue Integral: Notation EX =
∫

Ω
X dP =

∫
Ω

X(ω)dP (ω).
▷ No simple formula.
▷ If X =

∑
ai1Ai

, then EX =
∑

aiP (Ai).

▷ 1A is the indicator function of A: 1A(ω) =
{

1 ω ∈ A

0 ω ̸∈ A

Proposition 4.4 (Useful properties of expectation).
(1) (Linearity) α, β ∈ R, X, Y random variables, E(αX + βY ) = αEX + βEY .
(2) (Positivity) If X ⩾ 0 then EX ⩾ 0. If X ⩾ 0 and EX = 0 then X = 0 almost

surely.
(3) (Layer Cake) If X ⩾ 0, then EX =

∫ ∞

0
P (X ⩾ t) dt.

(4) More generally, if φ is increasing, φ(0) = 0 then

Eφ(X) =
∫ ∞

0
φ′(t) P (X ⩾ t) dt .

(5) (Unconscious Statistician Formula) If PDF of X is p, then

Ef(X) =
∫ ∞

−∞
f(x)p(x) dx .

• Filtrations:
▷ Discrete time: Fn = events described using the first n coin tosses.
▷ Coin tosses doesn’t translate well to continuous time.
▷ Discrete time try #2: Fn = events described using the trajectory of the SRW

up to time n.
▷ Continuous time: Ft = events described using the trajectory of the Brownian

motion up to time t.
▷ If ti ⩽ t, Ai ⊆ R then {Wt1 ∈ A1, . . . , Wtn

∈ An} ∈ Ft. (Need all ti ⩽ t!)
▷ As before: if s ⩽ t, then Fs ⊆ Ft.
▷ Discrete time: F0 = {∅, Ω}. Continuous time: F0 = {A ∈ G | P (A) ∈ {0, 1}}.



4.3. Conditional expectation.
• Notation Et(X) = E(X | Ft) (read as conditional expectation of X given Ft)
• No formula! But same intuition as discrete time.
• EtX(ω) = “average of X over Πt(ω)”, where Πt(ω) = {ω′ ∈ Ω |ω′(s) = ω(s) ∀s ⩽

t}.
• Mathematically problematic: P (Πt(ω)) = 0 (but it still works out.)

Definition 4.5. EtX is the unique random variable such that:
(1) EtX is Ft-measurable.
(2) For every A ∈ Ft,

∫
A

EtX dP =
∫

A

X dP

Remark 4.6. Choosing A = Ω implies E(EtX) = EX.

Proposition 4.7 (Useful properties of conditional expectation).
(1) If α, β ∈ R are constants, X, Y , random variables Et(αX + βY ) = αEtX +

βEtY .
(2) If X ⩾ 0, then EtX ⩾ 0. Equality holds if and only if X = 0 almost surely.
(3) (Tower property) If 0 ⩽ s ⩽ t, then Es(EtX) = EsX.
(4) If X is Ft measurable, and Y is any random variable, then Et(XY ) = XEtY .
(5) If X is Ft measurable, then EtX = X (follows by choosing Y = 1 above).
(6) If Y is independent of Ft, then EtY = EY .

Remark 4.8. These properties are exactly the same as in discrete time.

Lemma 4.9 (Independence Lemma). If X is Ft measurable, Y is independent of
Ft, and f = f(x, y) : R2 → R is any function, then

Etf(X, Y ) = g(X) , where g(x) = Ef(x, Y ) .

Remark 4.10. If pY is the PDF of Y , then Etf(X, Y ) =
∫
R

f(X, y) pY (y) dy.

Example 4.11. If X, Y are two independent standard normal random variables, find
EeiXY .

4.4. Martingales.

Definition 4.12. An adapted process M is a martingale if for every 0 ⩽ s ⩽ t, we
have EsMt = Ms.

Remark 4.13. As with discrete time, a martingale is a fair game: stopping based on
information available today will not change your expected return.

Proposition 4.14. Brownian motion is a martingale.

Proof.

Question 4.15. Is W 2
t a martingale? How about W 3

t ?

5. Stochastic Integration
5.1. Motivation.
• Hold bt shares of a stock with price St.
• Only trade at times P = {0 = t1 < . . . , tn = T}



• Net gain/loss from changes in stock price:
n−1∑
k=0

btk
∆kS, where ∆kS = Stk+1 − Stk

.

• Trade continuously in time. Expect net gain/loss to be lim
∥P ∥→0

n−1∑
k=0

btk
∆kS =∫ T

0
bt dSt.

▷ ∥P∥ = maxk(tk+1 − tk).

▷ Riemann-Stieltjes integral: lim
∥P ∥→0

n−1∑
k=0

bξk
∆kS =

∫ T

0
bt dSt,

▷ The ξk ∈ [tk, tk+1] can be chosen arbitrarily.
▷ Only works if the first variation of S is finite. False for most stochastic

processes.

5.2. First Variation.

Definition 5.1. For any process X, define the first variation by

V[0,T ](X) def= lim
∥P ∥→0

n−1∑
k=0

|∆kX| .
def= lim

∥P ∥→0

n−1∑
k=0

|Xtk+1 − Xtk
| .

Remark 5.2. If X(t) is a differentiable function of t then V[0,T ]X < ∞.

Proposition 5.3. EV[0,T ]W = ∞

Remark 5.4. In fact, V[0,T ]W = ∞ almost surely. Brownian motion does not have
finite first variation.

Remark 5.5. The Riemann-Stieltjes integral
∫ T

0 bt dWt does not exist.

Proof of Proposition 5.3.

5.3. Quadratic Variation.

Definition 5.6. If M is a continuous time adapted process, define

[M, M ]T = lim
∥P ∥→0

n−1∑
k=0

(Mtk+1 − Mtk
)2 = lim

∥P ∥→0

n−1∑
k=0

(∆kM)2 .

Proposition 5.7. For continuous processes the following hold:
(1) Finite first variation implies the quadratic variation is 0
(2) Finite (non-zero) quadratic variation implies the first variation is infinite.

Proposition 5.8. [W, W ]T = T almost surely.

Remark 5.9. For use in the proof: Var(N (0, σ2)2) = EN (0, σ2)4 − (EN (0, σ2)2)2 =
2σ4.

Proof:.

Proposition 5.10. W 2
t − [W, W ]t is a martingale.

Theorem 5.11. Let M be a continuous martingale.
(1) EM2

t < ∞ if and only if E[M, M ]t < ∞.
(2) In this case M2

t − [M, M ]t is a continuous martingale.



(3) Conversely, if M2
t −At is a martingale for any continuous, increasing process

A such that A0 = 0, then we must have At = [M, M ]t.

Remark 5.12. If X has finite first variation, then |Xt+δt − Xt| ≈ O(δt).

Remark 5.13. If X has finite quadratic variation, then |Xt+δt − Xt| ≈ O(
√

δt) ≫
O(δt).

5.4. Itô Integrals.
• Dt = D(t) some adapted process (position on an asset).
• P = {0 = t0 < t1 < · · ·} increasing sequence of times.
• ∥P∥ = maxi ti+1 − ti, and ∆iX = Xti+1 − Xti

.
• W : standard Brownian motion.

• IP (T ) def=
n−1∑
i=0

Dti
∆iW + Dtn

(WT − Wtn
)

Definition 5.14. The Itô Integral of D with respect to Brownian motion is defined
by

IT =
∫ T

0
Dt dWt = lim

∥P ∥→0
IP (T ) .

Remark 5.15. Suppose for simplicity T = tn.
(1) Riemann integrals: lim

∥P ∥→0

∑
Dξi∆iW exists, for any ξi ∈ [ti, ti+1].

(2) Itô integrals: Need ξi = ti for the limit to exist.

Theorem 5.16. If E

∫ T

0
D2

t dt < ∞ a.s., then:

(1) IT = lim
∥P ∥→0

IP (T ) exists a.s., and EI(T )2 < ∞.

(2) The process IT is a martingale: EsIt = Es

∫ t

0
Dr dWr =

∫ s

0
Dr dWr = Is

(3) [I, I]T =
∫ T

0
D2

t dt a.s.

Remark 5.17. If we only had
∫ T

0
D2

t dt < ∞ a.s., then I(T ) = lim
∥P ∥→0

IP (T ) still

exists, and is finite a.s. But it may not be a martingale (it’s a local martingale).

Corollary 5.18 (Itô isometry). E
(∫ T

0
Dt dWt

)2
= E

∫ T

0
D2

t dt

Proof.
Intuition for Theorem 5.16 (2). Check IP (T ) is a martingale.

Proposition 5.19. If α, α̃ ∈ R, D, D̃ adapted processes∫ T

0
(αDs + α̃D̃s) dWs = α

∫ T

0
Ds dWs + α̃

∫ T

0
D̃s dWs

Proposition 5.20.
∫ T1

0
Ds dWs +

∫ T2

T1

Ds dWs =
∫ T2

0
Ds dWs

Question 5.21. If D ⩾ 0, then must
∫ T

0 Dt dWt ⩾ 0?



5.5. Semi-martingales and Itô Processes.

Question 5.22. What is
∫ t

0
Ws dWs?

Definition 5.23. A semi-martingale is a process of the form X = X0 + B + M
where:
▷ X0 is F0-measurable (typically X0 is constant).
▷ B is an adapted process with finite first variation.
▷ M is a martingale.
Definition 5.24. An Itô-process is a semi-martingale X = X0 + B + M , where:

▷ Bt =
∫ t

0
bs ds, with

∫ t

0
|bs| ds < ∞

▷ Mt =
∫ t

0
σs dWs, with

∫ t

0
|σs|2 ds < ∞

Remark 5.25. Short hand notation for Itô processes: dXt = bt dt + σt dWt.
Remark 5.26. Expressing X = X0 + B + M (or dX = b dt + σ dW ) is called the
semi-martingale decomposition or the Itô decomposition of X.
Theorem 5.27 (Itô formula). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t

Remark 5.28. This is the main tool we will use going forward. We will return and
study it thoroughly after understanding all the notions involved.
Proposition 5.29. If X = X0 + B + M , then [X, X] = [M, M ].
Proposition 5.30 (Uniqueness). The Itô decomposition is unique. That is, if
X = X0 + B + M = Y0 + C + N , with:
▷ B, C bounded variation, B0 = C0 = 0
▷ M, N martingale, M0 = N0 = 0.
Then X0 = Y0, B = C and M = N .

Corollary 5.31. Let dXt = bt dt+σt dWt with E
∫ t

0 bs ds < ∞ and E
∫ t

0 σ2
s ds < ∞.

Then X is a martingale if and only if b = 0.
Definition 5.32. If dXt = bt dt + σt dWt, then define∫ T

0
Dt dXt =

∫ T

0
Dtbt dt +

∫ T

0
Dtσt dWt .

Remark 5.33. Note
∫ T

0
Dtbt dt is a Riemann integral, and

∫ T

0
Dtσt dWt is a Itô

integral.
5.6. Itô’s formula.
Remark 5.34. If f and X are differentiable, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt

Theorem (Itô’s formula, Theorem 5.27). If f ∈ C1,2, then

df(t, Xt) = ∂tf(t, Xt) dt + ∂xf(t, Xt) dXt + 1
2∂2

xf(t, Xt) d[X, X]t



Remark 5.35. If dXt = bt dt + σt dWt then

df(t, Xt) =
(

∂tf(t, Xt) + ∂xf(t, Xt)bt + 1
2∂2

xf(t, Xt)σ2
t

)
dt + ∂xf(t, Xt)σt dWt .

Intuition behind Itô’s formula.

Example 5.36. Find the quadratic variation of W 2
t .

Example 5.37. Find
∫ t

0
Ws dWs.

Example 5.38. Let Mt = Wt, and Nt = W 2
t − t.

▷ We know M, N are martingales.
▷ Is MN a martingale?

Example 5.39. Let Xt = t sin(Wt). Let Yt =
∫ t

0 Ws dXs. Is Y a martingale? Is
X2

t − [X, X]t a martingale?

Remark 5.40. If M is a martingale, then the Itô integral Nt =
∫ t

0 Ds dMs is also a
martingale (provided E

∫ t

0 D2
sd[M, M ]s < ∞). If X is not a martingale, however,

the Itô integral Yt =
∫ t

0 Ds dXs need not be a martingale.

Example 5.41. Say dMt = σt dWt. Show that M2 − [M, M ] is a martingale.

Example 5.42. If 0 ⩽ r ⩽ s ⩽ t, find E(WsWt) and E(WrWsWt).

Example 5.43. Let Mt =
∫ t

0
Ws dWs. Find a function f such that

E(t) def= exp
(

Mt −
∫ t

0
f(s, Ws) ds

)
is a martingale.

Theorem 5.44 (Lévy’s criterion). If M is a continuous martingale with M0 = 0
and [M, M ]t = t then M is a standard Brownian motion.

Proof:.

Remark 5.45. More generally, we we only know M is a continuous martingale, with
[M, M ]t = αt for some α > 0, then M is a Brownian motion. That is, for some
a, b ∈ R, the rescaled process W = aM + b is a standard Brownian motion.

Remark 5.46. Requiring M is continuous is essential; the compensated Poisson
process is a discontinuous martingale with N0 = 0, [N, N ]t = t, but is not a standard
Brownian motion.

6. Black Scholes Merton equation
6.1. Market setup and assumptions.
• Cash: simple interest rate r in a bank.
• Let ∆t be small. Cn ∆t be cash in bank at time n ∆t.
• Withdraw at time n ∆t and immediately re-deposit: C(n+1)∆t = (1 + r ∆t)Cn∆t.
• Set t = n∆t, send ∆t → 0: ∂tC = rC and Ct = C0ert.
• r is called the continuously compounded interest rate.



• Alternately: If a bank pays interest rate ρ after time T , then the equivalent
continuously compounded interest rate is r = 1

T ln(1 + ρ).
• Stock price: St+∆t = (1 + r ∆t)St + noise.

▷ Variance of noise should be proportional to ∆t.
▷ Variance of noise should be proportional to St.

• St+∆t − St = rSt ∆t + σSt(∆Wt).
Definition 6.1. A Geometric Brownian motion with parameters α, σ is defined by:

dSt = αSt dt + σSt dWt .

• α: Mean return rate (or percentage drift)
• σ: volatility (or percentage volatility)

Proposition 6.2. St = S0 exp
((

α − σ2

2

)
t + σWt

)
Market Assumptions.
• 1 stock, Price St, modelled by GBM(α, σ).
• Money market: Continuously compounded interest rate r.

▷ Ct = cash at time t = C0ert. (Or ∂tCt = rCt.)
▷ Borrowing and lending rate are both r.

• Frictionless (no transaction costs)
• Liquid (fractional quantities can be traded)

6.2. The Black, Sholes, Merton equation. Consider a security that pays
VT = g(ST ) at maturity time T .
Theorem 6.3. If the security can be replicated, and f = f(t, x) is a function such
that the wealth of the replicating portfolio is given by Xt = f(t, St), then:

∂tf + rx∂xf + σ2x2

2 ∂2
xf − rf = 0 x > 0, t < T ,(6.1)

f(t, 0) = g(0)e−r(T −t) t ⩽ T ,(6.2)
f(T, x) = g(x) x ⩾ 0 .(6.3)

Theorem 6.4. Conversely, if f satisfies (6.1)–(6.3) then the security can be repli-
cated, and Xt = f(t, St) is the wealth of the replicating portfolio at any time t ⩽ T .
Remark 6.5. Wealth of replicating portfolio equals the arbitrage free price.
Remark 6.6. g(x) = (x − K)+ is a European call with strike K and maturity T .
Remark 6.7. g(x) = (K − x)+ is a European put with strike K and maturity T .
Proposition 6.8. A standard change of variables gives an explicit solution to (6.1)–
(6.3):

(6.4) f(t, x) =
∫ ∞

−∞
e−rτ g

(
x exp

((
r − σ2

2

)
τ + σ

√
τ y

))e−y2/2dy√
2π

, τ = T − t .

Corollary 6.9. For European calls, g(x) = (x − K)+, and
(6.5) f(t, x) = c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))
where

(6.6) d±(τ, x) def= 1
σ

√
τ

(
ln

( x

K

)
+

(
r ± σ2

2

)
τ
)

,



and

(6.7) N(x) def= 1√
2π

∫ x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.

Remark 6.10. Equation (6.1) is called a partial differential equation. In order to
have a unique solution it needs:
(1) A terminal condition (this is equation (6.3)),
(2) A boundary condition at x = 0 (this is equation (6.2)),
(3) A boundary condition at infinity (not discussed yet).

▷ For put options, g(x) = (K − x)+, the boundary condition at infinity is
lim

x→∞
f(t, x) = 0 .

▷ For call options, g(x) = (x − K)+, the boundary condition at infinity is

lim
x→∞

[
f(t, x) − (x − Ke−r(T −t))

]
= 0

That is, f(t, x) ≈ (x − Ke−r(T −t)) as x → ∞.

Definition 6.11. If Xt is the wealth of a self-financing portfolio then
dXt = ∆t dSt + r(Xt − ∆tSt) dt

for some adapted process ∆t (called the trading strategy).

Proof of Theorem 6.3.
Proof of Theorem 6.4.
Proof of Theorem 6.4 (without discounting).

Remark 6.12. The arbitrage free price does not depend on the mean return rate!

Question 6.13. Consider a European call with maturity T and strike K. The
payoff is VT = (ST − K)+. Our proof shows that the arbitrage free price at time
t ⩽ T is given by Vt = c(t, St), where c is defined by (6.5). The proof uses Itô’s
formula, which requires c to be twice differentiable in x; but this is clearly false at
t = T . Is the proof still correct?

Proposition 6.14 (Put call parity). Consider a European put and European call
with the same strike K and maturity T .
▷ c(t, St) = AFP of call (given by (6.5))
▷ p(t, St) = AFP of put.
Then c(t, x) − p(t, x) = x − Ke−r(T −t), and hence p(t, x) = Ke−r(T −t) − x + c(t, x).

6.3. The Greeks. Let c(t, x) be the arbitrage free price of a European call with
maturity T and strike K when the spot price is x. Recall

c(t, x) = xN(d+)−Ke−rτ N(d−) , d±
def= 1

σ
√

τ

(
ln

( x

K

)
+

(
r± σ2

2

)
τ
)

, τ = T −t .

Definition 6.15. The delta is ∂xc.

Remark 6.16 (Delta hedging rule). ∆t = ∂xc(t, St).

Proposition 6.17. ∂xc = N(d+)



Definition 6.18. The Gamma is ∂2
xc and is given by ∂2

xc = 1
xσ

√
2πτ

exp
(−d2

+
2

)
.

Definition 6.19. The Theta is ∂tc, and is given by ∂tc = −rKe−rτ N(d−) −
σx

2
√

τ
N ′(d+)

Proposition 6.20. (1) c is increasing as a function of x.
(2) c is convex as a function of x.
(3) c is decreasing as a function of t.

Remark 6.21. To properly hedge a short call, you always borrow from the bank.
Moreover ∆T = 1 if ST > K, ∆T = 0 if ST < K.

Remark 6.22 (Delta neutral, Long Gamma). Say x0 is the spot price at time t.
• Short ∂xc(t, x0) shares, and buy one call option valued at c(t, x0).
• Put M = x0∂xc(t, x0) − c(t, x0) in the bank.
• What is the portfolio value when if the stock price is x (and we hold our position)?

▷ (Delta neutral) Portfolio value = c(t, x) − tangent line.
▷ (Long gamma) By convexity, portfolio value is always non-negative.

Remark 6.23. The derivation of the Black–Scholes formula above has a few limita-
tions:

(1) It only applies to markets with one stock.
(2) It requires securities to have a payoff of the form g(ST ).
(3) It can’t handle random interest rates.
(4) Deriving the formula (6.4) was so tedious that we skipped it.

We will remedy each of these by providing an alternate approach using Risk Neutral
Measures.

7. Multi-dimensional Itô calculus
• Let X and Y be two Itô processes.
• P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T ].

Definition 7.1. The joint quadratic variation of X, Y , is defined by

[X, Y ]T = lim
∥P ∥→0

n−1∑
i=0

(Xti+1 − Xti)(Yti+1 − Yti) ,

Remark 7.2. The joint quadratic variation is sometimes written as d[X, Y ]t =
dXt dYt.

Lemma 7.3. [X, Y ]T = 1
4 ([X + Y, X + Y ]T − [X − Y, X − Y ]T )

Proposition 7.4 (Product rule). d(XY )t = Xt dYt + YtdXt + d[X, Y ]t
Proposition 7.5. Say X, Y are two semi-martingales.
• Write X = X0 + B + M , where B has bounded variation and M is a martingale.
• Write Y = Y0 + C + N , where C has bounded variation and N is a martingale.
• Then d[X, Y ]t = d[M, N ]t.

Remark 7.6. Recall, all processes are implicitly assumed to be adapted and continu-
ous.



Corollary 7.7. If X is a semi-martingale and B has bounded variation then
[X, B] = 0.

Remark 7.8 (Two dimensional chain rule). If X is a differentiable function of t, then
d(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) dt + ∂xf(t, Xt, Yt) dXt + ∂yf(t, Xt, Yt) dYt

Remark 7.9 (Notation). ∂tf = ∂f
∂t , ∂xf = ∂f

∂x , etc.

Theorem 7.10 (Two-dimensional Itô formula).
• Let X, Y be a two Itô process.
• Let f = f(t, x, y) be a function that’s defined for t ∈ R, x, y ∈ R.
• Suppose f ∈ C1,2. That is:

▷ f is once differentiable in t
▷ f is twice in both x and y.
▷ All the above partial derivatives are continuous. Then:

d(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) dt + ∂xf(t, Xt, Yt) dXt + ∂yf(t, Xt, Yt) dYt

+ 1
2

(
∂2

xf(t, Xt, Yt) d[X, X]t + ∂2
yf(t, Xt, Yt) d[Y, Y ]t

+ 2∂x∂yf(t, Xt, Yt) d[X, Y ]t
)

Remark 7.11. We will often drop the arguments of f and simply write
d(f(t, Xt, Yt)) = ∂tf dt + ∂xf dXt + ∂yf dYt

+ 1
2

(
∂2

xf d[X, X]t + ∂2
yf d[Y, Y ]t + 2∂x∂yf d[X, Y ]t

)
Remember the arguments are present. After differentiating f you should substitute
x = Xt, y = Yt.

Remark 7.12 (Integral form). The integral form of the above is

f(T, XT , YT ) − f(0, X0, Y0) =
∫ T

0
∂tf dt +

∫ T

0
∂xf dXt +

∫ T

0
∂yf dYt

+ 1
2

(∫ T

0
∂2

xf d[X, X]t +
∫ T

0
∂2

yf d[Y, Y ]t + 2
∫ T

0
∂x∂yf d[X, Y ]t

)
Intuition behind Theorem 7.10.

To use the d-dimensional Itô formula, we need to compute joint quadratic
variations.

Proposition 7.13. Let M, N be continuous martingales, with EM2
t < ∞ and

EN2
t < ∞.
(1) MN − [M, N ] is also a continuous martingale.
(2) Conversely if MN − B is a continuous martingale for some continuous

adapted, bounded variation process B with B0 = 0, then B = [M, N ].

Proof.

Proposition 7.14. (1) (Symmetry) [X, Y ] = [Y, X]
(2) (Bi-linearity) If α ∈ R, X, Y, Z are semi-martingales, [X, Y +αZ] = [X, Y ]+

α[X, Z].

Proof.



Proposition 7.15. Let M, N be two martingales, σ, τ two adapted processes.

• Let Xt =
∫ t

0
σs dMs and Yt =

∫ t

0
τs dNs.

• Then [X, Y ]t =
∫ t

0 σs τs d[M, N ]s.

Remark 7.16. Alternately, if dXt = σt dMt and dYt = τt dNt, then d[X, Y ]t =
σtτt d[M, N ]t.

Intuition.

Proposition 7.17. If M, N are continuous martingales, EM2
t < ∞, EN2

t < ∞
and M, N are independent, then [M, N ] = 0.

Remark 7.18 (Warning). Independence implies E(MtNt) = EMtENt. But it
does not imply Es(MtNt) = EsMtEsNt. So you can’t use this to show MN is a
martingale, and hence conclude [M, N ] = 0.

Correct proof.

Remark 7.19. [M, N ] = 0 does not imply M , N are independent. For example:
• Let Mt =

∫ t

0 1{Ws<0} dWs

• Let Nt =
∫ t

0 1{Ws⩾0} dWs

Vector Notation.
• d-dimensional vectors: Write x = (x1, . . . , xd) ∈ Rd.
• d-dimensional random vectors: X = (X1, . . . , Xd), where each Xi is a random

variable.
• d-dimensional stochastic processes: Xt = (X1

t , . . . , Xd
t ), where each Xi

t is a
stochastic process.
▷ For scalars (or random variables): Xi denotes the i-th power of X.
▷ For vectors (or random random vectors): Xi denotes the i-th coordinate of X.
▷ There is no ambiguity (can’t take powers of vectors, or coordinates of scalars)

• Alternate notation used in many books: Use X(t) for the d-dimensional stochastic
process, and Xi(t) for the i-th coordinate.

• Sometimes write X = (X1, . . . , Xd) for random vectors, instead of (X1, . . . , Xd).

Theorem 7.20 (Multi-dimensional Itô formula).
• Let X be a d-dimensional Itô process. Xt = (X1

t , . . . , Xd
t ).

• Let f = f(t, x) be a function that’s defined for t ∈ R, x ∈ Rd.
• Suppose f ∈ C1,2. That is:

▷ f is once differentiable in t
▷ f is twice in each coordinate xi

▷ All the above partial derivatives are continuous. Then:

d(f(t, Xt)) = ∂tf(t, Xt) dt +
d∑

i=1
∂if(t, Xt) dXi

t + 1
2

∑
i,j

∂i∂jf(t, Xt) d[Xi, Xj ]t

Remark 7.21 (Integral form of Itô’s formula).

f(T, XT ) − f(0, X0) =
∫ T

0
∂tf(t, Xt) dt +

d∑
i=1

∫ T

0
∂if(t, Xt) dXi

t



+ 1
2

∑
i,j

∫ T

0
∂i∂jf(t, Xt) d[Xi, Xj ]t

Definition 7.22 (d-dimensional Brownian motion). We say a d-dimensional process
W = (W 1, . . . , W d) is a Brownian motion if:

(1) Each coordinate W i is a standard 1-dimensional Brownian motion.
(2) For i ̸= j, the processes W i and W j are independent.

Remark 7.23. If W is a d-dimensional Brownian motion then

d[W i, W j ]t =
{

dt i = j ,

0 dt i ̸= j .

Example 7.24. Let f ∈ C1,2, W be a d-dimensional Brownian motion, and set
Xt = f(t, Wt). Find the Itô decomposition of X.

Question 7.25. Let W be a 2-dimensional Brownian motion. Let Xt = ln(|Wt|2) =
ln((W 1

t )2 + (W 2
t )2). Is X a martingale?

Theorem 7.26 (Lévy). Let M be a d-dimensional process such that:
(1) M is a continuous martingale.

(2) The joint quadratic variation satisfies: d[W i, W j ]t =
{

dt i = j ,

0 dt i ̸= j .

Then M is a d-dimensional Brownian motion.

Proof.

8. Risk Neutral Measures
8.1. Risk Neutral Pricing.
Goal.
• Consider a market with a bank and a few stocks. Let S1

t , S2
t , . . . , Sn

t denote the
prices of each stock at time t.

• The bank has interest rate Rt, which is some adapted process.
• Find the risk neutral measure and use it to price securities.
Cash flow.
• Evolution of cash is governed by ∂tCt = RtCt.

• Solving implies Ct = C0 exp
(∫ t

0
Rs ds

)
.

Definition 8.1. Let Dt = exp
(

−
∫ t

0
Rs ds

)
be the discount factor.

Remark 8.2. Note ∂tD = −RtDt.

Remark 8.3. Dt dollars in the bank at time 0 becomes $1 in the bank at time t.

Definition 8.4. We say P̃ is a risk neutral measure if:
(1) P̃ is equivalent to P (i.e. P̃ (A) = 0 if and only if P (A) = 0)
(2) The discounted price of all stocks is a martingale under P̃ . That is, if Si

denotes the price of the i-th stock, then DtS
i
t is a P̃ martingale.

Theorem 8.5. The discounted wealth of any self-financing portfolio is a martingale
under P̃ .



Remark 8.6. The converse requires a “completeness” assumption. If the stocks are
modelled by Geometric Brownian motion with a non-degeneracy condition, then we
will use the martingale representation theorem to show that any martingale under
P̃ is the discounted wealth of a self financing portfolio.

Theorem 8.7. Consider a security that pays VT at time T . If the security can be
replicated, then the arbitrage free price at time t is

Vt = 1
Dt

Ẽt(DT VT ) = Ẽt

(
exp

(∫ T

t

−Rs ds
)

VT )
)

.

Remark 8.8. As before, if P̃ is a new measure, we use Ẽ to denote expectations
with respect to P̃ and Ẽt to denote conditional expectations.

Remark 8.9. We will later study conditions under which any security can be repli-
cated.

8.2. Girsanov Theorem.

Example 8.10. Fix T > 0. Let ZT be a FT -measurable random variable.
• Assume ZT > 0 and EZT = 1.
• Define P̃ (A) = E(ZT 1A) =

∫
A

ZT dP .

• Can check ẼX = E(ZT X). That is
∫

Ω
X dP̃ =

∫
Ω

X ZT dP .

• Notation: Write dP̃ = ZT dP .

Theorem 8.11 (Cameron, Martin, Girsanov). Fix T > 0, and define:
• bt = (b1

t , . . . , bd
t ) a d-dimensional adapted process.

• W a d-dimensional Brownian motion.
• W̃t = Wt +

∫ t

0 bs ds (i.e. dW̃t = bt dt + dWt).
• dP̃ = ZT dP , where

Zt = exp
(

−
∫ t

0
bs · dWs − 1

2

∫ t

0
|bs|2 ds

)
.

If Z is a martingale, then P̃ is an equivalent measure under which W̃ is a Brownian
motion up to time T .

Remark 8.12. Note W̃t is a vector.
(1) So W̃t = Wt +

∫ t

0 bs ds means W̃ i
t = W i

t +
∫ t

0 bi
s ds, for each i ∈ {1, . . . , d}.

(2) Similarly, dW̃t = bt dt+dW̃t means dW̃ i
t = bi

t dt+dW̃ i
t for each i ∈ {1, . . . , d}.

Remark 8.13.
∫ t

0 bs · dWs means
∫ t

0
∑d

i=1 bi
s dW i

s (dot product).

Proposition 8.14. dZt = −Ztbt · dWt. Explicitly, in coordinates,

dZt = −Zt

d∑
i=1

bi
t dW i

t .

Question 8.15. Looks like Z is a martingale. Why did we assume it in Theo-
rem 8.11?

Remark 8.16. We will return and prove Theorem 8.11 later.



8.3. Constructing Risk Neutral Measures. Suppose the market has only one
stock whose price process satisfies

dSt = αtSt dt + σtSt dWt .

Theorem 8.17. The (unique) risk neutral measure is given by dP̃ = ZT dP , where

ZT = exp
(

−
∫ T

0
θt dWt − 1

2

∫ T

0
θ2

t dt
)

, θt = αt − Rt

σt
.

Proposition 8.18. The stock price satisfies
dSt = RtSt dt + σtSt dW̃ ,

where W̃ is a Brownian motion under the risk neutral measure.

8.4. Black Scholes Formula revisited.
• Suppose the interest rate Rt = r (is constant in time).
• Suppose the price of the stock is a GBM(α, σ) (both α, σ are constant in time).

Theorem 8.19. Consider a security that pays VT = g(ST ) at maturity time T .
The arbitrage free price of this security at any time t ⩽ T is given by f(t, St), where

f(t, x) =
∫ ∞

−∞
e−rτ g

(
x exp

((
r − σ2

2

)
τ + σ

√
τ y

))e−y2/2dy√
2π

, τ = T − t .

(6.4)

Remark 8.20. This proves Proposition 6.8.

Theorem 8.21 (Black Scholes Formula). The arbitrage free price of a European
call with strike K and maturity T is given by:

c(t, x) = xN(d+(T − t, x)) − Ke−r(T −t)N(d−(T − t, x))(6.5)
where

d±(τ, x) def= 1
σ

√
τ

(
ln

( x

K

)
+

(
r ± σ2

2

)
τ
)

,(6.6)

and

(6.7) N(x) def= 1√
2π

∫ x

−∞
e−y2/2 dy ,

is the CDF of a standard normal variable.

Remark 8.22. This proves Corollary 6.9.

8.5. The Martingale Representation Theorem.

Theorem 8.23. If Mt is a square integrable martingale with respect to the Brownian
filtration, then there exists a predictable process D such that E

∫ t

0 D2
s ds < ∞ and

Mt = M0 +
∫ t

0
Ds dWs .

Remark 8.24. A square integrable martingale is a martingale for which EM2
t < ∞

for all t.

Remark 8.25. For our purposes, think of a predictable process as a left continuous
and adapted process.



Theorem 8.26. Consider the one stock market form Theorem 8.17.
(1) Any P̃ martingale is the discounted wealth of a self financing portfolio (i.e.

converse of Theorem 8.5 holds)
(2) Any security with an FT -measurable payoff is replicable, and so Theorem 8.7

holds for any FT -measurable function VT .
(3) The risk neutral measure is unique.

8.6. Multi-dimensional market model.
• Let W be a d-dimensional Brownian motion, α a m-dimensional process, and σ

a m × d matrix valued process.
• Let S1, . . . , Sm be the price processes of m stocks. Set S = (S1, . . . , Sm).
• Model dSi

t = αiS
i
t dt + Si

t

∑
j σi,j

t dW j
t .

• Consider a market with the above stocks, and a bank with interest rate given by
an adapted process R.

Theorem 8.27. There is a risk neutral measure if and only if you can solve the
market price of risk system

α − R⃗ = σθ .

The risk neutral measure is unique if and only if the above system has a unique
solution. (Here R⃗ = (R, R, . . . , R) ∈ Rm.)

Remark 8.28. Under the risk neutral measure
dSi

t = RSi
t dt + Si

t

∑
j

σi,j
t dW̃ j

t .

Theorem 8.29 (Fundamental theorems of asset pricing).
(1) The market has no arbitrage if and only if a risk neutral measure exists.
(2) The market is complete and arbitrage free if and only if the risk neutral

measure is unique.

Example 8.30. Consider the above market with m = 2, d = 1, and α, σ and the
interest rate r are all constant in time. The market is complete and arbitrage free if
and only if

α1 − r

σ1
= α2 − r

σ2
.

If the above doesn’t hold and explicit arbitrage can be found.

Example 8.31. Consider the above market with m = 1, d = 2. There are infinitely
many risk neutral measures. Can explicitly find securities that can’t be replicated.
(Or equivalently, can explicitly find processes whose discounted wealth is a P̃
martingale, but are not the wealth of a self financing portfolio.)

8.7. Dividend paying stocks.
• Without dividends, discounted wealth of self-financing portfolios are martingales

under the risk neutral measure.
• With dividends, discounted wealth of self-financing portfolios with the dividends

reinvested are martingales under the risk neutral measure.
• Model:

▷ Dividends payed continuously at rate At per time unit.
▷ Valid for large composite funds.
▷ dSt = αtSt dt + σtSt dWt − AtSt dt.



• Self financing portfolios: Wealth evolves according to
dXt = ∆t dSt + Rt(Xt − ∆tSt) + ∆tAtSt dt .

• If Xt is the wealth of a self-financing portfolio which holds one share (and no
cash) initially, and then reinvests all dividends then

dXt = αtXt dt + σtXt dWt

• Risk neutral measure: Chosen to make the discounted wealth of the above
self-financing portfolio into a P̃ martingales.

Theorem 8.32. The risk neutral measure is still given by the formula in Theo-
rem 8.17, and the arbitrage free price of securities are still obtained by Theorem 8.7.
Note however, that in this case the stock price satisfies

dSt = (Rt − At)St dt + σtSt dW̃ , d(DtSt) = −AtDtSt dt + σtDtSt dW̃ ,

where W̃ is a Brownian motion under P̃ .

Proposition 8.33 (Black Scholes Formula with dividends). Suppose At = a, Rt = r,
and α, σ are constants. The arbitrage free price of a European call with strike K is
c(t, St) where

c(t, x) = e−aτ xN(d+)−Ke−rτ N(d−) , d±(τ, x) def= 1
σ

√
τ

(
ln

( x

K

)
+

(
r−a±σ2

2

)
τ
)

,

8.8. Forwards and Futures.

Definition 8.34. A zero coupon bond pays $1 at time T .

Proposition 8.35. If P̃ is the risk neutral measure, then the arbitrage free price
of the bond at time t is

Bt,T = Ẽt

(DT

Dt

)
.

Remark 8.36. If Rt = r is constant, then Bt,T = e−r(T −t).

Definition 8.37. A forward contract is the agreement to buy an asset at price K
(called the delivery price) on the delivery date T .

Definition 8.38. The forward price at time t is the choice of K for which the
forward contract is worth nothing at time t.

Proposition 8.39. The forward price is given by

Fort = St

Bt,T
.

Remark 8.40. Let Xt be the wealth of an investor that buys 1 forward contract
at time t0 (with delivery price Fort0,T ). Clearly Xt0 = 0. However for t > t0,
Xt = St − St0Bt,T /Bt0,T which need not be 0. To mitigate risk of default, one can
sell the forward contract at time t1 > t, and enter into a new forward contract at
time t1 (with delivery price Fort1,T ). One can repeat this again at time t2 > t1, and
so on. Futures are designed to do this continuously, without requiring the holder to
sell/repurchase contracts.

Definition 8.41. A futures contract delivers the asset (or cash equivalent) to the
holder at time T . The holder also pays payments continuously up to maturity time,
according to the following:



(1) The futures prices Futt,T is chosen so that the contract has 0 value at time
t. (The holder pays Futt,T to enter into the contract at time t.)

(2) The contract is marked to margin: The holder pays Futt+dt,T − Futt,T over
each infinitesimal time interval [t, t + dt]. (Note Futt+dt,T − Futt,T could be
positive or negative.)

Proposition 8.42. The futures price Futt,T is a P̃ martingale, and FutT,T = ST .
Consequently Futt,T = ẼtST .

Remark 8.43. If the interest rate is not random, then Fort,T = Futt,T . But this
need not be true in general.

8.9. Proof of the Girsanov Theorem.

Lemma 8.44. Let Zt = EtZT . If Xt is Ft-measurable, then ẼsX = 1
Zs

Es(ZtXt).

Lemma 8.45. M is a martingale under P̃ if and only if ZM is a martingale under
P .

Proof of Theorem 8.11.
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