Continuous Time Finance: Final.

2024-05-02

- This is a closed book test. You may not use phones, calculators, or other electronic devices.
- You may not give or receive assistance.
- You have 3 hours. The exam has a total of 7 questions and 80 points.
- Good luck.

In this exam W always denotes a standard Brownian motion, and the filtration $\left\{\mathcal{F}_{t} \mid t \geqslant 0\right\}$ is the Brownian filtration. Here are a few formulae that you can use:

- Solution formula to the Black Scholes PDE:

$$
f(t, x)=\int_{-\infty}^{\infty} e^{-r \tau} g\left(x \exp \left(\left(r-\frac{\sigma^{2}}{2}\right) \tau+\sigma \sqrt{\tau} y\right)\right) \frac{e^{-y^{2} / 2} d y}{\sqrt{2 \pi}}, \quad \tau=T-t
$$

- Black Scholes Formula for European calls, and the Greeks

$$
\begin{gathered}
c(t, x)=x N\left(d_{+}\right)-K e^{-r \tau} N\left(d_{-}\right) \quad d_{ \pm} \stackrel{\text { def }}{=} \frac{1}{\sigma \sqrt{\tau}}\left(\ln \left(\frac{x}{K}\right)+\left(r \pm \frac{\sigma^{2}}{2}\right) \tau\right), \quad N(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y \\
\partial_{x} c=N\left(d_{+}\right), \quad \partial_{x}^{2} c=\frac{1}{x \sigma \sqrt{2 \pi \tau}} \exp \left(\frac{-d_{+}^{2}}{2}\right), \quad \partial_{t} c=-r K e^{-r \tau} N\left(d_{-}\right)-\frac{\sigma x}{\sqrt{8 \pi \tau}} \exp \left(\frac{-d_{+}^{2}}{2}\right)
\end{gathered}
$$

- Girsanov's theorem: Let $d \tilde{W}^{i}=b_{t}^{i} d t+d W^{i}, d \tilde{\boldsymbol{P}}=Z_{T} d P$ where

$$
Z_{t}=\exp \left(-\sum_{j=1}^{d} \int_{0}^{t} b_{s}^{j} d W_{s}^{j}-\frac{1}{2} \int_{0}^{t}|b|_{s}^{2} d s\right)
$$

If Z is a martingale up to time T, then \tilde{W} is a Brownian motion under $\tilde{\boldsymbol{P}}$ up to time T.
10 1. Let X, Z be two independent random variables with $X \sim \mathcal{N}(0,1)$, and $\boldsymbol{P}(Z=1)=\boldsymbol{P}(Z=-1)=1 / 2$. Let $Y=X Z$. Compute the characteristic function of Y.
2. Let W be a 1-dimensional Brownian motion, $t>1, X=2 W_{t}-W_{t+1}-W_{t-1}, Y=W_{t+1}-W_{t-1}$.

10 3. Let W be a 1 dimensional Brownian motion, and suppose $d S_{t}=2 t S_{t} d t+\left(1+W_{t}^{2}\right) S_{t} d W_{t}$. Given $0 \leqslant t \leqslant T$, compute $\boldsymbol{E}_{t} S_{T}$. Express your final answer without involving expectations, conditional expectations, or integrals.

10 4. Consider a market with a bank and one stock. The bank has interest rate $r \in \mathbb{R}$ and the stock price is modelled by a geometric Brownian motion with mean return rate $\alpha \in \mathbb{R}$ and volatility $\sigma>0$. (The stock does not pay dividends.) Let V_{t} be the arbitrage free price at time $t \leqslant T$ of a European call option with strike K and maturity T. Let V_{t}^{\prime} be the arbitrage free price at time $t \leqslant T$ of a European call option with strike K^{\prime} and the same maturity time T. Suppose $K<K^{\prime}$. Decide which of the following statements is necessarily be true, and prove it.
A. $V_{t} \leqslant V_{t}^{\prime}$ almost surely, for every $t \in[0, T)$.
B. $V_{t} \geqslant V_{t}^{\prime}$ almost surely, for every $t \in[0, T)$.
C. For some $t_{1}, t_{2} \in[0, T)$ we have $\boldsymbol{P}\left(V_{t_{1}}>V_{t_{1}}^{\prime}\right)>0$ and $\boldsymbol{P}\left(V_{t_{2}}<V_{t_{2}}^{\prime}\right)>0$.

10 5. Let $b_{t}=\left(b_{t}^{1}, \ldots, b_{t}^{d}\right)$ be a d-dimensional adapted process, W be a d-dimensional Brownian motion, and define

$$
Z_{t}=\exp \left(-\sum_{j=1}^{d} \int_{0}^{t} b_{s}^{j} d W_{s}^{j}-\frac{1}{2} \int_{0}^{t}|b|_{s}^{2} d s\right)
$$

Compute $d Z_{t}$ and $d[Z, Z]_{t}$. Express your answers as $\alpha_{t} d t+\sum_{j=1}^{d} \sigma_{t}^{j} d W_{t}^{j}$ for adapted processes $\alpha, \sigma^{1}, \ldots, \sigma^{d}$ that you find explicitly.

10 6. Consider a financial market consisting of a stock and a money market account. Suppose the money market account has a constant return rate r, and the stock price follows a geometric Brownian motion with mean return rate α and volatility σ. Here α, σ and $r>0$ are constants, and the stock does not pay dividends. Let $T>0$ and consider a derivative security that pays

$$
V_{T} \stackrel{\text { def }}{=}\left(\ln \left(\frac{S_{T}}{S_{0}}\right)\right)^{+}=\max \left\{0, \ln \left(\frac{S_{T}}{S_{0}}\right)\right\},
$$

at maturity T. Compute the arbitrage free price of this security at any time $t \in[0, T)$. Your final answer should not involve W, \tilde{W}, expectations or conditional expectations.

10 7. Consider a market with a bank and m dividend paying stocks. Let R_{t} denote the interest rate at time t, and S_{t}^{i} denote the price of the $i^{\text {th }}$ stock at time t. We model the price of the stocks by

$$
d S_{t}^{i}=\alpha_{t}^{i} S_{t}^{i} d t+S_{t}^{i} \sum_{j=1}^{d} \sigma_{t}^{i, j} d W_{t}^{j}-A_{t}^{i} S_{t}^{i} d t
$$

where $\alpha^{i}, \sigma^{i, j}, A^{i}$ are adapted processes and W is a d-dimensional Brownian motion. The process A^{i} above is the rate at which the $i^{\text {th }}$ stock pays dividends. Show how you can find a risk neutral measure in this market by solving the market price of risk system of equations. Moreover, find a process \tilde{W} which is a d-dimensional Brownian motion under the risk neutral measure, and express $d S^{i}$ in terms of $d \tilde{W}$, without using $d W$.
Hint: We did this in class for stocks that do not pay dividends. The answer may be different for dividend paying stocks.

