
BLACKBOARD AND CHALK LECTURE NOTES FOR
MONTE CARLO METHODS AND APPLICATIONS

GAUTAM IYER

Contents

1. Preface. 2
2. What is a “Monte Carlo Method”, and why is it useful? 2
2.1. Plan of this course 3
3. Basic Sampling Algorithms. 3
3.1. Uniform sampling 3
3.2. Transformation Methods 4
3.3. Rejection sampling 5
4. Monte Carlo Integration. 6
4.1. How expensive is quadrature? 6
4.2. Monte Carlo Integration. 6
4.3. Law of Large Numbers 7
4.4. Convergence in Distribution 8
5. Markov Chain Monte Carlo 8
5.1. A sampling problem. 8
5.2. The Metropolis Hastings algorithm. 11
5.3. Markov Chains 12
6. Stochastic Differential Equations. 16
6.1. Motivation. 16
6.2. Brownian Motion. 16
6.3. Itô integrals 17
6.4. Itô formula (statement). 18
6.5. Joint quadratic variation. 19
6.6. Diffusions 21
6.7. Applications to Sampling 23
7. Simulated Annealing. 24
7.1. Example: Travelling salesman. 25
7.2. Example: Cracking substitution ciphers. 26
References 27

E-mail address: gautam@math.cmu.edu.
Date: Fall, 2024.

1

1. Preface.
These are the notes I used while teaching an undergraduate course on Monte

Carlo Methods and Applications at Carnegie Mellon University in Fall 2024. These
notes only list statements of important results covered in lectures. Motivation,
intuition, and proofs will be done on the blackboard, and will not be on these notes.

More information can be found on the class website: https://www.math.cmu.
edu/~gautam/sj/teaching/2024-25/387-montecarlo.

2. What is a “Monte Carlo Method”, and why is it useful?
A Monte Carlo method is an algorithm that obtains a numerical approximation

using repeated random trials. This was originally proposed by Stanislaw Ulam,
inspired by his uncles gambling habits in the Monte Carlo casino in Monaco.

Example 2.1. The mean of a random variable can be estimated by taking an average
of independent trials:

EX = lim
N→∞

1
N

N∑
i=1

Xi ,

where X1, . . . , XN are N -independent copies of the random variable X. (This
follows from the law of large numbers.)

This is useful in practice if the random variable is easy to simulate; but hard to
compute analytically.

Example 2.2 (Numerical integration). Let Ω ⊆ Rd, and f : Ω → R be an inte-
grable function, and X1, . . . XN be i.i.d. random variables with common distribu-
tion Unif(Ω). Then

(2.1) lim
N→∞

1
N

N∑
n=1

f(Xn) =
∫

Ω
f(x) dx .

This is a corollary of the law of large numbers.
The advantage of (2.1) is that the error is of order√

Var(f)
N

independent of the dimension d. On the other hand, if you use a standard quadrature
algorithm the error is of order

√
d max|∇f |
2N1/d

.

This makes the computational cost of quadrature exponential in the dimension d,
and is known as the curse of dimensionality. On the other hand, the computational
cost of Monte Carlo integration is independent of the dimension. (See Section 4.)

Example 2.3 (Travelling Salesman). Given N points on the plane (cities), the
travelling salesman problem is to find a route that travells through each city exactly
once, and returns to the starting point. This is a “classic” problem which is known
to be NP-hard, and you can read more about it on Wikipedia

This has been extensively studied, and there are several well known combinatorial
algorithms that yield results close to the optimal path in practical amounts of time.

https://www.math.cmu.edu/~gautam/sj/teaching/2024-25/387-montecarlo
https://www.math.cmu.edu/~gautam/sj/teaching/2024-25/387-montecarlo
https://en.wikipedia.org/wiki/Travelling_salesman_problem

We will numerically approximate the solution using an algorithm known as simulated
annealing (see Section 7.1).

Example 2.4 (Substitution Ciphers). A substitution cipher is one where you create
a key that is a permutation of the alphabet (e.g. A 7→ K, B 7→ Z, etc.). Using
this key, you can encode and decode a message. At first sight this might seem
uncrackable by brute force – your key is one permutation of 28! (26 letters plus a
period and space punctuation).

This is a needle in an enormous haystack. If you could examine 1012 keys in
a second (which is a generous overestimate), then it would still take you about a
billion years to crack this code. Nevertheless, if you’re sending sufficiently long
(few paragraphs) of readable text data, this method is crackable in seconds using
simulated annealing (see Section 7.2).

Example 2.5 (Generative Modelling). Generative modelling algorithms are used
to (for instance) produce realistic images from user input. They work by training
a neural net on a large sample of images and learning a probability distribution
associated with these images. Images are generated by using a Monte Carlo method
to sample from this distribution.

2.1. Plan of this course.
(1) In order to use Monte Carlo methods, you need to be able to sample from a

given distribution. We will start with a quick introduction to basic sampling
algorithms.

(2) We will then study the Metropolis Hastings algorithm; to understand why
this works, we need to understand the basics of the convergence of Markov
Chains to their stationary distribution.

(3) We will analyze a few applications of the Metropolis Hastings algorithm,
and study commonly used numerical diagnostics.

(4) We will study simulated annealing and use it to solve a few optimization
problems.

(5) Time permitting, I might sketch the algorithms used in generative modelling.
To fully understand these we need to understand basics of SDEs and Langevin
Monte Carlo and related sampling algorithms (Section 6), which we will not
have the time for. We will black-box the required background and obtain
some intuition about how generative modelling works.

We will implement many of these algorithms in Python.

3. Basic Sampling Algorithms.
3.1. Uniform sampling. Our goal is now to build a collection of distributions we
can effectively sample from.

Question 3.1. Suppose you have a random bit generator that returns either 0 or 1
with probability 1/2, and is independent of all previous results.

(1) How do you generate a uniformly random number N ∈ {0, . . . , 2N − 1} (i.e.
how do you sample from the uniform distribution on {0, . . . , 2N − 1}

(2) How do you sample from the uniform distribution on {0, . . . , M}, where M
is not necessarily a power of 2?

(3) How do you sample from the uniform distribution on [0, 1]?

3.2. Transformation Methods. The idea behind transformation methods is to
start with a random variable X you can effectively simulate, and find a transforma-
tion T so that T (X) follows your desired distribution.

Lemma 3.2. Suppose Ω ⊆ Rd, and T : Ω → Rd is some C1, injective transformation
for which with det DT never vanishes. If X is a Ω-valued random variable with
probability density function p, then T (X) is an Rd valued random variable with
probability density function q, where

q = p ◦ T −1|det DT −1| .

Remark 3.3. Here DT is the Jacobian matrix of T .

Remark 3.4. Recall, we say p is the probability density function of a Rd valued
random variable X if for every (nice) set A ⊆ Rd, we have

P (X ∈ A) =
∫

A

p(x) dx .

When d = 1 the above is a 1-dimensional Riemann integral, when d = 2, the above is
a area integral, and when d = 3 the above is a volume integral. In dimensions higher
than 3 this is a Lebesgue integral, and can be thought of as d iterated integrals. No
matter what the dimension is, we will always only use one integral sign, and never
write

∫∫
or

∫∫∫
.

Proof. Done in class. □

Proposition 3.5 (Box Mueller). Suppose U = (U1, U2) is uniformly distributed
on (0, 1)2. Set

Z1 =
√

−2 ln U1 cos(2πU2) , and Z2 =
√

−2 ln U1 sin(2πU2) .

Then Z = (Z1, Z2) is a standard two dimensional normal.

Proposition 3.6 (Inversion method). Let F be the CDF of a PDF p. If U ∼
Unif([0, 1]), then F −1(U) is a random variable with PDF p.

Proof. Follows from Lemma 3.2. □

Remark 3.7. If p is a PDF for which F −1 can be computed easily, then the inversion
method is a very efficient method of sampling from p.

Example 3.8. If X ∼ Exp(λ), then

FX(x) = P (X ⩽ x) = 1 − e−λx F −1
X (x) = − ln(1 − x)

λ

and so − ln(1 − U)/λ ∼ Exp(λ)

Proposition 3.9 (Knothe–Rosenblatt rearrangement). Let X = (X1, X2) be a R2

valued random variable with PDF p. Let p1, F1 be the PDF and CDF of the first
marginal X1. Explicitly,

p1(x1) =
∫
R

p(x1, x2) dx2 and F1(x1) = P (X1 ⩽ x1) .

Let F2,x1 be the CDF of X2 conditioned on X1 = x1. That is,

F2,x1(x2) = “P (X2 ⩽ x2 | X1 = x1)” = 1
p1(x1)

∫ x2

−∞
p(x1, x2) dx2 .

Define the transformation T : (0, 1)2 → R2 by
T (x1, x2) = (F −1

1 (x1), F −1
2,x1

(x2)) .

If U = (U1, U2) is uniformly distributed random variable on (0, 1)2, then the PDF
of T (U) is p.
Remark 3.10. The notation F −1

2,x1
, denotes the inverse of the function y 7→ F2,x1(y)

for a fixed x1. We also implicitly assume p1 ̸= 0, otherwise we restrict the domain
accordingly.
Remark 3.11. The Knothe–Rosenblatt rearrangement can be used to efficiently
sample from two dimensional distributions, provided the inverse CDFs F −1

1 , F −1
2,x1

can be computed.
Remark 3.12. This can easily be generalized to higher dimensions by setting

T (x1, x2) = (F −1
1 (x1), F −1

2,x1
(x2), F −1

3,x1,x2
(x3), . . .) .

3.3. Rejection sampling. Suppose we can draw independent samples from a
proposal distribution with density p, and the uniform distribution, then we can
sample from any target distribution q as long as max q/p < ∞.

Algorithm 1 Rejection sampling
Require: Proposal PDF p, target PDF q, with M = max q/p < ∞.

repeat
Choose independent X ∼ p, U ∼ Unif([0, 1])

until U < q(X)/(Mp(X)).
return X

The algorithm is easy to understand with a picture: Let M = max q/p. Sim-
ulate X1, . . . , XN independently from the distribution p. Simulate U1, . . . , UN

independently from Unif([0, 1]). Plot the points (Xi, UiMp(Xi)). Throw away all
the points that are above the graph of q. Two examples of this are shown in Figure 1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Uniform proposal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

85.60% rejection rate

q

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Truncated Gaussian proposal

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

60.20% rejection rate
q
p

Figure 1. Rejection sampling of a truncated Gaussian target q. The
points above the graph are rejected.

Proposition 3.13. Let Xn be i.i.d. random variables whose common distribution
has density p. Let Un be independent, Unif([0, 1]) distributed random variables.
Define

N = min
{

n
∣∣∣ Un ⩽

q(Xn)
Mp(Xn)

}
where M = max

x

{q(x)
p(x)

}
,

and set Y = XN . Then the PDF of Y is q.

Proof. Done in class. □

Lemma 3.14. If N is as in Proposition 3.13, then P (N = 1) = 1/M and EN = M .
(In other words, to produce one sample from q, you have to draw on average M
samples from p.)

Remark 3.15 (Curse of dimensionality). The computational cost of rejection sampling
typically grows exponentially with the dimension. That is if p, q are d-dimensional
distributions, you can in general expect max q/p to be exponentially large in d. A
simple illustration is if we try to rejection sample the uniform distribution on the unit
ball B(0, 1) ⊆ Rd, starting from the uniform distribution on the unit cube [−1, 1]d.
In this case

M = max q

p
= 2d

vol(B(0, 1)) = 2dΓ(1 + n/2)
πd/2 ≈

√
dπ

(2d

πe

)d/2
,

which grows exponentially with d.

Remark 3.16. Rejection sampling can almost always be used; but before using it try
and estimate M . If it’s too large, rejection sampling might not work in practical
amounts of time.

4. Monte Carlo Integration.
4.1. How expensive is quadrature?

Proposition 4.1. Let f : [0, 1]d → R be a C1 function. Divide [0, 1]d into N
identical cubes Q1, . . . , QN , and let ξi denote the center of the i-th cube. Then,∣∣∣∫

[0,1]d

f(x) dx −
N∑

i=1
f(ξi) vol(Qi)

∣∣∣ ⩽ √
d max|∇f |
2N1/d

Remark 4.2. In order to approximate the integral of f to order ε, you need
roughly N = O(1/εd) cubes. For ε = 0.01 and d = 10, this is O(1020) cubes.
If you can examine about 1012 a second (a generous overestimate for my computer),
it will take you a few years to use quadrature to compute this integral to two decimal
places.

4.2. Monte Carlo Integration.

Theorem 4.3. Let Xn be Rd valued, i.i.d. random variables with common probability
density function p. Let f : Rd → R be a function such that

∫
Rd |f(x)|p(x) dx < ∞.

Then

lim
N→∞

1
N

N∑
n=1

f(Xn) =
∫
Rd

f(x) p(x) dx , almost surely .

If further
∫
Rd |f(x)|2p(x) dx < ∞, then

Var
(1

N

N∑
n=1

f(Xn)
)

= 1
N

∫
Rd

|f(x) − µ|2p(x) dx , where µ =
∫
Rd

f(x)p(x) dx .

We will prove this using the law of large numbers (Theorem 4.6, below).

Remark 4.4. If Xn are mutually independent and uniformly distributed on [0, 1]d,
then the above implies

lim
N→∞

1
N

N∑
n=1

f(Xn) =
∫
Rd

f(x) dx , almost surely .

By the central limit theorem and the three sigma rule

P
(∣∣∣ 1

N

N∑
n=1

f(Xn) −
∫

[0,1]d

f(x) dx
∣∣∣ <

3√
N

(∫
[0,1]d

|f(x)|2 dx
)1/2)

⩾ 0.997

Thus if we want to attain an error of ε > 0 with 99.7% certainty, we need to choose

N = 9
ε2

∫
[0,1]d

|f(x)|2 dx = O
(1

ε2

)
.

Remark 4.5. To approximate the integral of f with accuracy ε you need to:
(1) Choose N = O(1/εd) using quadrature.
(2) Choose N = O(1/ε2) using Monte Carlo.

Use quadrature in dimension 1 (and maybe dimension 2). Use Monte Carlo in higher
dimensions.

4.3. Law of Large Numbers. Theorem 4.3 follows immediately from the Law of
Large Numbers.

Theorem 4.6 (Law of large numbers). Let Xn be a sequence of i.i.d. random
variables with E|Xn| < ∞. Then

(4.1) lim
N→∞

1
N

N∑
n=1

Xn = EX1 .

This is easy to prove if we assume EX2
1 < ∞, and is usually done in every

introductory probability course. We will instead prove this without assuming
EX2

1 < ∞ using characteristic functions, in Section 4.4, below. We were, however,
somewhat imprecise when stating (4.1), which involves convergence of random
variables. This requires measure theory to treat rigorously and goes beyond the
scope of this course. Here are two more precise versions of (4.1).

(1) The weak law of large numbers says (4.1) holds in probability. That is, for
any ε > 0 we have

lim
N→∞

P
(∣∣∣ 1

N

N∑
n=1

Xn − EX1

∣∣∣ > ε
)

= 0

(2) The strong law of large numbers says (4.1) holds almost surely. That is, for
any ε > 0 we have

P
(

lim
N→∞

1
N

N∑
n=1

Xn = EX1

)
= 1 .

Proof of Theorem 4.3. Follows immediately from Theorem 4.6 and the fact that the
variance of independent random variables adds. □

4.4. Convergence in Distribution.

Definition 4.7. We say a sequence of random variables Xn converges to a random
variable X in distribution if the CDF of Xn converges to the CDF of X at all points
where the CDF of X is continuous.

For Rd valued random variables, it is better to define convergence in distribution
using bounded continuous test functions instead. However, we’re not going to split
hairs about this as we will test convergence in distribution using Lévy’s continuity
theorem.

Theorem 4.8 (Levy’s continuity theorem). A sequence of random variables Xn

converge to X in distribution if and only if the characteristic functions of Xn (defined
below) converge pointwise to the characteristic function of X. That is Xn converges
to X in distribution if and only if

lim
n→∞

φXn
(λ) → φX(λ) for every ξ ∈ Rd .

Proof. The proof goes beyond the scope of this course, but is in every standard
measure theory based probability book. □

Definition 4.9. Let X be a Rd valued random variable. The characteristic function
of X is the function φX : Rd → C defined by

φX(λ) = Eeiλ·X , where i =
√

−1 .

Proposition 4.10. Let X be a random variable.
(1) φX is continuous, and φX(0) = 1.
(2) If E|X| < ∞, then φ is differentiable and ∇φ(0) = −iEX.

Proof. Proving continuity and differentiability require the dominated convergence
theorem, which is beyond the scope of this course. Computing φX(0) and ∇φX(0)
is direct, and will be done on the board. □

Proposition 4.11. If c ∈ R and X is a random variable then φcX(λ) = φX(cλ).

Proposition 4.12. Two random variables X and Y are independent if and only
if φ(X,Y)(λ, µ) = φX(λ)φY (µ).

Proof. The reverse direction requires Fourier inversion, and is beyond the scope of
this course. The forward direction can be done easily. □

Proof of Theorem 4.6. Will show that the convergence (4.1) holds in distribution
using Theorem 4.8 □

5. Markov Chain Monte Carlo
5.1. A sampling problem. Given a large state space X and a weight func-
tion πu : X → [0, ∞), how do you draw samples from X so that any point x ∈ X is
drawn with probability proportional to πu(x). This is an extremely hard problem
that is relevant to many modern applications. Two main difficulties are:

(1) Converting πu to a probability distribution by normalizing is easier said
than done. The probability distribution is clearly π(x) = πu(x)/Z, where
Z =

∑
X πu(x). However, X is large and computing Z is usually not

tractable.

(2) Even if Z is known, need to draw points where πu is relatively larger more
frequently. Can’t know where these points are without examining all points,
which is not tractable.

5.1.1. Example: The Ising model. This arises as a model of ferromagnetism.
• Consider a lattice of points, each with a spin of ±1.
• Neighboring points with equal spins represent neighboring particles whose mag-

netic fields align.
• Neighboring spins that align lead to an increased overall magnetic field, and a

reduced energy of the system.
• Let Λ ⊆ Rd be a finite set (the lattice of particles), and σ : Λ → {±1} be the

spins.
• The energy of the configuration σ is to

H(σ) def= −J
∑

i,j∈Λ
i∼j

σiσj − B
∑
i∈Λ

σi ,

where i ∼ j means i and j are nearest neighbors in the lattice Λ.
• Here J ̸= 0 is the interaction strength (J > 0 for ferromagnetic materials, and

J < 0 for anti-ferromagnetic materials).
• B represents the external magnetic field. Having spins align with the external

magnetic field (i.e. sign(σi) = sign(B)) reduces the total energy.
• Expect to find configuration σ with probability proportional to

πu(σ) def= e−βH(σ) , where β = 1
kBT

,

T is the temperature, and kB is the Boltzmann constant.
• To normalize πu you have to compute the partition function

Zβ
def=

∑
σ

πu(σ) .

If there are 100 points in the lattice, then the above sum has 2100 terms which is
not computationally tractable.

• If β ≈ 0 then π is roughly uniform. When β = O(1), there are O(2|Λ|/2) low
energy configurations that the system is typically in. There are 2|Λ| configurations
in total so uniform random sampling will find the typical low energy configurations
with probability 2−|Λ|/2.

5.1.2. Example: Pro bit model. This arises in machine learning where you want to
label a vector of features.
• Want to predict a binary label Y ∈ {0, 1} given a vector of features z ∈ Rd.
• Predict P (Y = 1 | z) = Φ(z · β) where:

– Let Φ be the CDF of the standard normal.
– β ∈ Rd is to be determined later

• Suppose we are given given m labelled data points L = {(zi, yi) | i ∈ {1, . . . , m}},
with zi i.i.d. with probability density function g.

• Starting from a prior distribution p (for β), we compute the posterior by

π(β) def= p(β | L) = p(β)
P (L)P (L | β) = p(β)

P (L)

d∏
i=1

g(zi)P (Y = yi | zi) ∝ πu(β) ,

where

πu(β) = p(β)
d∏

i=1
g(zi)P (Y = yi | zi) = p(β)

d∏
i=1

Φ(zi · β)yi(1 − Φ(zi · β))1−yi .

• Computing P (L) isn’t easy – it’s a integral in a very high dimensional space. So
it’s not easy to normalize πu.

• Typically want to sample from the posterior distribution π(β). For instance,
if we want to choose β to be the posterior mean, then we can compute it
by sampling N points β1, . . . , βN from π and then using the Monte Carlo
approximation 1

N

∑N
n=1 βn.

5.1.3. Example: Disk packing – phase transitions.
• Fix N large (between 100 and 106), and ε small.
• We want to pack N hard disks of radius ε into the unit square.
• Let η = Nπε2 < 1 be the density of the disks.
• Physical motivation – phase transition (e.g. water melting).
• X = XN,ε be the set of all possible configurations where N non-overlapping disks

of radius ε are packed into the unit square.
• X ⊆ [0, 1]2N , and so it makes sense to draw a point “uniformly randomly” from X .
• Kirkwood transition. When η < 0.71 . . . disks are randomly placed. Above this

they are roughly in a hexagonal grid.
To check this numerically you need:
(1) An algorithm to randomly sample configurations of hard disks.
(2) A way to test if a given configuration is roughly hexagonal.

Roughly hexagonal test. Represent a configuration by x = (x1, . . . , xN) ∈ R2N

with each xi ∈ [0, 1]2 representing the center of the ith disk. Compute

F (x) = 1
N

∣∣∣ N∑
j=1

1
|Nj |

∑
k∈Nj

e6iθj,k

∣∣∣ ,

where Nj is the set of all disks that are adjacent and θj,k is the angle between the
line joining the centers of the corresponding disks and the horizontal axis.

(1) If the disks are in a roughly hexagonal lattice, then θj,k ≈ α + nπ/3, where
α is some fixed angle (independent of j, k) and n ∈ {0, 1, 2}. In this case
F (x) ≈ 1.

(2) If instead the disk arrangement is random, there will be a lot of cancellation
in the sum and we will have F (x) ≪ 1.

Random sampling algorithm. Start with all disks in a valid configuration (e.g.
on a hexagonal grid, or rectangular grid). Fix a small number ρ > 0.

(1) Choose one disk, at random with center xi.
(2) Choose y ∈ B(xi, ρ) uniformly randomly.
(3) If moving the ith disks center to y is a valid configuration (i.e. doesn’t

overlap other disks), then do it.
Repeat these steps for as long as your computational budget allows (see Figure 2).
(Note, no matter what ρ is this algorithm will eventually work; however if ρ is too
small or too large the algorithm may take too long to converge. One of the questions
in the homework is to choose ρ.)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2. Left: 100 disks in a rectangular grid with η = .72. Right:
Same disks after running the Metropolis algorithm for 106 iterations.
Some hexagonal structure can be visibly observed. The measure of
hexagonality increases from 0 to roughly 0.6 in about 500,000 iterations,
after which it oscillates around this value.

This was proposed by Metropolis, two Rosenbluth’s, and two Tellers. It was later
generalized by Hastings resulting in the Metropolis Hastings algorithm, which is one
of the most fundamental algorithms in sampling today.

5.2. The Metropolis Hastings algorithm. This algorithm tells you how to
sample from an un-normalized probability distribution πu on a (possibly very large)
state space X . It requires a proposal mechanism Q – that is, given x ∈ X , we are
able to choose y ∈ X randomly with distribution Q(x, y). Examples of proposition
mechanisms are:

• Given a configuration of hard disks, choose one randomly and move it’s
center as described in Section 5.1.3.

• Given a spin configuration σ : Λ → {±1} in the Ising model, pick a site
i ∈ Λ uniformly randomly, and flip the spin. (I.e. choose i ∈ Λ uniformly,
and set τ(j) = σ(j) if j ̸= i and τ(i) = −σ(i).)

Given a proposal mechanism Q(x, y), the Metropolis–Hastings algorithm is as
follows:

(1) Choose X0 ∈ X arbitrarily.
(2) Given Xn, choose y ∈ X with probability Q(Xn, y) using your proposal

mechanism.
(3) Define the acceptance probability A(x, y) by

(5.1) A(x, y) def= min
{

1,
πu(y)Q(y, x)
πu(x)Q(x, y)

}
(4) Flip a coin that lands heads with probability A(Xn, y). If the coin lands

heads accept the new state and set Xn+1 = y. If not, reject it and set
Xn+1 = Xn.

While the Metropolis–Hastings algorithm is simple to explain, the reason it works
is not so obvious. We will soon see that under certain assumptions (irreducibility
and aperiodicity) the distribution of Xn converges to normalised probability dis-
tribution π = πu/Z (where Z =

∑
x πu(x)) as n → ∞. So if you want to sample

from π, you only have to simulate Xn for some large n.
A few words of caution:

• Irreducibility and aperiodicity aren’t always easy to check; many times
the Metropolis–Hastings algorithm is used without checking the required
conditions.

• In the continuous space setting, one needs an additional condition to ensure
convergence. Many treatments don’t even state these conditions. Checking
them is usually hard.

• The most important practical consideration is the rate of convergence. Even
though dist(Xn) → π as n → ∞, the convergence rate may be extremely
slow. You see this in practice if your chain gets stuck – new proposals keep
getting rejected.

5.3. Markov Chains. The Metropolis–Hastings algorithm describes a Markov
Chain whose stationary distribution is the desired distribution π. In some situations
the distribution of a Markov chain will converge to its stationary distribution,
which is why the Metropolis–Hastings algorithm algorithm works. Our aim is to
understand what Markov Chains are, and when they converge to their stationary
distribution.

Definition 5.1. A Markov chain on X is a family of random variables X0, X1,
. . . such that for all n ∈ N and x0, . . . , xn+1 ∈ X we have

P (Xn+1 = xn+1 | {Xk = xk | 0 ⩽ k ⩽ n}) = P (Xn+1 = xn+1 | Xn = xn) .

Definition 5.2. A time homogeneous Markov chain is a Markov chain where
P (Xn+1 = y | Xn = x) = P (X1 = y | X0 = x) ,

for all x, y ∈ X and n ∈ N.

Example 5.3 (Simple random walk). Let X = Z, ξn be i.i.d. ±1 valued random
variables (coin flips) and set Xn+1 = Xn + ξn+1.

Example 5.4 (Metropolis chain). Given Xn, choose Xn+1 according to the Metropolis–
Hastings rule:

(1) Given Xn = x ∈ X , propose y ∈ X with probability Q(x, y).
(2) Let Xn+1 = y with probability A(x, y) (defined in (5.1)), and Xn+1 = x

otherwise.

Definition 5.5. The transition matrix of a (time homogeneous) Markov chain is
P (x, y) = P (X1 = y | X0 = x) .

Remark 5.6. Notice P (x, y) ⩾ 0 and
∑

y P (x, y) = 1. Such matrices are called
stochastic matrices.

Proposition 5.7. For any n ∈ N,
P (Xn = y | X0 = x) = P n(x, y) ,

where P n means the nth power of the matrix P .

Proof. Directly multiply. □

Proposition 5.8. If dist(X0) = µ0 (i.e. P (X0 = x) = µ0(x) for all x ∈ X), then
dist(Xn) = µ0P n (as a matrix product).

Proof. Directly multiply. □

5.3.1. Stationary distribution.

Definition 5.9. We say distribution π is stationary for the Markov chain X if
πP = π. That is if X0 ∼ π then Xn ∼ π for all n ∈ N.

Theorem 5.10. If |X | < ∞, then any Markov chain has a stationary distribution.

Proof. Frobenius theorem. For a direct probabilistic proof one can construct π by
picking x0 ∈ X (arbitrarily), and letting π(y) to be the average number of visits
to y before returning to x0. See Proposition 1.14 in [LP17]. □

Remark 5.11. The stationary distribution need not be unique. For example X =
{0, 1}, and P = I has infinitely many stationary distributions.

Definition 5.12. A Markov chain is called irreducible if for any x, y ∈ X there
exists n ∈ N such that P n(x, y) > 0.

Theorem 5.13. If P is irreducible, the stationary distribution is unique.

Lemma 5.14. If P is irreducible, and π is a stationary distribution, then π(x) > 0
for all x ∈ X .

Proof of Theorem 5.13. If π1 and π2 are two stationary distributions, choose x0
that minimizes π1(x)/π2(x). Clearly

π1(x0) =
∑
x∈X

π1(x)
π2(x)π2(x)P (x, x0) ⩾ π1(x0)

π2(x0)π2(x0) = π1(x0) .

This implies ∑
x∈X

π1(x)
π2(x)π2(x)P (x, x0) =

∑
x∈X

π1(x0)
π2(x0)π2(x)P (x, x0) .

Since π1(x)/π2(x) ⩾ π1(x0)/π2(x0) for all x, the above equality can only hold if
π1(x)
π2(x) = π1(x0)

π2(x0) for every x ∈ X such that P (x, x0) > 0 .

for all x such that P (x, x0) > 0. Now for any given x ∈ X , irreducibility implies
we can find N = N(x) ∈ N such that P N (x, x0) > 0. Since π1 and π2 are also
stationary for P N the above argument will imply

π1(x)
π2(x) = π1(x0)

π2(x0) for every x ∈ X .

Since
∑

x∈X π1(x) =
∑

x∈X π2(x) = 1, this implies π1 = π2, finishing the proof. □

5.3.2. Convergence to the stationary distribution.

Example 5.15. Irreducibility alone doesn’t guarantee convergence to the stationary
distribution. For example the chain with transitions P (0, 1) = P (1, 0) = 1 and
P (1, 1) = P (0, 0) = 0 is irreducible, but the distribution need not converge to the
stationary distribution.

Definition 5.16. A Markov chain is called aperiodic if for all x ∈ X ,

gcd{n ⩾ 1 | P n(x, x) > 0} = 1 .

Example 5.17. The simple random walk (Example 5.3) is irreducible, but not
aperiodic. If instead ξn are i.i.d. random variables such that P (ξn = 0) = 1/2 and
P (ξn = ±1) = 1/4, then the lazy random walk defined by Xn+1 = Xn + ξn+1 is
irreducible and aperiodic.

Example 5.18. The Markov chain with P = I is aperiodic but not irreducible
(if |X | > 1).

Remark 5.19. If a Markov chain is irreducible but not aperiodic, one common trick
is to introduce lazyness: Flip an independent fair coin. If it lands heads, don’t move.
If it lands tails, move according to the original transition kernel. That is, define a
new transition matrix Q by

Q(x, y) = 1
2(I + P) =

{
1
2 (1 + P (x, x)) y = x ,
1
2 P (x, y) y ̸= x .

The new chain will be both irreducible and aperiodic, and have the same stationary
distribution.

Theorem 5.20. If a Markov chain is irreducible and aperiodic, then dist(Xn) → π
in total variation as n → ∞.

Definition 5.21. For any two probability distributions µ, ν we define the total
variation distance between µ and ν by

∥µ − ν∥TV
def= 1

2
∑
x∈X

|µ(x) − ν(x)| .

Definition 5.22. We say dist(Xn) → π in total variation as n → ∞, if we have
∥dist(Xn) − π∥TV = 0 as n → ∞.

Remark 5.23. Notice ∥dist(Xn) − π∥TV = 0 as n → ∞ is equivalent to having

lim
n→∞

1
2

∑
x∈X

|P (Xn = x) − π(x)| = 0 .

Lemma 5.24. If a Markov chain is aperiodic, then there exists N ∈ N such that
P n(x, x) > 0 for all x ∈ X and n ⩾ N .

Lemma 5.25. If a Markov chain is irreducible and aperiodic, there exists N ∈ N
such that P N (x, y) > 0 for all x, y ∈ X .

Proof of Theorem 5.20. The proof will be done on the board. A rough sketch is:
(1) Choose

δ = min
x,y∈X

P N (x, y)
π(y)

which is strictly positive (by Lemma 5.25), and write

P N (x, y) = δπ(y) + (1 − δ)Q(x, y) ,

For some matrix Q. By choice of δ, Q is a stochastic matrix.
(2) Compute P kN+j(x, y) = (1 − (1 − δ)k)π(y) + (1 − δ)kQkP j(x, y).
(3) Implies |P kN+j(x, y) − π(y)| ⩽ 2(1 − δ)k.
(4) Implies ∥dist(XkN+j) − π∥TV ⩽ 2(1 − δ)k. □

Finally, we mention that the law of large numbers doesn’t apply to Markov chains
as we typically won’t have X1, X2, . . . to be independent, or identically distributed.
However, the conclusion still holds and is often called the Ergodic theorem instead
of the law of large numbers.

Theorem 5.26 (Ergodic theorem). Let Xn be an irreducible Markov chain with
stationary distribution π. Let f : X → R be any function. Then

P
(

lim
N→∞

1
N

N∑
n=1

f(Xn) =
∑
x∈X

f(x)π(x)
)

= 1 .

Proof. The proof is accessible, but tricky and technical. There’s a one page proof in
the appendix of [LP17]. □

5.3.3. Detailed balance.

Definition 5.27. We say a Markov chain X satisfies the detailed balance condition
for a distribution µ if
(5.2) µ(x)P (x, y) = µ(y)P (y, x) .

Put another way, (5.2) is equivalent to the statement that if X0 ∼ µ, then
P (X0 = x, X1 = y) = P (X0 = y, X1 = x) .

Proposition 5.28. If a Markov chain satisfies the detailed balance condition for a
distribution π, then π is a stationary distribution for the chain.

Proof. By detailed balance,

□
∑
x∈X

π(x)P (x, y) =
∑
x∈X

π(y)P (y, x) = π(y)
∑
x∈X

P (y, x) = π(y)

Remark 5.29. The converse is false. If a Markov chain has stationary distribution π,
then it need not satisfy the detailed balance condition (5.2). Example 5.15 is an
example where the uniform distribution is the unique stationary distribution, but
the detailed balance condition is not satisfied.

Remark 5.30. If a Markov chain satisfies the detailed balance condition with the
uniform distribution, then the transition matrix is symmetric and hence doubly
stochastic (i.e. both row sums and column sums are 1). There are, of course, many
doubly stochastic matrices that are not symmetric.

Proposition 5.31. The stationary distribution of the Metropolis–Hastings chain
(Example 5.4) is π.

Proof. The transition matrix of the Metropolis chain is given by

P (x, y) =
{

Q(x, y)A(x, y) y ̸= x

1 −
∑

y′ ̸=x Q(x, y′)A(x, y′) y = x .

Pick x, y ∈ X and suppose first y ̸= x, and π(x)Q(y, x) ⩾ π(y)Q(x, y). In this case

A(x, y) = π(y)Q(y, x)
π(x)Q(x, y) and A(y, x) = 1 ,

and so
π(x)P (x, y) = π(x)Q(x, y)A(x, y) = π(y)Q(y, x)

= π(y)Q(y, x)A(y, x) = π(y)P (y, x) ,

and so the detailed balance condition (5.2) holds in this case. By symmetry,
when π(x)Q(y, x) ⩽ π(y)Q(x, y) we also have (5.2). When y = x, the detailed
balance condition (5.2) is trivially true. Thus by Proposition 5.28, π is a stationary
distribution for the Metropolis–Hastings chain. □

Remark 5.32. There are other choices of the acceptance ratio for which the stationary
distribution is π. One choice (Barker ’65) is

A(x, y) = 1
1 + π(x)Q(x,y)

π(y)Q(y,x)

= 1
1 + πu(x)Q(x,y)

πu(y)Q(y,x)

The advantage of the traditional choice (5.1) is that it minimizes the asymptotic
variance

lim
N→∞

N Var
(1

N

N∑
n=1

f(Xn)
)

.

When applying the Metropolis–Hastings algorithm, you want to choose a proposal
mechanism to ensure that the chain is irreducible and aperiodic. If these two
conditions are satisfied, then Proposition 5.31 will imply that dist(Xn) → π as
n → ∞. This means if you run the chain long enough, you’ve generated points that
are sampled according to the desired target distribution π.

The practical issue is that the convergence may happen very slowly, and you may
have to wait for a very long time before dist(Xn) is close enough to the stationary
distribution. In general you want to choose your proposal mechanism in a manner
that improves the rate of convergence of dist(Xn) to the stationary distribution.
There’s no silver bullet. Coming up with these mechanisms is usually problem
specific, and estimating the rate of convergence for a given proposal mechanism is
not easy. If you’re interested in learning more, look up mixing times of Markov
chains.

6. Stochastic Differential Equations.
6.1. Motivation. Very often we want to compute solutions of partial differential
equations (or PDEs). We will see that for some PDEs, the solution can be written
as the expected value of a Stochastic Differential Equation (or SDE), and then we
can compute the desired solution by Monte Carlo simulation.

The other reason we study this is for sampling. Suppose we want to sample from
a distribution with density p : Rd → [0, ∞). It turns out that if we set U = − ln p,
let X be the solution of the SDE
(6.1) dXt = −∇U(X) dt +

√
2 dWt ,

then the stationary distribution of X has density p (we will see why later). Thus
simulating the SDE (6.1) will allow you to sample from p.

6.2. Brownian Motion. Brownian motion is a continuous time random walk. One
way to describe this is by taking a discrete time random walk where coins are
flipped every second and rescaling it so that coins are flipped every ε seconds. The
limiting process we get as ε → 0 is called Brownian motion. We will use Wt to
denote the Brownian motion process. That is for every t ⩾ 0, Wt is the random
variable that describes the location of the (continuous time) random walk after

time t. One can show (using the central limit theorem) that for any s ⩽ t, the
Brownian increment Wt − Ws is normally distributed with variance proportional
to t − s, and is independent of Wr for all r ⩽ s. To standardize notation we will
normalize the proportionality constant to be 1, and define a (standard) Brownian
motion as follows.

Definition 6.1. We say W is a (standard) Brownian motion if:
(1) For every t ⩾ 0, Wt is a random variable. Moreover, for every realization

the function t 7→ Wt is always continuous as a function of t.
(2) For any 0 ⩽ s < t, Wt − Ws ∼ N(0, t − s).
(3) For any 0 ⩽ r ⩽ s < t, the random variables Wt − Ws and Wr are

independent.

Proposition 6.2. For almost every realization, the function t 7→ Wt is not differ-
entiable anywhere.

Proof. We will prove a simpler version on the board. □

6.3. Itô integrals. When describing SDEs one usually writes expressions of the
form

(6.2) dXt = bt dt + σt dWt ,

where b and σ are adapted processes.

Definition 6.3. We say Y is an adapted process if for every t ⩾ 0, Yt is a random
variable that can be expressed in terms of {(s, Ws) | 0 ⩽ s ⩽ t}.

Now to make sense of (6.2) one might be tempted to say

Xt+h − Xt ≈ bth + σt(Wt − Wh) when h is small.

However, this doesn’t make sense as both sides vanish as h → 0. In regular calculus
one gets around this by dividing both sides by h and sending h → 0. This won’t
work for us as the limit of the last term on the right wont exist (Proposition 6.2).
We will, instead, make sense of (6.2) by integrating.

Definition 6.4. We say (6.2) holds if for every T > 0 we have

(6.3) XT − X0 =
∫ T

0
bs ds +

∫ T

0
σs dWs .

The first term on the right of (6.3) is simply a Riemann integral (with a possibly
random integrand). The second term requires more care – it’s called an Itô integral
and is different from a Riemann integral.

Definition 6.5. We define the Itô integral of σ with respect to Brownian motion
by ∫ T

0
σs dWs = lim

∥P ∥→0

N−1∑
i=0

σti(Wti+1 − Wti) ,

where P = {0 = t0 < t1 < · · · < tN = T} is a partition of [0, T] and ∥P∥ (called the
mesh size of P is the length of the largest subinterval – ∥P∥ = maxi ti+1 − ti).

Remark 6.6. For Itô integrals, it’s important you sample σ at the left endpoint
of the interval. That is, we had σti(Wti+1 − Wti) and not σti+1(Wti+1 − Wti) or
σξi

(Wti+1 − Wti
) where ξi = (ti+1 − ti)/2. For Riemann integrals the position you

sample at doesn’t matter and won’t change the value of the integral. This is not
true for Itô integrals. If you change the sample points you may change value of the
integral.

Proposition 6.7. If σ is adapted then

(1) E

∫ T

0
σsdWs = 0.

(2) E
(∫ T

0
σsdWs

)2
= E

∫ T

0
σ2

s ds.

Proof. Will be done on the board. □

Remark 6.8. For Riemann integrals we instead have

(1) E

∫ T

0
bs ds =

∫ T

0
Ebs ds.

(2) E
(∫ T

0
bs ds

)2
=

∫ T

0

∫ T

0
E(brbs) dr ds.

6.4. Itô formula (statement). The chain rule from multi-variable calculus says
that if X, Y are differentiable functions of t, and f is a differentiable function of
x, y, t, then

d

dt
(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) + ∂xf(t, Xt, Yt)

dXt

dt
+ ∂yf(t, Xt, Yt)

dYt

dt

Formally multiplying the dt on both sides gives

d(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) dt + ∂xf(t, Xt, Yt) dXt + ∂yf(t, Xt, Yt) dYt .

The above requires X, Y to be differentiable functions of t. This usually fails
for stochastic processes. The chain rule can be generalized to work for stochastic
processes. This generalization is called the Itô formula, and is different from the
standard chain rule. The generalization has an extra term using the joint quadratic
variation denoted by [X, Y] which will be defined subsequently.

Theorem 6.9 (Two-dimensional Itô formula).
• Let X, Y be a two Itô process.
• Let f = f(t, x, y) be a function that’s defined for t ∈ R, x, y ∈ R.
• Suppose f ∈ C1,2. That is:

▷ f is once differentiable in t
▷ f is twice in both x and y.
▷ All the above partial derivatives are continuous.
Then:

d(f(t, Xt, Yt)) = ∂tf(t, Xt, Yt) dt + ∂xf(t, Xt, Yt) dXt + ∂yf(t, Xt, Yt) dYt

+ 1
2

(
∂2

xf(t, Xt, Yt) d[X, X]t + ∂2
yf(t, Xt, Yt) d[Y, Y]t

+ 2∂x∂yf(t, Xt, Yt) d[X, Y]t
)

Remark 6.10. We will often drop the arguments of f and simply write
d(f(t, Xt, Yt)) = ∂tf dt + ∂xf dXt + ∂yf dYt

+ 1
2

(
∂2

xf d[X, X]t + ∂2
yf d[Y, Y]t + 2∂x∂yf d[X, Y]t

)
Remember the arguments are present. After differentiating f you should substitute
x = Xt, y = Yt.

Remark 6.11 (Integral form). The integral form of the above is

f(T, XT , YT) − f(0, X0, Y0) =
∫ T

0
∂tf dt +

∫ T

0
∂xf dXt +

∫ T

0
∂yf dYt

+ 1
2

(∫ T

0
∂2

xf d[X, X]t +
∫ T

0
∂2

yf d[Y, Y]t + 2
∫ T

0
∂x∂yf d[X, Y]t

)
We will return to the Itô formula (and provide some intuition about why it holds)

after we describe what joint quadratic variation is.

6.5. Joint quadratic variation.
• Let X and Y be two continuous adapted R valued processes.
• P = {0 = t1 < t1 · · · < tn = T} is a partition of [0, T].

Definition 6.12. The joint quadratic variation of X, Y , is defined by

[X, Y]T = lim
∥P ∥→0

n−1∑
i=0

(Xti+1 − Xti
)(Yti+1 − Yti

) ,

In stochastic calculus we often encounter expressions of the form
(6.4) d[X, Y]t = bt dt .

Interpret this in the same way we interpreted the SDE (6.2) – the right hand side is
the infinitesimal increment of [X, Y], and when integrated gives the total increment.
That is (6.4) means

[X, Y]T − [X, Y]0 =
∫ T

0
bt dt .

(Of course, [X, Y]0 = 0, so we can drop it from the left hand side above.)

Proposition 6.13. If either X or Y is differentiable, then [X, Y]t = 0.

Remark 6.14. More generally, if either X or Y have finite first variation then
[X, Y]t = 0.

Remark 6.15. Also remember that both X and Y are already assumed to be
continuous processes.

Proof. Will be done on the board. □

Proposition 6.16. (1) (Symmetry) [X, Y] = [Y, X]
(2) (Bi-linearity) If α ∈ R, X, Y, Z are continuous processes, [X, Y + αZ] =

[X, Y] + α[X, Z].

Proof. Direct check. □

Proposition 6.17. If W is a 1D Brownian motion, then [W, W]t = t

Proof. Will be done on the board. □

Proposition 6.18. If X and Y are independent, then [X, Y]t = 0.

Proof. The general proof requires a few basic facts about martingales. If X and Y
are independent Brownian motion’s then the proof is simpler, and will be done on
the board. □

Proposition 6.19. Let W 1 and W 2 be two independent Brownian motions, b1, b2,
σ1, σ2 be two processes, and suppose

dXi
t = bi

t dt + σi
t dW i

t .

Then

d[Xi, Y i]t = σi
t σj

t d[W i, W j]t =
{

σi
t σj

t dt i = j ,

0 dt i ̸= j ,

Remark 6.20 (Vector notation). When X is a Rd valued process, we will write each
individual coordinate (at time t) as X1

t , X2
t , . . . , Xd

t . There is no ambiguity with
the notation for taking powers:

(1) If Xt ∈ Rd, then taking powers of Xt doesn’t make sense; so Xi
t refers to

the ith coordinate.
(2) If Xt ∈ R, then taking coordinates doesn’t make sense; so Xi

t refers to the
ith power.

Definition 6.21 (d-dimensional Brownian motion). We say a d-dimensional process
W = (W 1, . . . , W d) is a Brownian motion if:

(1) Each coordinate W i is a standard 1-dimensional Brownian motion.
(2) For i ̸= j, the processes W i and W j are independent.

Remark 6.22. By proposition W is a d-dimensional Brownian motion then

d[W i, W j]t =
{

dt i = j ,

0 dt i ̸= j .

Here’s the d-dimensional Itô formula in vector notation:

Theorem 6.23 (Multi-dimensional Itô formula).
• Let X be a d-dimensional Itô process. Xt = (X1

t , . . . , Xd
t).

• Let f = f(t, x) be a function that’s defined for t ∈ R, x ∈ Rd.
• Suppose f ∈ C1,2. That is:

▷ f is once differentiable in t
▷ f is twice in each coordinate xi

▷ All the above partial derivatives are continuous. Then:

d(f(t, Xt)) = ∂tf(t, Xt) dt +
d∑

i=1
∂if(t, Xt) dXi

t + 1
2

∑
i,j

∂i∂jf(t, Xt) d[Xi, Xj]t

Remark 6.24 (Integral form of Itô’s formula).

f(T, XT) − f(0, X0) =
∫ T

0
∂tf(t, Xt) dt +

d∑
i=1

∫ T

0
∂if(t, Xt) dXi

t

+ 1
2

∑
i,j

∫ T

0
∂i∂jf(t, Xt) d[Xi, Xj]t

Intuition behind Theorem 6.23. Will be done on the board. □

6.6. Diffusions. Given b : Rd → Rd and σ : Rd → Rd × Rd, define the diffusion X
by
(6.5) dXt = b(Xt) dt + σ(Xt) dWt ,

where W is a d-dimensional Brownian motion. For every x ∈ Rd, let Xx
t denote the

solution of (6.5) with initial data Xx
0 = x. In order to simplify notation, we will

often use x as a superscript for E and P instead of X. That is we define
Exf(Xt)

def= Ef(Xx
t) and P x(Xt ∈ A) def= P (Xx

t ∈ A) .

In words, Ex(f(Xt) simply means solve (6.5) for time t with initial data x and
compute the expectation of f(Xt).

For any t > 0 one can show that Xx
t is a continuous random variable. Let pt(x, y)

denote the density of Xx
t . That is

P x(Xt ∈ A) =
∫

A

pt(x, y) dy , Ex(f(Xt)) =
∫
Rd

pt(x, y)f(y) dy .

Proposition 6.25. The process Xt is a (continuous time) Markov process, and the
density p satisfies the Kolmogorov Chapman equation:

pt(x, y) =
∫
Rd

ps(x, z)pt−s(z, y) dz , for any x, y ∈ Rd , 0 < s < t .

Proof. A proof of this will follow from some of the results we prove later, and is on
your homework. (The results we prove will not rely on this.) □

Proposition 6.26. Let Y be a solution of (6.5) with initial data Y0. Let ρ0 be the
density of Y0. The density of Yt is given by

ρt(y) =
∫
Rd

ρ0(x)pt(x, y) dx .

Proof. This is a continuous version of writing out the distribution of a Markov
process in terms of its transition kernel. □

The main results we aim to prove here are the following:
Theorem 6.27. The density p satisfies

∂tp − Lxp = 0 (in variables x, t) ,(6.6)
∂tp − L∗

yp = 0 (in variables y, t) ,(6.7)
where L, L∗ are the differential operators defined by:

Lf = b · ∇f +
d∑

i,j=1
ai,j∂i∂jf

L∗f = −∇ · (bf) +
d∑

i,j=1
∂i∂j(ai,jf) .

where ai,j
def= 1

2

d∑
k=1

σi,kσj,k = 1
2(σσT)i,j

Theorem 6.28 (Kolmogorov backward equation). Let f : Rd → R, and define
(6.8) θt(x) = Exf(Xt) .

Then θ satisfies the PDE
(6.9) ∂tθ = Lθ

with initial data f . Conversely if θ satisfies (6.9) then (6.8) holds.

Remark 6.29. Once you have (6.8), you can solve the PDE (6.9) by Monte Carlo
simulation.

Before explaining where L, L∗ come from, we note that they are are adjoints of
each other.

Lemma 6.30. For any f, g : Rd → R define

⟨f, g⟩ =
∫
Rd

f(x)g(x) dx .

The adjoint operator has the property that ⟨f, Lg⟩ = ⟨L∗f, g⟩.

Proof. Will be done on the board. □

The operator L arises when you apply Itô’s formula to X.

Lemma 6.31. If f is a C1,2 function then

df(t, Xt) = (∂tf(t, Xt) + Lf(t, Xt)) dt +
∑
i,j

∂if(t, Xt)σi,j(Xt) dW j
t

Proof. Will be done on the board. □

Remark 6.32. More generally, the operator L arises as the generator of the diffu-
sion X. Explicitly, generator of a diffusion is the operator L defined by

Lf(x) = lim
t→0

Exf(Xt) − f(x)
t

.

for all functions f where the limit exists. A direct calculation (using Lemma 6.31)
shows that for all C2 functions we have

Lf = Lf .

Proof of Theorem 6.28. The forward direction can be done using the Markov prop-
erty (but we will not need it). We will prove on the board that the following
generalization of the converse holds: For every 0 ⩽ t ⩽ T , we have

□(6.10) θT (x) = ExθT −t(Xt)

Proof of equation (6.6) in Theorem 6.27. Will be done on the board using Theo-
rem 6.28. □

Proof of equation (6.7) in Theorem 6.27. Differentiating (6.10) we see

0 = ∂tE
xθT −t(Xt) = ∂t

∫
Rd

pt(x, y)θT −t(y) dy

=
∫
Rd

(∂tpt(x, y)θT −t(y) − pt(x, y)∂tθT −t(y)) dy

=
∫
Rd

(∂tpt(x, y)θT −t(y) − pt(x, y)LyθT −t(y)) dy

=
∫
Rd

(∂tpt(x, y)θT −t(y) − L∗
ypt(x, y)θT −t(y)) dy

=
∫
Rd

(∂tpt(x, y) − L∗
ypt(x, y))θT −t(y) dy .

Sending t → T this will imply∫
Rd

(∂tpt(x, y) − L∗
ypt(x, y))θ0(y) dy = 0 ,

and since θ0 is arbitrary this implies ∂tp − L∗
yp = 0 as claimed. □

Theorem 6.33. Suppose there exists a probability density function ρ that satisfies
(6.11) L∗ρ = 0
Then ρ is the stationary distribution of X, and as t → ∞ the distribution of Xt

converges to the distribution with density ρ.

Remark 6.34. There may not exist any probability density functions that sat-
isfy (6.11). For instance if b = 0, then L = L∗ = 1

2∆, and the only solutions
to (6.11) are constants. This is not a probability density function (on Rd) since it
does not integrate to 1.

Proof. A full proof of convergence is beyond the scope of this course; but I’ll give some
intuition. (Checking that it’s the stationary distribution is on the homework.) □

6.7. Applications to Sampling. By Theorem 6.33, if we want to sample from a
distribution with density p, we just need to find b, σ such that L∗p = 0, and then
simulate the SDE (6.5). As t → ∞ the distribution will converge to a distribution
with density p.

Theorem 6.35. Let U = − ln p, and consider the SDE
(6.12) dXt = −∇U(Xt) dt +

√
2 dWt .

(Here W is a d-dimensional Brownian motion.) The stationary distribution of X
has probability density function p.

Proof. Direct calculation (and is on your homework). □

The Langevin Monte Carlo (LMC) algorithm samples from p by discretizing (6.12)
using the Euler Maruyama scheme.

(1) Choose a time step τ
(2) Define

(6.13) Xn+1 = Xn − ∇U(Xn) τ +
√

2 τ ζn+1

where ζn+1 is an independent d-dimensional standard normal.
Here Xn represents the solution to (6.12) at time nτ . As τ → 0 and n → ∞, the
density of Xn converges to the desired probability density function p.

Remark 6.36. If you know that p(x) = 1
Z pu(x) for some un-normalized probability

density function pu, then LMC can still be used. Notice
∇ ln p = ∇ ln pu ,

and so if we use U = − ln pu, the stationary distribution of (6.13) will have density
p.

Remark 6.37. The LMC algorithm works well if U is convex. If U is not convex, it
could take a very long time to converge, and an example was on your homework.
However, in many practical situations (even when U is not convex), this algorithm
(or some variant) is the only viable option.

The Metropolis Adjusted Langevin Algorithm (MALA) combines the LMC and
the Metropolis Hastings algorithm. Instead of choosing Xn+1 according to (6.13),
propose it as a new state and accept it according to the Metropolis Hastings
algorithm. One can compute the acceptance ratio explicitly, and the MALA can be
described as:

(1) Choose a time step τ , and U = − ln p (or U = − ln pu).
(2) Propose a new state X̃n+1 according to

X̃n+1 = Xn − ∇U(Xn) τ +
√

2 τ ζn+1 .

(3) Define the acceptance ratio

A(x, y) = min
{

1,
pu(y)Q(y, x)
pu(x)Q(x, y)

}
where Q(x, y) ∝ exp

(−1
4τ

|y −x+τ∇U(x)|2
)

(4) Flip a coin that lands heads with probability A(Xn, X̃n+1). If the coin lands
heads, let Xn+1 = X̃n+1. Otherwise let Xn+1 = Xn.

Remark 6.38. MALA has similar use cases as LMC; MALA usually moves into
regions of high probability faster than LMC.
Example 6.39. For the pro-bit model, the un-normalized density for the posterior
distribution for β is given by

πu(β) = p(β)
d∏

i=1
Φ(zi · β)yi(1 − Φ(z · β))1−yi .

where p is a prior, Φ is the CDF of the standard normal and {(zi, yi)} are the
labelled points. If we compute the posterior mean β̄ using MALA / LMC, then
given a feature vector z ∈ Rd we can predict the label y = 1 with probability Φ(β̄ ·z).

7. Simulated Annealing.
Often one wants to maximize a function F in a large (high dimensional) space.

A elementary stochastic hill climb algorithm for this is:
• Start at a point x ∈ X .
• Choose a close by point y randomly.
• If F (y) > F (x), move to y. Otherwise stay at x.
• Repeat until your computational budget is exhausted, or until F isn’t

increasing much.
The drawbacks of this method are that the hill climb may get stuck at local

maxima and often takes too long to go up ridges. When you’re working with
functions whose derivative you can compute easily, then stochastic gradient descent
may provide better results.

An alternate approach is simulated annealing – this may make you down climb at
certain points, but avoids getting stuck in local maxima. Conventionally, simulated
annealing is always stated to minimize a function; replace the function by its negative
if you want to maximize it instead.

The basis simulated annealing is the following elementary observation.

Lemma 7.1. Let f : X → R be some function, β > 0, and define and un-normalized
probability distribution πu = e−βf . Let Z =

∑
X πu be the normalization constant,

and π = πu/Z be the normalized probability distribution. When β = 0, π is uniformly
distributed on all of X . As β → ∞, π converges to a probability distribution that is
uniformly distributed on the global minima of the function f .

Proof. Done on the board. □

Simulated annealing can now be described as follows:
• Fix a sequence of temperatures Tn → 0 as n → ∞.
• Fix a proposal mechanism Q, and start with some X0 ∈ X .
• Generate Xn+1 from Xn by using the Metropolis–Hastings to sample from

the (un-normalized) probability distribution πu = e−f/Tn .
• Repeat for a large number of iterations.

Initially (when the temperature Tn is large), un-normalized probability distribu-
tion πu = e−f/Tn is roughly uniform. So the process X explores X fast. As Tn → 0,
πu starts clustering around the minima of f , and the typical location of Xn should
be around the minimum of f .

The choice of temperatures is the annealing schedule (or cooling schedule) is
situation dependent. In practice one chooses T0 to be something large (so that
β = 1/T0 is small), and TN to be very small, and allows Tn to decrease geometrically
from T0 to TN .

7.1. Example: Travelling salesman. Given N points on the plane (cities), the
travelling salesman problem is to find a route that travells through each city exactly
once, and returns to the starting point. This is a “classic” problem which is known
to be NP-hard, and you can read more about it on Wikipedia

This has been extensively studied, and there are several well known combinatorial
algorithms that yield results close to the optimal path in practical amounts of time.
Simulated annealing was originally proposed in order to solve the traveling salesman
problem.

The simplest algorithm for the traveling salesman problem is the greedy nearest
neighbor algorithm: Start anywhere, and simply travel to the nearest unvisited
city. There are certain scenarios where this algorithm performs badly; but in most
configurations this gives you a travel distance that is within 25% of the minimum.

We can improve this as follows:
(1) Given a tour σ (which is just some permutation of the N cities), let C(σ)

be the total length (or cost) of the tour. We will use simulated annealing to
minimize C over all tours.

(2) To use simulated annealing, we need a proposal mechanism. Given a tour σ,
pick two cities randomly and let τ be a new tour that is the same as σ
except it swaps the order in which it visits the two chosen cities. (You can
also pick three cities, and cycle the order in which they are visited, or use
many other variations on this theme.)

(3) Choose a cooling schedule (by experimenting) and run simulated annealing
to minimize C with the above proposal mechanism.

A Python implementation of this algorithm is on the class website. (Part of it is
redacted, and filling it in is part of your homework.)

https://en.wikipedia.org/wiki/Travelling_salesman_problem

7.2. Example: Cracking substitution ciphers. A substitution cipher is one
where you create a key that is a permutation of the alphabet (e.g. A 7→ K, B 7→ Z,
etc.). Using this key, you can encode and decode a message. At first sight this might
seem uncrackable by brute force – your key is one permutation of 28! (26 letters
plus a period and space punctuation).

This is a needle in an enormous haystack. If you could examine 1012 keys in
a second (which is a generous overestimate), then it would still take you about a
billion years to crack this code. Nevertheless, if you’re sending sufficiently long
(few paragraphs) of readable text data, this method is crackable in seconds using
simulated annealing (or even just a stochastic hill climb).

To crack a substitution cipher, we need to first define a fitness function. Download
a few long English books, and compute frequencies of letter sequences. That is
compute how often ‘a’ occurs, how often ‘as’ occurs, how often ‘ast’ occurs, and so
on. Using these frequencies define a fitness function F that takes as input a string
of symbols (e.g. a message), and outputs a real number. The closer the symbol
frequencies match English, the higher the fitness should be. (There’s an elegant and
clever way to do this, which I’m not describing here as finding it is part of your
homework.)

We will now crack substitution ciphers as follows:
• Given a guess at a key σ, define f(σ) to be the fitness of the coded message

M decoded with key σ. (We want to maximize f(σ).)
• Given a (random) key σ, our proposal mechanism generates a new key τ by

randomly swapping two symbols in σ.
• Run a stochastic hill climb to maximize f(σ), or simulated annealing to

minimize −f(σ). (Both work really well!)
As an example, we took a passage from Arthur Conan Doyle’s Sherlock Holmes,

and coded it up with a randomly chosen key. We then downloaded five different
books from Project Gutenberg, and ran simulated annealing. Here’s the decoded
message after every 100 iterations. The F = . . . shows the fitness of the decoded
message with the current guess of the key, and the D = . . . shows the number of
symbols where our guessed key and actual key differ. We find the correct key in a
few thousand iterations! (A redacted version of this notebook is on the class website,
and part of your homework is to find a fitness function and implement simulated
annealing to crack substitution ciphers.)

F=-470.33, D=27: . R.SLDBERVW.LREPDS.SLD.GS.FEXFNS. LD.XRPFZO.G.LFAD.SDEMRP.LDFBM.LGP.PDZ GRZ.LDB
F=-374.97, D=24: STFS OPUEFHJSOFEMP S OPSR SNEANB STOPSAFMNLCSRSONVPS PEIFMSOPNUISORMSMPLTRFLSOPU
F=-328.22, D=24: RE SANUCEJZ AECMNS SAN IS PCGPHS RAN GEMPOB I APXN SNCTEM ANPUT AIM MNORIEO ANU
F=-301.30, D=21: CO SANULOVF AOLMNS SAN IS ELHE.S CAN HOMERT I AEZN SNLGOM ANEUG AIM MNRCIOR ANU
F=-294.07, D=17: CO SANULOVG AOLMNS SAN IS ELHE.S CAN HOMERK I AEQN SNLDOM ANEUD AIM MNRCIOR ANU
F=-290.06, D=18: CO SANULOFG AOLMNS SAN IS ELVE.S CAN VOMERK I AEZN SNLDOM ANEUD AIM MNRCIOR ANU
F=-246.34, D=13: DO NSERLOCK SOLMEN NSE IN ALVA.N DSE VOMAUY I SAWE NELTOM SEART SIM MEUDIOU SER
F=-245.93, D=13: DO NSERLOCK SOLMEN NSE IN ALFA.N DSE FOMAUY I SAWE NELTOM SEART SIM MEUDIOU SER
F=-222.94, D=11: TO NSERLOCK SOLMEN NSE IN ALUAYN TSE UOMAF. I SAWE NELDOM SEARD SIM MEFTIOF SER
F=-140.26, D= 8: TO FHERLOCK HOLMEF FHE IF ALWAYF THE WOMAN. I HAUE FELDOM HEARD HIM MENTION HER
F=-141.88, D= 6: TO FHERLOCK HOLMEF FHE IF ALWAYF THE WOMAN. I HAJE FELDOM HEARD HIM MENTION HER
F=-112.05, D= 4: TO FHERLOCK HOLMEF FHE IF ALWAYF THE WOMAN. I HAXE FELDOM HEARD HIM MENTION HER
F= -34.58, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAZE SELDOM HEARD HIM MENTION HER
F= -26.99, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -27.95, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -27.64, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -27.64, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -28.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -27.64, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -28.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -28.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.99, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -25.54, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -25.88, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER

https://gutenberg.org/

F= -26.44, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -25.88, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -26.26, D= 3: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -25.54, D= 2: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER
F= -24.30, D= 0: TO SHERLOCK HOLMES SHE IS ALWAYS THE WOMAN. I HAVE SELDOM HEARD HIM MENTION HER

References
[LP17] D. A. Levin and Y. Peres. Markov chains and mixing times. American Mathematical

Society, Providence, RI, 2017. doi:10.1090/mbk/107. Second edition of [MR2466937], With
contributions by Elizabeth L. Wilmer, With a chapter on “Coupling from the past” by
James G. Propp and David B. Wilson.

https://doi.org/10.1090/mbk/107

	1. Preface.
	2. What is a ``Monte Carlo Method'', and why is it useful?
	2.1. Plan of this course

	3. Basic Sampling Algorithms.
	3.1. Uniform sampling
	3.2. Transformation Methods
	3.3. Rejection sampling

	4. Monte Carlo Integration.
	4.1. How expensive is quadrature?
	4.2. Monte Carlo Integration.
	4.3. Law of Large Numbers
	4.4. Convergence in Distribution

	5. Markov Chain Monte Carlo
	5.1. A sampling problem.
	5.2. The Metropolis Hastings algorithm.
	5.3. Markov Chains

	6. Stochastic Differential Equations.
	6.1. Motivation.
	6.2. Brownian Motion.
	6.3. Itô integrals
	6.4. Itô formula (statement).
	6.5. Joint quadratic variation.
	6.6. Diffusions
	6.7. Applications to Sampling

	7. Simulated Annealing.
	7.1. Example: Travelling salesman.
	7.2. Example: Cracking substitution ciphers.

	References

