MA 355 Homework 9

1 Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

2 Let $D \subset \mathbb{R}$. Let $f : D \to \mathbb{R}$ be uniformly continuous on D and suppose $\{x_n\}$ is a Cauchy sequence in D. Then $\{f(x_n)\}$ is a Cauchy sequence.

3 Let $D \subset \mathbb{R}$. Let $f : D \to \mathbb{R}$ be uniformly continuous on the bounded set D. Prove that f is bounded on D. (Hint: First show there is a sequence $s_n \in D$ such that $f(s_n) \ge n, \forall n$.)

#4 Use the definition of derivative to find the derivative of $f(x) = \sqrt{x}$ for x > 0.

#5 Let $f(x) = x^2 \sin\left(\frac{1}{x^2}\right)$ for $x \neq 0$ and f(0) = 0. a) Show that f is differentiable in \mathbb{R} .

b) Show that f' is not bounded on the interval [-1, 1].