MA 355 Homework 5 solutions

#1 Use the definition of convergence to show $\lim_{n\to\infty} \frac{3n+1}{n+2} = 3$. Let $\varepsilon > 0$. Choose $N = \frac{5}{\varepsilon}$ then for n > N, $|\frac{3n+1}{n+2} - 3| < \frac{5}{n} < \frac{5}{N} < \varepsilon$.

2 Show $\lim_{n\to\infty} \frac{\sqrt{n}}{n+1} = 0$. Let $\varepsilon > 0$. Choose $N = \frac{1}{\varepsilon^2}$. The for n > N, $|\frac{\sqrt{n}}{n+1}| < \frac{\sqrt{n}}{n} > \frac{1}{\sqrt{n}} < \frac{1}{\sqrt{N}} = \varepsilon$.

3 Determine is the following sequences diverge or converge. Find any limits that exist. Support your answers.

a) $s_n = \frac{3-2n}{1+n} = \frac{\frac{3}{n}-2}{\frac{1}{n}+1} \to -2$, since $\lim \frac{1}{n} = 0$. b) $s_n = \frac{(-1)^n n}{2n-1} = \frac{(-1)^n}{2-\frac{1}{n}}$, which does not converge. c) $s_n = \sqrt{n^2 + n} - n = \frac{n}{\sqrt{n^2 + n}+n} = \frac{1}{\sqrt{1+\frac{1}{n}+1}} \to \frac{1}{2}$

4 a) Give an example of a convergent sequence $\{s_n\}$ of positive numbers such that $\lim \frac{s_{n+1}}{s_n} = 1$.

$$s_n = 1$$

b) Give an example of a divergent sequence $\{s_n\}$ of positive numbers such that $\lim \frac{s_{n+1}}{s_n} = 1$. $s_n = n$.

5 Suppose $\{s_n\}$ and $\{t_n\}$ are real sequences and $\lim_{n\to\infty} s_n = s$. Show $\lim_{n\to\infty} ks_n = ks$ and $\lim_{n\to\infty} (k+s_n) = k+s$ for all $k\mathbb{R}$.

a) $|(k+s_n) - (k+s)| = |s_n - s| < \varepsilon$. b) $\lim_{n\to\infty} s_n = s$, there exists a N such that for all $n \ge N$, $|s_n - s| < \frac{\varepsilon}{|k|}$. So $|ks_n - ks| = |k||s_n - s| < |k|\frac{\varepsilon}{|k|} = \varepsilon$.

6 Prove that if $\{s_n\}$ converges then $\{|s_n|\}$ converges. Suppose $s_n \to s$. Then $\forall \varepsilon > 0 \exists N$ such that $|s_n - s| < \varepsilon$ when n > N. But $||s_n| - |s|| \le |s_n - s| < \varepsilon$ varepsilon.

7 Suppose there exists N_0 such that $s_n \leq t_n$ for all $n > N_0$. Prove that if $\lim s_n = +\infty$, then $\lim t_n = +\infty$.

Let $M \in \mathbb{R}$, let N_1 be such that $n > N_1 \implies s_n > M$. Such an N_1 exists since $\lim s_n = +\infty$. Now let $N = max\{N_0, N_1\}$. Then $n > N \implies M < s_n \le t_n$, so $\lim t_n = +\infty$.

8 Show $\lim n^2 = +\infty$. Given $M \in \mathbb{R}$, let N = |M|. Then for n > N we have $n^2 \ge n > N \ge M$.