## MA 355 Homework 5 solutions

$\# 1$ Use the definition of convergence to show $\lim _{n \rightarrow \infty} \frac{3 n+1}{n+2}=3$.
Let $\varepsilon>0$. Choose $N=\frac{5}{\varepsilon}$ then for $n>N,\left|\frac{3 n+1}{n+2}-3\right|<\frac{5}{n}<\frac{5}{N}<\varepsilon$.
$\# 2$ Show $\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+1}=0$.
Let $\varepsilon>0$. Choose $N=\frac{1}{\varepsilon^{2}}$. The for $n>N,\left|\frac{\sqrt{n}}{n+1}\right|<\frac{\sqrt{n}}{n}>\frac{1}{\sqrt{n}}<\frac{1}{\sqrt{N}}=\varepsilon$.
\# 3 Determine is the following sequences diverge or converge. Find any limits that exist. Support your answers.
a) $s_{n}=\frac{3-2 n}{1+n}=\frac{\frac{3}{n}-2}{\frac{1}{n}+1} \rightarrow-2$, since $\lim \frac{1}{n}=0$.
b) $s_{n}=\frac{(-1)^{n} n}{2 n-1}=\frac{(-1)^{n}}{2-\frac{1}{n}}$, which does not converge.
c) $s_{n}=\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n}=\frac{1}{\sqrt{1+\frac{1}{n}+1}} \rightarrow \frac{1}{2}$
\# 4 a) Give an example of a convergent sequence $\left\{s_{n}\right\}$ of positive numbers such that $\lim \frac{s_{n+1}}{s_{n}}=$ 1.
$s_{n}=1$.
b) Give an example of a divergent sequence $\left\{s_{n}\right\}$ of positive numbers such that $\lim \frac{s_{n+1}}{s_{n}}=1$. $s_{n}=n$.
\# 5 Suppose $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are real sequences and $\lim _{n \rightarrow \infty} s_{n}=s$. Show $\lim k s_{n}=k s$ and $\lim \left(k+s_{n}\right)=k+s$ for all $k \mathbb{R}$.
a) $\left|\left(k+s_{n}\right)-(k+s)\right|=\left|s_{n}-s\right|<\varepsilon$.
b) $\lim _{n \rightarrow \infty} s_{n}=s$, there exists a $N$ such that for all $n \geq N,\left|s_{n}-s\right|<\frac{\varepsilon}{|k|}$. So $\left|k s_{n}-k s\right|=$ $|k|\left|s_{n}-s\right|<|k| \frac{\varepsilon}{|k|}=\varepsilon$.
\# 6 Prove that if $\left\{s_{n}\right\}$ converges then $\left\{\left|s_{n}\right|\right\}$ converges.
Suppose $s_{n} \rightarrow s$. Then $\forall \varepsilon>0 \exists N$ such that $\left|s_{n}-s\right|<\varepsilon$ when $n>N$. But $\| s_{n}|-|s|| \leq\left|s_{n}-s\right|<$ varepsilon.
\# 7 Suppose there exists $N_{0}$ such that $s_{n} \leq t_{n}$ for all $n>N_{0}$. Prove that if $\lim s_{n}=+\infty$, then $\lim t_{n}=+\infty$.
Let $M \in \mathbb{R}$, let $N_{1}$ be such that $n>N_{1} \Longrightarrow s_{n}>M$. Such an $N_{1}$ exists since $\lim s_{n}=+\infty$. Now let $N=\max \left\{N_{0}, N_{1}\right\}$. Then $n>N \Longrightarrow M<s_{n} \leq t_{n}$, so $\lim t_{n}=+\infty$.
\# 8 Show $\lim n^{2}=+\infty$.
Given $M \in \mathbb{R}$, let $N=|M|$. Then for $n>N$ we have $n^{2} \geq n>N \geq M$.

