MA 355 Homework 3 solutions

#1Find the interior of the following sets:

(i)
$$\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} : \emptyset$$

(ii) $[0,3] \cup (3,5) : (0,5)$
(iii) $[0,2] \cap [2,4] : \emptyset$

#2 Classify the following sets as open, closed or neither:

(i)
$$\begin{cases} \frac{1}{n} : n \in \mathbb{N} \\ (ii) \ \mathbb{N} : closed \\ (iii) \ \{x : x^2 > 0\} : open \end{cases}$$

#3 Find the closure of the above sets

(i)
$$\left\{ \frac{1}{n} : n \in \mathbb{N} \right\} : \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \{0\}$$

(ii) $\mathbb{N} : \mathbb{N}$
(iii) $\{x : x^2 > 0\} : \mathbb{R}$

#4 Show \emptyset is both open and closed.

Open: For a set not to be open, at least one of its points must fail to be an interior point. Therefore the set must not be empty. **Closed**: $\emptyset^C = \mathbb{R}$. But \mathbb{R} is open since $int(\mathbb{R}) = \mathbb{R}$. Thus \emptyset is closed.

#5 Show $cl(S \cap T) \subset cl(s) \cap cl(T)$.

Suppose $x \in cl(S \cap T)$, then $\forall \varepsilon > 0, N_{\varepsilon}(x) \cap S \cap T \neq \emptyset$, which implies $\forall \varepsilon > 0, N_{\varepsilon}(x) \cap S \neq \emptyset$ and $\forall \varepsilon > 0, N_{\varepsilon}(x) \cap T \neq \emptyset$. Thus $x \in cl(S) \cap cl(T)$. $\therefore cl(S \cap T) \subset cl(s) \cap cl(T)$.

#6 If $B_n = \bigcup_{i=1}^n A_i$, prove that $\bigcup_{i=1}^n \overline{A}_i \subset \overline{B}_n$.

Suppose $p \in \bigcup_{i=1}^{n} \bar{A}_i$ then $p \in \bar{A}_i$ for some $i = \{1, 2, \dots, n\}$. If $p \in A_i$ then $p \in B_n$ since B_n is the union of all the A'_i s. Now suppose $p \notin A_i$ then $p \in A'_i$ for some $i \in \{1, 2, \dots, n\}$. Then for all $\varepsilon > 0$ and $N_{\varepsilon}(p)$ there exists a $q = N_{\varepsilon}(p) \cap A_i$. But that means $q \in A_i$ which means $q \in B_n$. Thus p is a limit point of B_n which means $p \in \bar{B}_n$. $\therefore \bigcup_{i=1}^n \bar{A}_i \subset \bar{B}_n$.

7 Let E^o denote the set of all interior points of a set E. Prove that E is open iff $E^o = E$. (\Rightarrow) Suppose E is open. Then every point of E is an interior point of E. Then $E \subset E^o$. It is obvious $E^o \subset E$ because all interior points of E are from E by definition. So $E^o = E$. (\Leftarrow) Suppose $E^o = E$ then by definition E^o is open, so E must then be open. #8 If x is a limit point of a set S, then every neighborhood of x contains infinitely many points. Pf: (by contr.) Suppose there exists a neighborhood of x containing only finitely many points belonging to S. Let $p_1, p_2, ... p_n$ be such points and let $\varepsilon = \min_i d(x, p_i)$. Then the neighborhood of x with radius $\frac{\varepsilon}{2}$ does not have any $y \in S$ such that $x \neq y$. This contradicts x being a limit point.