MA 355 Homework 2 solutions

#1 Let A, B, C be sets and let $f: A \to B$, $g: B \to C$ be functions. Prove: If f is onto B and g is onto C, then $g \circ f: A \to C$ is onto C.

Suppose f is onto B and g is onto C. Let $c \in C$. Then there is a $b \in B$ such that g(b) = c, since g is onto B. Also there is an $a \in A$ such that f(a) = b since f is onto A. Thus $(g \circ f)(a) = g(f(a)) = g(b) = c$. Thus $g \circ f$ is onto. #

- # 2 Show the relation \sim (two sets are equivalent) is an equivalence relation. Reflexive: For any set A, let $I_A:A\to A$ be the identity relation, which is clearly bijective. Thus \sim is reflexive.
- Symmetric: For sets A, B, suppose $A \sim B$. Then there is a 1-1 correspondence $f: A \to B$. So f^{-1} exists and $f^{-1}: B \to A$. Therefore, \sim is symmetric.
- Transitive: Let A, B, C be sets such that $A \sim B$ and $B \sim C$. Then there are 1-1 correspondences $f: A \to B$ and $g: B \to C$. So $g \circ f: A \to C$ is also a 1-1 correspondence. Thus \sim is transitive.

#3 Give an example of a countable collection of finite sets whose union is not finite. Define $A_n = n$ where $n \in \mathbb{N}$. Then $\bigcup_n A_n = \mathbb{N}$ which is infinite.

- # 4 Are the following sets finite, countable or uncountable? Explain or prove your answer in each case.
- (i) $\{(x,y) \in \mathbb{N} \times \mathbb{R} : xy = 1\}$ is countable. Let $f(n) = (n, \frac{1}{n})$. Then $f: \mathbb{N} \to A$ is 1-1 and onto. (ii) $(\frac{1}{4}, \frac{3}{4})$ is **uncountable**. Define $f: (0,1) \to (\frac{1}{4}, \frac{3}{4})$ by $f(x) = x \frac{1}{4}$.

#5 Is the set of all irrational numbers countable? Prove your answer.

The set \mathbb{R} of all real numbers is the (disjoint) union of the sets of all rational and irrational numbers. We know that \mathbb{R} is uncountable, whereas \mathbb{Q} is countable. If the set of all irrational numbers were countable, then \mathbb{R} would be the union of two countable sets, hence countable. Thus the set of all irrational numbers is uncountable.

#6 Let \mathbb{N} be the set of natural numbers. Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

- (1-1): Suppose f(m,n) = f(p,q). Then $2^{m-1}(2n-1) = 2^{p-1}(2q-1)$. Suppose $m \neq p$ and WLOG m > p. Dividing by 2^{p-1} , $2^{m-p}(2n-1) = 2q-1$. The left hand side is even and the right is odd. This contradiction shows m = p. Then 2n 1 = 2q 1 which implies n = q.
- (onto): Suppose $z \in \mathbb{N}$. (i) Suppose z is odd. Let m=1, $n=\frac{z+1}{2}$. Then $f(m,n)=2^0(2\frac{z+1}{2}-1)=z$. (ii) Suppose z is even. Let m be the largest integer such that z is divisible by 2^{m-1} . Then $m \geq 2$ and $z=k2^{m-1}$, where k is an odd integer. Let $n=\frac{k+1}{2}$. Then $f(m,n)=2^{m-1}(2n-1)=z$. $\therefore f$ is onto \mathbb{N} .