• For each subset of \mathbb{R} , give its maximum, minimum, supremum, and infimum, if they exist: $\{1, 3\}$: min and inf=1, max and sup=3 $\left\{\frac{n}{n+1} : n \in \mathbb{N}\right\}$: min and inf= $\frac{1}{2}$, max=none, sup=1 $(-\infty, 4)$: min and inf=none, max=none, sup=4

p.21: #1. (a) Suppose $r \in \mathbb{Q}$ and x is irrational and $r + x$ is rational. Then $r = \frac{p}{q}$ $\frac{p}{q}$ and $r + x = \frac{s}{t}$ t for $p, q, p, s, t \in \mathbb{Z}$ where $q, t \neq 0$. Thus $x = (r + x) - r = \frac{s}{t} - \frac{p}{q} = \frac{sq - pt}{tq}$. Since $sq - pt$ and tq are integers and $tq \neq 0$, x is rational. This is a contradiction. ∴ If r is rational and x is irrational then $r + x$ is irrational.

(b) (a) Suppose $r \in \mathbb{Q}$ and x is irrational and rx is rational. Then $r = \frac{p}{q}$ $\frac{p}{q}$ and $rx = \frac{s}{t}$ $\frac{s}{t}$ for $p, q, p, s, t \in \mathbb{Z}$ where $q, t \neq 0$. Thus $x = rx\frac{1}{r} = \frac{s}{t}$ $\frac{s}{t} * \frac{p}{q} = \frac{sp}{tq}$. Since sp and tq are integers and $tq \neq 0$, x is rational. This is a contradiction. ∴ If r is rational and x is irrational then rx is irrational.

#2. Suppose there exists a rational number r whose square is 12. Write r in lowest terms, $r = \frac{m}{n}$ where $m, n \in \mathbb{Z}$ and have no factors in common. Then $m^2 = 12n^2 = 3 \times 2^2 \times n^2$. Since 3 appears in where $m, n \in \mathbb{Z}$ and have no factors in common. Then $m^2 = 12n^2 = 3 \times 2^2 \times n^2$. Since 3 appears in the right-hand side, 3 divides m^2 . But 3 is prime, so it must divide m; hence m^2 must be divisible by 9. But then 3 divides n^2 and therefore n as well, contrary to the assumption that m and n have no common factors. Thus there is no rational number whose square is 12.

4. Since E is nonempty, it has at least one element, say, x. Since α is a lower bound of E, we know $\alpha \leq x$. Similary, since β is an upper bound of E, $x \leq \beta$. By the transitivity of the order \leq we conclude $\alpha \leq \beta$.

5. Since A is nonempty and bounded below, there exists $\inf A$. By definition, $\inf A \leq x, \forall x \in A$, so $-infA \geq -x, \forall x \in A$, i.e., $-infA \geq y, \forall y \in -A$. Thus $-infA$ is an upper bound of $-A$. The set $-A$ is thus nonempty and bounded above, hence there exists $sup(-A)$. Since $sup(-A) \ge$ $y, \forall y \in -A, -sup(-A) \leq -y, \forall y \in -A, i.e., -sup(-A) \leq x, \forall x \in A$. Thus $-sup(-A)$ is a lower bound of A. Now $-\inf A \geq sup(-A)$, $-sup(-A) \leq inf A$ since a lower bound is not bigger than the greatest lower bound and an upper bound is not smaller than the least upper bound. But these last inequalities are equivalent to $-infA \geq sup(-A)$, $-infA \leq sup(-A)$. Hence $-infA = sup(A)$.

• Suppose $x, y \in \mathbb{R}$ and $x < y$. Consider $\tilde{x} = \frac{x}{\sqrt{2}}$ and $\tilde{y} = \frac{y}{\sqrt{2}}$. By the density of the reals, there exists a rational number r such that $\tilde{x} < r < \tilde{y}$ which implies $\frac{x}{\sqrt{2}} < r < \frac{y}{\sqrt{2}}$. Define $w = r$ √ 2 which is irrational by a previous $#1b$.