MA 355 Homework 11

#1 Suppose that f(x) = x for all $x \in [0, b]$. Show that f is integrable and that $\int_0^b f(x) dx = \frac{b^2}{2}$.

2 Suppose f(x) = c for $x \in [a, b]$. Show that f is integrable and that $\int_a^b f(x) dx = c(b - a)$.

3 Suppose $f \ge 0$, f is continuous on [a,b] and $\int_a^b f(x)dx = 0$. Prove that f(x) = 0 for all $x \in [a,b]$.

#4 If $f(x) \leq g(x)$ on [a,b], then $\int_a^b f(x)dx \leq \int_a^b g(x)dx$.

#5 Suppose that f is integrable on [a,b] and that there exists k>0 such that $f(x)\geq k$ for all $x\in [a,b]$. Prove that $\frac{1}{f}$ is integrable on [a,b].

#6 Prove the mean value theorem for integrals: If f is continuous on [a,b], then there exists $c \in (a,b)$ such that $f(c) = \frac{1}{b-a} \int_a^b f$.

#7 Suppose f is a bounded real function on [a, b], and f^2 is Riemann Integrable on [a, b]. Does it follow that f is integrable? Does the answer change if we assume f^3 is integrable?

#8 Let f be continuous on [a,b]. Suppose that $\int_a^x f = \int_x^b f$ for all $x \in [a,b]$. Prove that f(x) = 0 for all $x \in [a,b]$.