
MA 355 Homework 10 solutions

#1 Use the mean value theorem to establish:
a) 1

8 <
√

51− 7 < 1
7

Look at f(x) =
√

49 + x on [0, 2]. Then by MVT there is c ∈ (0, 2) such that f ′(c) = f(2)−f(0)
2 =

1
2
√
49+c

which implies f(2)− f(0) = 1√
49+c

. Thus
√

51− 7 = 1√
49+c

. Since 7 <
√

49 + c <
√

51 < 8

we see that 1
7 >

1√
49+1

> 1
8 . Thus 1

8 <
√

51− 7 < 1
7 .

b) | cos(x)− cos(y)| ≤ |x− y| for x, y ∈ R
Consider the interval [y, x] and g(x) = cos(x). By the MVT, we know there exists c ∈ (y, x) such
that f(x)−f(y) = f ′(c)(x−y). Taking absolute values we see |f(x)−f(y)| = |f ′(c)||x−y|. Substi-
tuting gives | cos(x)−cos(y)| = |−sin(c)||x−y|. But 0 ≤ | sin(x)| ≤ 1. So | cos(x)−cos(y)| ≤ |x−y|.

#2 Suppose i) f is continuous for x ≥ 0, ii) f ′(x) exists for x > 0, iii) f(0) = 0, iv) f ′ is monoton-

ically increasing. Define g(x) = f(x)
x , x > 0 and prove g is monotonically increasing.

Notice g′(x) > 0∀x > 0 ⇐⇒ g′(x) = xf ′(x)−f(x)
x2

> 0 ⇐⇒ f ′(x) > f(x)
x . Since f ′(x) exists,

f(x)− f(0) = f ′(c)(x− 0) where 0 < c < x by MVT. Thus f ′(c) = f(x)
x where 0 < c < x. Since f ′

is monotonically increasing, f ′(x) > f ′(c), thus f ′(x) > f(x)
x for all x > 0.

#3 Let f be defined on an interval I. Suppose there exists M > 0 and α > 0 such that |f(x) −
f(y)| ≤M |x− y|α for all x, y ∈ I. (Such a function is said to satisfy a Lipschitz condition of order
α on I.)
a) Prove that f is uniformly continuous on I.

Let ε > 0. Define δ =
(

ε
Mα

) 1
α . Assume |x− y| < δ. Then |f(x)− f(y)| ≤M |x− y|α < Mδα = ε.

b) If α > 1, prove that f is constant on I. (Hint: First show that f is differentiable on I.)

Suppose |f(x) − f(y)| ≤ M |x − y|α then 0 ≤
∣∣∣f(x)−f(y)x−y

∣∣∣ ≤ |x − y|α−1 for all x 6= y ∈ R. Note

that the left and right sides of the expression tend to 0 as x→ y. Thus by the sandwich theorem,

limx→y

∣∣∣f(x)−f(y)x−y

∣∣∣ = 0∀y ∈ R. Hence f ′ = 0 everywhere in R, so f is constant.

c) Show by an example that if α = 1, then f is not necessarily differentiable on I.
f(x) = |x|
d) Let α = 1. Prove that if g is differentiable on an interval I and if g′ is bounded on I, then g

satisfies a Lipschitz condition of order 1 on I. Suppose g is differentiable. Then limx→c
g(x)−g(c)
x−c =

g′(c). By the MVT |g(x)−g(y)|
|x−y| = |g′(k)|, k ∈ (x, y). This implies |g(x) − g(y)| = |g′(k)||x − y|. But

we know |g′(x)| exists and is bounded, let’s say by M . Thus |g(x)− g(y)| ≤M |x− y|.
#4 Evaluate the following limits.
a)limx→1

lnx
x−1

Notice ln(1) = 0 and x − 1 = 0. So apply L’Hospital’s Rule. Then limx→1
lnx
x−1 = limx→1

1
x
1 =

limx→1
1
x = 1.

b)limx→∞
(
1 + 1

x

)x
Notice limx→∞

(
1 + 1

x

)x
= limx→∞ e

ln(1+ 1
x)
x

. So let’s examine limx→∞ ln
(
1 + 1

x

)x
= limx→∞ x ln

(
1 + 1

x

)
=

limx→∞
ln(1+ 1

x)
1
x

. Notice that both the numerator and denominator go to 0, so by L’Hospital we



have limx→∞
(
1 + 1

x

)x
= limx→∞

(
1

1+ 1
x

)
(−1
x )

−1

x2

= limx→∞
1

1+ 1
x

= 1. Therefore
(
1 + 1

x

)x → e.

c)limx→0
tanx−x
x3

Observe the limit goes to 0
0 , So we apply L’Hospital (3 times) to see limx→0

tanx−x
x3

= 1
3 .

# 5 If f(x) = |x|3, compute f ′(x), f ′′(x) for all real x, and show that f (3)(x) does not exist.
Since

f(x) = |x|3 =

{
x3 if x ≥ −,

−x3 if x < 0
(0.1)

we get

f ′(x) =

{
3x2 if x ≥ −,

−3x2 if x < 0
(0.2)

and f ′(0) = limx→0+ f
′(x) = limx→0− f

′(x) = 0. Also,

f ′′(x) =

{
6x if x ≥ −,

−6x if x < 0
(0.3)

and f ′′(0) = limx→0+ f
′′(x) = limx→0− f

′′(x) = 0.

But then limx→0+
f ′′(x)−f ′′(0)

x = limx→0+
6x−0
x = 6 6= −6 = limx→0−

−6x−0
x = limx→0−

f ′′(x)−f ′′(0)
x so

f ′′′(0) does not exist.

# 6 A function f : D → R is said to have a local maximum (minimum) at a point x0 ∈ D if there is
a neighborhood U of x0 such that f(x) ≤ f(x0) (f(x) ≥ f(x0)) for all x ∈ U ∩D. Suppose for some
integer n ≥ 2 that the derivatives f ′, f ′′, f ′′′, ..f (n) exist and are continuous on an open interval I
containing x0 and that f ′(x0) − · · · = f (n−1)(x0) = 0, but f (n)(x0) 6= 0. Use Taylor’s Theorem to
prove:
a) If n is even then f (n) < 0 then f has a local maximum at x0
similar to b
b) If n is even then f (n) > 0 then f has a local minimum at x0

We know we can express f(x) = f(x0) +f ′(x0)(x−x0) + f ′′(x0)(x−x0)2
2! + ...+ f (n)(x)

n! (x−x0)n. Using

that f (k) = 0 for all k = 1, ...n−1 we see that f(x) = f(x0)+ f (n)(c)
n! (x−x0)n where c ∈ (x, x0). We

know that f (n)(x0) 6= 0, and f (n)(x0) is continuous, so there is a nbhd U of x0 on which f (n)(x0) 6= 0.

Thus on U f (n)(x)
n! (x−x0)n is positive if f (n)(x0) is. So if f (n)(x0) > 0, f(x) = f(x0)+ f (n)(c)

n! (x−x0)
on U , so f(x0) is a local minimum.
c) If n is odd then f has neither a local maximum nor a local minimum at x0.
similar to b


