$#1$ Use the mean value theorem to establish: a) $\frac{1}{8} < \sqrt{51} - 7 < \frac{1}{7}$

 $\begin{array}{l}\n\text{a) } \frac{1}{8} < \sqrt{31 - 7} < \frac{7}{7} \\
\text{b) } |\cos(x) - \cos(y)| \leq |x - y| \text{ for } x, y \in \mathbb{R}\n\end{array}$

#2 Suppose i) f is continuous for $x \ge 0$, ii) $f'(x)$ exists for $x > 0$, iii) $f(0) = 0$, iv) f' is monotonically increasing. Define $g(x) = \frac{f(x)}{x}$, $x > 0$ and prove g is monotonically increasing.

#3 Let f be defined on an interval I. Suppose there exists $M > 0$ and $\alpha > 0$ such that $|f(x) - f(y)| \leq M|x - y|^{\alpha}$ for all $x, y \in I$. (Such a function is said to satisfy a Lipschitz condition of order α on I .)

a) Prove that f is uniformly continuous on I .

b) If $\alpha > 1$, prove that f is constant on I. (Hint: First show that f is differentiable on I.)

c) Show by an example that if $\alpha = 1$, then f is not necessarily differentiable on I.

d) Let $\alpha = 1$. Prove that if g is differentiable on an interval I and if g' is bounded on I, then g satisfies a Lipschitz condition of order 1 on I.

#4 Evaluate the following limits.

a)lim_{$x\rightarrow 1$} $\frac{\ln x}{x-1}$ b)lim_{x→∞} $(1+\frac{1}{x})^x$ c)lim_{x→0} $\frac{\tan x - x}{x^3}$

5 If $f(x) = |x|^3$, compute $f'(x)$, $f''(x)$ for all real x, and show that $f^{(3)}(x)$ does not exist.

6 A function $f: D \to \mathbb{R}$ is said to have a local maximum (minimum) at a point $x_0 \in D$ if there is a neighborhood U of x_0 such that $f(x) \leq f(x_0)$ $(f(x) \geq f(x_0))$ for all $x \in U \cap D$. Suppose for some integer $n \geq 2$ that the derivatives $f', f'', f''', ... f^{(n)}$ exist and are continuous on an open interval I containing x_0 and that $f'(x_0) - \cdots = f^{(n-1)}(x_0) = 0$, but $f^{(n)}(x_0) \neq 0$. Use Taylor's Theorem to prove:

a) If *n* is even and $f^{(n)} < 0$ then *f* has a local maximum at x_0

b) If *n* is even and $f^{(n)} > 0$ then *f* has a local minimum at x_0

c) If n is odd and f has neither a local maximum nor a local minimum at x_0 .