- 1. Give a precise mathematical definition or statement of:
	- A function $f: D \to \mathbb{R}$ where $D \subset \mathbb{R}$ and $c \in D$ is continuous. f is continuous at c if $\forall \varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(c)| < \varepsilon$ whenever $|x-c| < \delta$ whenever $x \in D$.
	- The Extreme Value Theorem Let $D \subset \mathbb{R}$ and D is compact and suppose $f : D \to \mathbb{R}$ is continuous. Then f assumes minimum and maximum values on D. That is there exist points x_1 and x_2 in D such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in D$.
	- The Chain Rule

Let I, J be intervals in R, let $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ where $F(I) \subset J$, and let $c \in I$. If f is differentiable at c, and g is differentiable at $f(c)$, the $g \circ f$ is differentiable at c, and $(g \circ f)'(c) = g'(f(c))f'(c).$

• The Mean Value Theorem Let f be a continuous function on [a, b] that is differentiable on (a, b) . Then there exists a point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

2.(a) Suppose $f : [a, b] \rightarrow [a, b]$ is continuous. Prove that f has a fixed point. That is, prove that there exists a $c \in [a, b]$ such that $f(c) = c$.

Pf: If $f(a) = a$ or $f(b) = b$, then done. So assume $f(a) > a$ and $f(b) < b$. Consider the function $g(x) = f(x) - x$ which is clearly continuous. We see that $g(a) = f(a) - a > 0$ and $g(b) = f(b) - b < 0$. So, by the IVT we see there exists $c \in (a, b)$ such that $g(c) = 0$. But then $f(c) = c$.

(b) Is the theorem true if we replace $[a, b]$ with (a, b) ? Prove or give a counterexample.

False. Take $f(x) = \frac{x}{2}$ on $(0, 1)$. Then $f(x) : (0, 1) \to (0, 1)$. But if $f(x) = x$, then $\frac{x}{2} = x$ implies $x = 0$ which is not in $(0, 1)$.

3. Use the definition of the derivative to show that

$$
(sin x)' = cos x.
$$

You may need that $sin(x + h) = sin x cos h + cos x sinh$. Pf: $\lim_{h\to 0} \frac{\sin(x+h)-\sin x}{h} = \lim_{h\to 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} = \lim_{h\to 0} \left[\sin x \left(\frac{\cos h-1}{h}\right)\right]$ $\frac{h-1}{h}$ + cos x $\left(\frac{\sin h}{h}\right)$ $\frac{\ln h}{h}$)]. We can then show $\lim_{h\to 0} \frac{\cos h-1}{h} = 0$ and $\lim_{h\to 0} \frac{\sin h}{h} = 1$ using L'Hospital or taylor series, or trig properties. For example, by L'Hospital's Rule we know $\lim_{h\to 0} \frac{\cos h-1}{h} = \lim_{h\to 0} \frac{-\sin h}{1} = 0$ and $\lim_{h\to 0} \frac{\sin h}{h} = \lim_{h\to 0} \frac{\cos h}{1} = 1$. Thus $\lim_{h\to 0} \frac{\sin(x+h)-\sin x}{h} = \sin x(0) + \cos x(1) = \cos x$.

4. If

$$
C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,
$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$
C_0 + C_1 x + \ldots + C_{n-1} x^{n-1} + C_n x^n = 0
$$

has at least one real root between 0 and 1.

Pf: Define the polynomial $p(x) = C_0x + C_1\frac{x^2}{2} + \ldots + C_{n-1}\frac{x^n}{n} + C_n\frac{x^{n+1}}{n+1}$. Then $p(0) = 0$ and $p(1) = C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$. The function p is a polynomial so in particular it is continuously differentiable everywhere in [0, 1]. Therefore, by the Rolle's Theorem there exists an $x \in (0,1)$ such that $p'(x) = 0$. Thus $C_0 + C_1 x + \ldots + C_{n-1} x^{n-1} + C_n x^n = 0$.

- 5. Find an example or explain why one doesn't exist
	- A continuous function on R which is NOT uniformly continuous. $f(x) = x^2$
	- A uniformly continuous function on R which is not continuous. DNE, all uniformly continuous functions are continuous
	- A function where $f'(c) = 0$ but $f(c)$ is not a maximum. $f(x) = x^3$
	- A continuous function f on [0, 1] such that $|f(x) f(y)| \le |x y|^2$ for all $x, y \in [0, 1]$ $f(x) = 3$