- **1.** Give a precise mathematical definition or statement of:
 - A function $f: D \to \mathbb{R}$ where $D \subset \mathbb{R}$ and $c \in D$ is continuous. f is continuous at c if $\forall \varepsilon > 0$ there exists a $\delta > 0$ such that $|f(x) - f(c)| < \varepsilon$ whenever $|x - c| < \delta$ whenever $x \in D$.
 - The Extreme Value Theorem Let $D \subset \mathbb{R}$ and D is compact and suppose $f: D \to \mathbb{R}$ is continuous. Then f assumes minimum and maximum values on D. That is there exist points x_1 and x_2 in D such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in D$.
 - The Chain Rule

Let I, J be intervals in \mathbb{R} , let $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ where $F(I) \subset J$, and let $c \in I$. If f is differentiable at c, and g is differentiable at f(c), the $g \circ f$ is differentiable at c, and $(g \circ f)'(c) = g'(f(c))f'(c)$.

• The Mean Value Theorem Let f be a continuous function on [a, b] that is differentiable on (a, b). Then there exists a point $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

2.(a) Suppose $f : [a, b] \to [a, b]$ is continuous. Prove that f has a fixed point. That is, prove that there exists a $c \in [a, b]$ such that f(c) = c.

Pf: If f(a) = a or f(b) = b, then done. So assume f(a) > a and f(b) < b. Consider the function g(x) = f(x) - x which is clearly continuous. We see that g(a) = f(a) - a > 0 and g(b) = f(b) - b < 0. So, by the IVT we see there exists $c \in (a, b)$ such that g(c) = 0. But then f(c) = c.

(b) Is the theorem true if we replace [a, b] with (a, b)? Prove or give a counterexample. False. Take $f(x) = \frac{x}{2}$ on (0, 1). Then $f(x) : (0, 1) \to (0, 1)$. But if f(x) = x, then $\frac{x}{2} = x$ implies x = 0 which is not in (0, 1).

3. Use the definition of the derivative to show that

$$(sinx)' = cosx.$$

You may need that $\sin(x+h) = \sin x \cos h + \cos x \sinh$. Pf: $\lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h} = \lim_{h\to 0} \frac{\sin x \cos h + \cos x \sinh - \sin x}{h} = \lim_{h\to 0} \left[\sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) \right]$. We can then show $\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$ and $\lim_{h\to 0} \frac{\sin h}{h} = 1$ using L'Hospital or taylor series, or trig properties. For example, by L'Hospital's Rule we know $\lim_{h\to 0} \frac{\cos h - 1}{h} = \lim_{h\to 0} \frac{-\sin h}{1} = 0$ and $\lim_{h\to 0} \frac{\sin(x+h) - \sin x}{h} = \sin x(0) + \cos x(1) = \cos x$.

4. If

$$C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where C_0, \ldots, C_n are real constants, prove that the equation

$$C_0 + C_1 x + \ldots + C_{n-1} x^{n-1} + C_n x^n = 0$$

has at least one real root between 0 and 1.

Pf: Define the polynomial $p(x) = C_0 x + C_1 \frac{x^2}{2} + \ldots + C_{n-1} \frac{x^n}{n} + C_n \frac{x^{n+1}}{n+1}$. Then p(0) = 0 and $p(1) = C_0 + \frac{C_1}{2} + \ldots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0$. The function p is a polynomial so in particular it is continuously differentiable everywhere in [0, 1]. Therefore, by the Rolle's Theorem there exists an $x \in (0, 1)$ such that p'(x) = 0. Thus $C_0 + C_1 x + \ldots + C_{n-1} x^{n-1} + C_n x^n = 0$.

- 5. Find an example or explain why one doesn't exist
 - A continuous function on \mathbb{R} which is NOT uniformly continuous. $f(x) = x^2$
 - A uniformly continuous function on \mathbb{R} which is not continuous. DNE, all uniformly continuous functions are continuous
 - A function where f'(c) = 0 but f(c) is not a maximum. $f(x) = x^3$
 - A continuous function f on [0,1] such that $|f(x) f(y)| \le |x y|^2$ for all $x, y \in [0,1]$ f(x) = 3