- **1.** Give a precise mathematical definition of:
 - A set E ⊂ X is closed
 E is closed if every limit point of E is a point in E.
 - An open cover of a set E in a metric space X An open cover of a set E in a metric space X is a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subset \bigcup_{\alpha} G_{\alpha}$
 - A point p is an interior point of E A point p is an interior point of E if there is a neighborhood n of p such that $N \subset E$.
 - A set A is countable A set A is countable if and only if there exists a bijection between A and N.
 - 2. State whether the following statements are true or false and justify your answer:
 - No infinite set is compact. False, [-5,5] is an infinite set and is compact.
 - If a convergent sequence is bounded, then it is monotone. False, the sequence $\frac{(-1)^n}{n}$ is bounded and converges to 0, but is not monotone.
 - A sequence of rational numbers is convergent if and only if it is a Cauchy sequence in the metric space Q with d(x, y) = |x y|.
 False, need the completeness of the reals for this statement to hold true. Ex: The sequence {a ∈ Q : a ≥ 0, a² < 2}. The limit is √2 but this isn't in the metric space Q.
 - If $s_n \to s$ and $s_n > 0$ for all $n \in \mathbb{N}$ then s > 0. False, consider the sequence $s_n = \frac{1}{n}$.
- **3.** Find and prove the limits of:
 - i) $\frac{\sin n}{n}$ (using the definition)

Let $\varepsilon > 0$. Define $N = \frac{1}{\varepsilon}$. Then if $n > N, |\frac{\sin n}{n} - 0| \le |\frac{1}{n}| < \frac{1}{N} = \varepsilon$

ii) $s_1 = 1, s_{n+1} = \frac{1}{3}(s_n + 3)$. First few terms are $s_1 = 1, s_2 = \frac{4}{3}, s_3 = \frac{13}{9}$, which appear to be increasing and bounded above by 2.

BOUNDED: Clearly bounded below by 0. We claim it is bounded above by 2, prove by induction. Clearly $s_1 < 2$ and assume true for some s_n . Then $s_{n+1} = \frac{1}{3}(s_n + 3) \le \frac{1}{3}(2 + 3) = \frac{5}{3} < 2$.

INCREASING: Again we prove by induction. Clearly $s_2 - s_1 > 0$. Then $s_{n+1} - s_n = \frac{1}{3}(s_n + 3) - \frac{1}{3}(s_{n-1} + 3) = \frac{1}{s_n - s_{n-1}}$. So if we assume $s_n - s_{n-1} > 0$ then $s_{n+1} - s_n > 0$ so we are done. LIMIT: We know a limit exists by MCT. Hence let's call it *L*. So *L* obeys the relation $L = \frac{1}{3}(L+3)$ which implies $L = \frac{3}{2}$.

5. If S is a compact subset of \mathbb{R} and T is a subset of S, then T is compact.

Pf: Suppose S is compact, so by Heine Borel it is closed and bounded. Since $T \subset S$, it follows

that T is also bounded. By the hypothesis, T is closed. Thus again by Heine Borel, T is compact.

6. (20 pts.) Every Cauchy sequence is bounded.

Pf: Suppose $\{x_n\}$ is a Cauchy sequence. Let $\varepsilon > 0$. Then we know there exists $N \in \mathbb{R}$ such that $|x_n - x_m| < \varepsilon$ whenever $m, n \ge N$. Thus $|x_n| - |x_m| < |x_n - x_m| < \varepsilon$. In particular, this holds true for m = N which implies $|x_n| < \varepsilon + |x_N|$. Let $M = \max\{|x_1|, |x_2|, \ldots, |x_N|, |x_N| + \varepsilon\}$. Then we have $|x_n| \le M$ for all $n \in \mathbb{N}$. Therefore, $\{x_n\}$ is bounded.