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Motivation

Modelling “real-world” networks has
attracted a lot of attention. Common
characteristics include:
Skewed degree distributions (e.g., power laws).
Large Clustering Coefficients

Small diameter
A popular model for modeling real-world

planar graphs are Random Apollonian
Networks.
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Problem of Apollonius

Construct circles that are tangent to
three given circles on the plane.

Apollonius
(262-190 BC)
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Apollonian Packing

Apollonian Gasket
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Higher Dimensional Packings

Higher Dimensional (3d) Apollonian Packing. From
now on, we shall discuss the 2d case.
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Apollonian Network

Dual version of Apollonian Packing




Random Apollonian Networks

Start with a triangle (t=0).
Until the network reaches the desired size

Pick a face F uniformly at random, insert a new
vertex in it and connect it with the three vertices
of F

()L —3 (D)t = 100




Random Apollonian Networks

Foranyt =0
Number of vertices n, =t+3
Number of vertices m,=3t+3
Number of faces F.=2t+1

Note that a RAN is a maximal planar graph
since for any planar graph
my < 3n, —6 =3t + 3
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Degree Distribution

Let N, (t)=E[Z,(t)]=expected #vertices of degree
k attime t. Then:
3N3(t)

N3(t + 1) — N3(t) + 1 2t 1

k k—1
Nie(t + 1) = Ni(D) (1 = =) + Neea () o

Solving the recurrence results in a power law with
“slope 3".
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Degree Distribution

Z, (t)=#of vertices of degree kattime t, k = 3
1 4 24

2
by =73,ba =35,bs =35, b = 15 k= 6
For t sufficiently large

|E|Z;, (t)] — bit| < 3.6
Furthermore, for all possible degrees k

Prob(|Z(t) — E[Z,(8)]] = 104/tlog(t) = o(1)

WAW '12 13



Simulation (10000 vertices, results averaged

over 10 runs, 10 smallest degrees shown)

Degree Theorem Simulation
3 0.4 0.3982
4 0.2 0.2017
5 0.1143 0.1143
6 0.0714 0.0715
7 0.0476 0.0476
8 0.0333 0.0332
9 0.0242 0.0243
10 0.0182 0.0179
11 0.0140 0.0137
12 0.0110 0.0111
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Diameter

Depth of a face (recursively): Let a be the initial face, then
depth(a)=1. For a face [ created by picking facey
depth(B)=depth(y)+1.
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Diameter

Note that if k* is the maximum depth of a face at time
t, then diam(G,)=0O(k*).

Let F (k)=#faces of depth k at time t. Then, E[F; (k)] is
equal to
k

t
t k+1
1 1 1
~ 1 z - elog(t)
l[2q+1 k\ Li2j+1 2k
]:

_1
1<t <ty<.<tp<t

Therefore by a first moment argument k*=0(log(t)) whp.
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Bijection with random ternary trees
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Diameter

Large Deviations for the Weighted
Height of an Extended Class of Trees.

] Algorithmica 2006

Broutin Devroye

The depth of the random ternary treeT in probability
is p/2 log(t) where 1/p=nis the unique solution greater than 1
of the equation n-1-log(n)=log(3).

Therefore we obtain an upper bound in probability
diam(G;) < plog(t)
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Diameter

This cannot be used though to get a lower
bound:

Diameter=2,
Depth arbitrarily large
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Highest Degrees, Main Result

LetA; = A, = -+ = Ay be the k highest
degrees of the RAN G, where k=0(12). Also let
f(t) be a function s.t. f(t) —+ . Then whp

Vit
70 < A; SVEf(D)
and fori=2,..,k
Vvt vt

_S Al S Ai—l

f(t) f(t)
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Proof techniques

to = loglog(f(t)) t; = log(f (1)) t

* Break uptimein periods

* Create appropriate supernodes
according to their age.

* Let Xt be the degree of a supernode.
Couple RAN process with a simpler
processY such that

Xe =2V, Xey =Y, =dg
Upper bound the probability
p*(N)=Pr(Y; =dy + 1)
* Union bound and k-th moment
WAW '12 arguments 28
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Eigenvalues, Main Result

LetA; = A, = -+ = A be thelargest k
eigenvalues of the adjacency matrix of G..

Then A; = (1 + 0(1))\/& whp.
Proof comes for “free” from our previous

Mihail Papadimitriou
30



Eigenvalues, Proof Sketch

Star forest consisting of edges between S and S-S,
where S', is the subset of vertices of S, with two or more
neighborsinS._.
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Eigenvalues, Proof Sketch

Lemma: |S5| < t1/6
This lemma allows us to prove thatin F

A (F) = (1—0(1)y/A;

WAW '12 32



Eigenvalues, Proof Sketch

Finally we prove that in H=G-F
A1 (H) = o(A(F))
Proof Sketch
First we prove a lemma. For any €>0 and any
f(t) s.t. f(¢t) P~ I oo the following holds

whp: for all s with f(t) < s < t forall vertices

1 1
r < sthend (r) <szre.

WAW '12 33



Eigenvalues, Proof Sketch

Consider six induced subgraphs H.=H[S.] and
H;=H(S,S)). The following holds:

WS Y WH)+ Y A H)

1<j
Bound each term in the summation using the

lemma and the fact that the maximum
eigenvalue is bounded by the maximum
degree.

WAW '12 34
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Open Problems

Conductance @ is at most t:2/2 .
Conjecture: O= O(t*/2)

Are RANs Hamiltonian?

Conjecture: No A
_ength of the longest
nath?

Conjecture: ©(n)
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Thank you!



