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1 IntrodutionThe laws of large numbers of lassial probability theory state that sumsof independent random variables are, under very mild onditions, lose totheir expetation with a large probability. Suh sums are the most basiexamples of random variables onentrated around their mean. More reentresults reveal that suh a behavior is shared by a large lass of generalfuntions of independent random variables. The purpose of these notes isto give an introdution to some of these general onentration inequalities.The inequalities disussed in these notes bound tail probabilities of gen-eral funtions of independent random variables. Several methods have beenknown to prove suh inequalities, inluding martingale methods pioneeredin the 1970's by Milman, see Milman and Shehtman [62℄ (see also thein�uential surveys of MDiarmid [59℄, [60℄), information-theoreti methods(see Alhswede, Gás, and Körner [1℄, Marton [53℄, [54℄,[55℄, Dembo [24℄,Massart [56℄ and Rio [69℄), Talagrand's indution method [78℄,[76℄,[77℄ (seealso Luzak and MDiarmid [50℄, MDiarmid [61℄, Panhenko [64, 65, 66℄and the so-alled �entropy method�, based on logarithmi Sobolev inequal-ities, developed by Ledoux [46℄,[45℄, see also Bobkov and Ledoux [12℄, Mas-sart [57℄, Rio [69℄, Bouheron, Lugosi, and Massart [14℄, [15℄, and Bousquet[16℄. Also, various problem-spei� methods have been worked out in ran-dom graph theory, see Janson, �uzak, and Rui«ski [40℄ for a survey.
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2 BasisTo make these notes self-ontained, we �rst brie�y introdue some of thebasi inequalities of probability theory.First of all, reall that for any nonnegative random variable X,EX =

∫∞

0

P{X � t}dt .This implies Markov's inequality: for any nonnegative random variable X,and t > 0, P{X � t} � EX
t
.If follows from Markov's inequality that if φ is a stritly monotoniallyinreasing nonnegative-valued funtion then for any random variable X andreal number t, P{X � t} = P{φ(X) � φ(t)} � Eφ(X)

φ(t)
.An appliation of this with φ(x) = x2 is Chebyshev's inequality: if X is anarbitrary random variable and t > 0, thenP{|X−EX| � t} = P{

|X−EX|2 � t2} � E h|X −EX|2
i

t2
=

Var{X}

t2
.More generally taking φ(x) = xq (x � 0), for any q > 0 we haveP{|X −EX| � t} � E [|X−EX|q]

tq
.In spei� examples one may hoose the value of q to optimize the ob-tained upper bound. Suh moment bounds often provide with very sharpestimates of the tail probabilities. A related idea is at the basis of Cher-no�'s bounding method. Taking φ(x) = esx where s is an arbitrary positivenumber, for any random variable X, and any t > 0, we haveP{X � t} = P{esX � est} � EesX

est
.3



In Cherno�'s method, we �nd an s > 0 that minimizes the upper bound ormakes the upper bound small. Even though Cherno� bounds are never asgood as the best moment bound (see Exerise 1), in many ases they areeasier to handle.The Cauhy-Shwarz inequality states that if the random variables Xand Y have �nite seond moments (E[X2] < ∞ and E[Y2] < ∞), then
|E[XY]| � qE[X2]E[Y2].We may use this to prove a one-sided improvement of Chebyshev's inequal-ity:Theorem 1 hebyshev-antelli inequality. Let t � 0. ThenP{X−EX � t} � Var{X}Var{X} + t2

.Proof. We may assume without loss of generality that EX = 0. Then forall t
t = E[t− X] � E[(t− X)1{X<t}].(where 1 denotes the indiator funtion). Thus for t � 0 from the Cauhy-Shwarz inequality,
t2 � E[(t− X)2]E[12

{X<t}]

= E[(t− X)2]P{X < t}

= (Var{X} + t2)P{X < t},that is, P{X < t} � t2Var{X} + t2
,and the laim follows. 2We end this setion by realling a simple assoiation inequality due toChebyshev (see, e.g., [37℄). We note here that assoiation properties mayoften be used to derive onentration properties. We refer the reader tothe survey of Dubdashi and Ranjan [30℄4



Theorem 2 hebyshev's assoiation inequality. Let f and g benondereasing real-valued funtions de�ned on the real line. If X isa real-valued random variable, thenE[f(X)g(X)] � E[f(X)]E[g(X)]| .If f is noninreasing and g is nondereasing thenE[f(X)g(X)] � E[f(X)]E[g(X)]| .Proof. Let the random variable Y be distributed as X and independent ofit. If f and g are nondereasing, (f(x) − f(y))(g(x) − g(y)) � 0 so thatE[(f(X) − f(Y))(g(X) − g(Y))] � 0 .Expand this expetation to obtain the �rst inequality. The proof of theseond is similar. 2A powerful generalization of the above is the well-known FKG inequalityof Fortuin, Kasteleyn, and Ginibre [33℄. A real-valued funtion f de�nedon Rn is said to be nondereasing (noninreasing) if it is nondereasing(noninreasing) in eah variable.Theorem 3 fkg inequality. Let f, g : Rn → R be nondereasing fun-tions. If Xn
1 = (X1, . . . , Xn) is a random variable taking values in Rn,then E[f(Xn

1)g(Xn
1)] � E[f(Xn

1)]E[g(Xn
1)]| .If f is noninreasing and g is nondereasing thenE[f(Xn

1)g(Xn
1)] � E[f(Xn

1)]E[g(Xn
1)]| .Proof. Again, it su�es to prove the �rst inequality. We proeed by in-dution. For n = 1 the statement is just Chebyshev's assoiation inequality.Now suppose the statement is true for m < n. ThenE[f(Xn

1)g(Xn
1)] = EE[f(Xn

1)g(Xn
1)|X1, . . . , Xn−1]� E [E[f(Xn

1)|X1, . . . , Xn−1]E[g(Xn
1)|X1, . . . , Xn−1]]5



beause given X1, . . . , Xn−1, both f and g are nondereasing funtions of the
n-th variable. Now it's obvious from the assumption that both f 0(Xn−1

1 ) =E[f(Xn
1)|X1, . . . , Xn−1] and g 0(Xn−1

1 ) = E[g(Xn
1)|X1, . . . , Xn−1] are nonde-reasing funtions, so by the indution hypothesis,E[f 0(Xn−1

1 )g 0(Xn−1
1 )] � E[f 0(Xn−1

1 )]E[g 0(Xn−1
1 )] = E[f(Xn

1)]E[g(Xn
1)]|as desired. 2ExerisesExerise 1 moments vs. hernoff bounds. Show that moment boundsfor tail probabilities are always better than Cherno� bounds. More pre-isely, let X be a nonnegative random variable and let t > 0. The bestmoment bound for the tail probability P{X � t} is minqE[Xq]t−q wherethe minimum is taken over all positive integers. The best Cherno� boundis infs>0E[es(X−t)]. Prove thatmin

q
E[Xq]t−q � inf

s>0
E[es(X−t)].Exerise 2 first and seond moment methods. Show that if X is anonnegative integer-valued random variable then P{X 6= 0} � EX. Showalso that P{X = 0} � Var(X)Var(X) + (EX)2

.Exerise 3 subgaussian moments. We say that a random variable X hasa subgaussian distribution if there exists a onstant c > 0 suh that for all
s > 0, E[esX] � ecs2 . Show that there exists a universal onstant K suhthat if X is subgaussian, then for every positive integer q,

(E[Xq
+])

1/q � Kpcq .Exerise 4 subgaussian moments�onverse. Let X be a random vari-able suh that there exists a onstant c > 0 suh that
(E[Xq

+])
1/q � p

cq6



for every positive integer q. Show that X is subgaussian. More preisely,show that for any s > 0, E[esX] � p
2e1/6eces2/2 .Exerise 5 subexponential moments. We say that a random variable Xhas a subexponential distribution if there exists a onstant c > 0 suh thatfor all 0 < s < 1/c, E[esX] � 1/(1− cs). Show that if X is subexponential,then for every positive integer q,

(E[Xq
+])

1/q � 4c

e
q .Exerise 6 subexponential moments�onverse. Let X be a randomvariable suh that there exists a onstant c > 0 suh that

(E[Xq
+])

1/q � cqfor every positive integer q. Show that X is subexponential. More preisely,show that for any 0 < s < 1/(ec),E[esX] � 1

1− ces
.
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3 Sums of independent random variablesIn this introdutory setion we reall some simple inequalities for sums ofindependent random variables. Here we are primarily onerned with upperbounds for the probabilities of deviations from the mean, that is, to obtaininequalities for P{Sn −ESn � t}, with Sn =
∑n

i=1Xi, where X1, . . . , Xn areindependent real-valued random variables.Chebyshev's inequality and independene immediately implyP{|Sn −ESn| � t} � Var{Sn}

t2
=

∑n

i=1Var{Xi}

t2
.In other words, writing σ2 = 1

n

∑n

i=1Var{Xi},P{������ 1n n∑

i=1

Xi −EXi

������ � ǫ} � σ2

nǫ2
.This simple inequality is at the basis of the weak law of large numbers.To understand why this inequality is unsatisfatory, reall that, undersome additional regularity onditions, the entral limit theorem states thatP{s

n

σ2

0� 1
n

n∑

i=1

Xi −EXi

1A � y} → 1−Φ(y) � 1p
2π

e−y2/2

y
,from whih we would expet, at least in a ertain range of the parameters,something like P{

1

n

n∑

i=1

Xi −EXi � ǫ} � e−nǫ2/(2σ2). (1)Clearly, Chebyshev's inequality is way o� mark in this ase, so we shouldlook for something better. In the sequel we prove some of the simplestlassial exponential inequalities for the tail probabilities of sums of inde-pendent random variables whih yield signi�antly sharper estimates.3.1 Hoe�ding's inequalityCherno�'s bounding method, desribed in Setion 2, is espeially onve-nient for bounding tail probabilities of sums of independent random vari-8



ables. The reason is that sine the expeted value of a produt of indepen-dent random variables equals the produt of the expeted values, Cherno�'sbound beomesP{Sn −ESn � t} � e−stE 24exp0�s n∑

i=1

(Xi −EXi)

1A35
= e−st

n∏

i=1

E hes(Xi−EXi)
i (by independene). (2)Now the problem of �nding tight bounds omes down to �nding a goodupper bound for the moment generating funtion of the random variables

Xi−EXi. There are many ways of doing this. For bounded random variablesperhaps the most elegant version is due to Hoe�ding [39℄:Lemma 1 hoeffding's inequality. Let X be a random variable withEX = 0, a � X � b. Then for s > 0,E hesX
i � es2(b−a)2/8.Proof. Note that by onvexity of the exponential funtion

esx � x − a

b− a
esb +

b− x

b− a
esa for a � x � b.Exploiting EX = 0, and introduing the notation p = −a/(b− a) we getEesX � b

b− a
esa −

a

b− a
esb

=
�
1− p+ pes(b−a)

�
e−ps(b−a)def

= eφ(u),where u = s(b− a), and φ(u) = −pu+ log(1− p+ peu). But by straight-forward alulation it is easy to see that the derivative of φ is
φ 0(u) = −p+

p

p+ (1− p)e−u
,9



therefore φ(0) = φ 0(0) = 0. Moreover,
φ 00(u) =

p(1− p)e−u

(p+ (1− p)e−u)
2
� 1

4
.Thus, by Taylor's theorem, for some θ 2 [0, u],

φ(u) = φ(0) + uφ 0(0) +
u2

2
φ 00(θ) � u2

8
=
s2(b− a)2

8
. 2Now we may diretly plug this lemma into (2):P{Sn −ESn � t}� e−st

n∏

i=1

es2(bi−ai)
2/8 (by Lemma 1)

= e−stes2
∑n

i=1(bi−ai)
2/8

= e−2t2/
∑n

i=1(bi−ai)
2 (by hoosing s = 4t/

∑n

i=1(bi − ai)
2).Theorem 4 hoeffding's tail inequality [39℄. Let X1, . . . , Xn beindependent bounded random variables suh that Xi falls in the interval

[ai, bi] with probability one. Then for any t > 0 we haveP{Sn −ESn � t} � e−2t2/
∑n

i=1(bi−ai)
2and P{Sn −ESn � −t} � e−2t2/

∑n
i=1(bi−ai)

2

.The theorem above is generally known as Hoe�ding's inequality. Forbinomial random variables it was proved by Cherno� [19℄ and Okamoto[63℄.This inequality has the same form as the one we hoped for based on(1) exept that the average variane σ2 is replaed by the upper bound
(1/4)

∑n

i=1(bi − ai)
2. In other words, Hoe�ding's inequality ignores in-formation about the variane of the Xi's. The inequalities disussed nextprovide an improvement in this respet.10



3.2 Bernstein's inequalityAssume now without loss of generality that EXi = 0 for all i = 1, . . . , n.Our starting point is again (2), that is, we need bounds for E hesXi

i. Intro-due σ2
i = E[X2

i ], and
Fi =

∞∑

r=2

sr−2E[Xr
i]

r!σ2
i

.Sine esx = 1+ sx+
∑∞

r=2 s
rxr/r!, we may writeE hesXi

i
= 1+ sE[Xi] +

∞∑

r=2

srE[Xr
i]

r!

= 1+ s2σ2
iFi (sine E[Xi] = 0.)� es2σ2

i
Fi .Now assume that the Xi's are bounded suh that |Xi| � c. Then for eah

r � 2, E[Xr
i] � cr−2σ2

i .Thus,
Fi � ∞∑

r=2

sr−2cr−2σ2
i

r!σ2
i

=
1

(sc)2

∞∑

r=2

(sc)r

r!
=
esc − 1− sc

(sc)2
.Thus, we have obtained E hesXi

i � es2σ2
i

esc−1−sc

(sc)2 .Returning to (2) and using the notation σ2 = (1/n)
∑
σ2

i , we getP{
n∑

i=1

Xi > t

} � enσ2(esc−1−sc)/c2−st.Now we are free to hoose s. The upper bound is minimized for
s =

1

c
log�1+

tc

nσ2

�
.Resubstituting this value, we obtain Bennett's inequality [9℄:11



Theorem 5 bennett's inequality. Let X1, . . ., Xn be independentreal-valued random variables with zero mean, and assume that |Xi| � cwith probability one. Let
σ2 =

1

n

n∑

i=1

Var{Xi}.Then for any t > 0,P{
n∑

i=1

Xi > t

} � exp −
nσ2

c2
h

�
ct

nσ2

�!
.where h(u) = (1+ u) log(1+ u) − u for u � 0.The message of this inequality is perhaps best seen if we do some furtherbounding. Applying the elementary inequality h(u) � u2/(2+2u/3), u � 0(whih may be seen by omparing the derivatives of both sides) we obtaina lassial inequality of Bernstein [10℄:Theorem 6 bernstein's inequality. Under the onditions of the pre-vious theorem, for any ǫ > 0,P{

1

n

n∑

i=1

Xi > ǫ

} � exp −
nǫ2

2σ2 + 2cǫ/3

!
.We see that, exept for the term 2cǫ/3 in the denominator of the expo-nent, Bernstein's inequality is qualitatively right when we ompare it withthe entral limit theorem (1). Bernstein's inequality points out one moreinteresting phenomenon: if σ2 < ǫ, then the upper bound behaves like

e−nǫ instead of the e−nǫ2 guaranteed by Hoe�ding's inequality. This mightbe intuitively explained by realling that a Binomial(n, λ/n) distributionan be approximated, for large n, by a Poisson(λ) distribution, whose taildereases as e−λ.
12



ExerisesExerise 7 Let X1, . . . , Xn be independent random variables, taking theirvalues from [0, 1]. Denoting m = ESn, show that for any t � m,P{Sn � t} � �
m

t

�t�n −m

n− t

�n−t

.Hint: Proeed by Cherno�'s bounding.Exerise 8 ontinuation. Use the previous exerise to show thatP{Sn � t} � �
m

t

�t

et−m,and for all ǫ > 0, P{Sn � m(1+ ǫ)} � e−mh(ǫ),where h is the funtion de�ned in Bennett's inequality. Finally,P{Sn � m(1− ǫ)} � e−mǫ2/2.(see, e.g., Karp [41℄, Hagerup and Rüb [36℄).Exerise 9 Compare the �rst bound of the previous exerise with thebest Cherno� bound for the tail of a Poisson random variable: let Y bea Poisson(m) random variable. Show thatP{Y � t} � inf
s>0

E hesY
i

est
=

�
m

t

�t

et−m.Use Stirling's formula to show thatP{Y � t} � P{Y = t} � �
m

t

�t

et−m 1p
2πt

e−1/(12t+1),Exerise 10 sampling without replaement. Let X be a �nite setwith N elements, and let X1, . . . , Xn be a random sample without replae-ment from X and Y1, . . . , Yn a random sample with replaement from X .Show that for any onvex real-valued funtion f,Ef0� n∑

i=1

Xi

1A � Ef0� n∑

i=1

Yi

1A .13



In partiular, by taking f(x) = esx, we see that all inequalities derived forthe sums of independent random variables Yi using Cherno�'s boundingremain true for the sum of the Xi's. (This result is due to Hoe�ding [39℄.)
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4 The Efron-Stein inequalityThe main purpose of these notes is to show how many of the tail inequali-ties for sums of independent random variables an be extended to generalfuntions of independent random variables. The simplest, yet surprisinglypowerful inequality of this kind is known as the Efron-Stein inequality. Itbounds the variane of a general funtion. To obtain tail inequalities, onemay simply use Chebyshev's inequality.Let X be some set, and let g : Xn → R be a measurable funtion of
n variables. We derive inequalities for the di�erene between the randomvariable Z = g(X1, . . . , Xn) and its expeted value EZ when X1, . . . , Xn arearbitrary independent (not neessarily identially distributed!) randomvariables taking values in X .The main inequalities of this setion follow from the next simple result.To simplify notation, we write Ei for the expeted value with respet tothe variable Xi, that is, EiZ = E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn].Theorem 7 Var(Z) � n∑

i=1

E h(Z−EiZ)
2
i
.Proof. The proof is based on elementary properties of onditional ex-petation. Reall that if X and Y are arbitrary bounded random variables,then E[XY] = E[E[XY|Y]] = E[YE[X|Y]].Introdue the notation V = Z−EZ, and de�ne

Vi = E[Z|X1, . . . , Xi] −E[Z|X1, . . . , Xi−1], i = 1, . . . , n.Clearly, V =
∑n

i=1Vi. (Thus, V is written as a sum of martingale di�er-
15



enes.) Then Var(Z) = E 2640� n∑

i=1

Vi

1A2
375

= E n∑

i=1

V2
i + 2E∑

i>j

ViVj

= E n∑

i=1

V2
i ,sine, for any i > j,EViVj = EE [ViVj|X1, . . . , Xj] = E [VjE [Vi|X1, . . . , Xj]] = 0 .To bound EV2

i , note that, by independene of the Xi,E[Z|X1, . . . , Xi−1] = E �E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

����X1, . . . , Xi

�
,and therefore

V2
i = (E[Z|X1, . . . , Xi] −E[Z|X1, . . . , Xi−1])

2

=

�E �E[Z|X1, . . . , Xn] −E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

����X1, . . . , Xi

��2� E �(E[Z|X1, . . . , Xn] −E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn])
2
����X1, . . . , Xi

�(by Jensen's inequality)
= E �(Z−EiZ)

2
����X1, . . . , Xi

�
.Taking expeted values on both sides, we obtain the statement. 2Now the Efron-Stein inequality follows easily. To state the theorem, let

X 01, . . . , X 0n form an independent opy of X1, . . . , Xn and write
Z 0i = g(X1, . . . , X

0
i, . . . , Xn) .Theorem 8 efron-stein inequality (efron and stein [32℄, steele[74℄). Var(Z) � 1

2

n∑

i=1

E h(Z− Z 0i)2
i16



Proof. The statement follows by Theorem 7 simply by using (ondition-ally) the elementary fat that if X and Y are independent and identiallydistributed random variables, then Var(X) = (1/2)E[(X−Y)2], and thereforeEi

h
(Z−EiZ)

2
i

=
1

2
Ei

h
(Z− Z 0i)2

i
. 2Remark. Observe that in the ase when Z =

∑n

i=1Xi is a sum of indepen-dent random variables (of �nite variane) then the inequality in Theorem8 beomes an equality. Thus, the bound in the Efron-Stein inequality is,in a sense, not improvable. This example also shows that, among all fun-tions of independent random variables, sums, in some sense, are the leastonentrated. Below we will see other evidenes for this extremal propertyof sums.Another useful orollary of Theorem 7 is obtained by realling that, forany random variable X, Var(X) � E[(X−a)2] for any onstant a 2 R. Usingthis fat onditionally, we have, for every i = 1, . . . , n,Ei

h
(Z−EiZ)

2
i � Ei

h
(Z− Zi)

2
iwhere Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) for arbitrary measurable funtions

gi : Xn−1 → R of n − 1 variables. Taking expeted values and usingTheorem 7 we have the following.Theorem 9 Var(Z) � n∑

i=1

E h(Z− Zi)
2
i
.In the next two setions we speialize the Efron-Stein inequality andits variant Theorem 9 to funtions whih satisfy some simple easy-to-verifyproperties.4.1 Funtions with bounded di�erenesWe say that a funtion g : Xn → R has the bounded di�erenes propertyif for some nonnegative onstants c1, . . . , cn,sup

x1,...,xn,
x0

i
2X |g(x1, . . . , xn) − g(x1, . . . , xi−1, x

0
i, xi+1, . . . , xn)| � ci , 1 � i � n .17



In other words, if we hange the i-th variable of g while keeping all theothers �xed, the value of the funtion annot hange by more than ci.Then the Efron-Stein inequality implies the following:Corollary 1 If g has the bounded di�erenes property with onstants
c1, . . . , cn, then Var(Z) � 1

2

n∑

i=1

c2
i .Next we list some interesting appliations of this orollary. In all asesthe bound for the variane is obtained e�ortlessly, while a diret estimationof the variane may be quite involved.Example. bin paking. This is one of the basi operations researhproblems. Given n numbers x1, . . . , xn 2 [0, 1], the question is the fol-lowing: what is the minimal number of �bins� into whih these numbersan be paked suh that the sum of the numbers in eah bin doesn't ex-eed one. Let g(x1, . . . , xn) be this minimum number. The behavior of

Z = g(X1, . . . , Xn), when X1, . . . , Xn are independent random variables, hasbeen extensively studied, see, for example, Rhee and Talagrand [68℄, Rhee[67℄, Talagrand [76℄. Now learly by hanging one of the xi's, the value of
g(x1, . . . , xn) annot hange by more than one, so we haveVar(Z) � n

2
.However, sharper bounds may be proved by using Talagrand's onvex dis-tane inequality disussed later.Example. longest ommon subsequene. This problem has beenstudied intensively for about 20 years now, see Chvátal and Sanko� [20℄,Deken [23℄, Dan£ík and Paterson [22℄, Steele [73, 75℄, The simplest versionis the following: Let X1, . . . , Xn and Y1, . . . , Yn be two sequenes of oin�ips. De�ne Z as the length of the longest subsequene whih appears inboth sequenes, that is,

Z = max{k : Xi1 = Yj1 , . . . , Xik = Yjk ,where 1 � i1 < � � � < ik � n and 1 � j1 < � � � < jk � n}.18



The behavior of EZ has been investigated in many papers. It is knownthat E[Z]/n onverges to some number γ, whose value is unknown. Itis onjetured to be 2/(1 +
p
2), and it is known to fall between 0.75796and 0.83763. Here we are onerned with the onentration of Z. A mo-ment's thought reveals that hanging one bit an't hange the length of thelongest ommon subsequene by more than one, so Z satis�es the boundeddi�erenes property with ci = 1. Consequently,Var{Z} � n,(see Steele [74℄). Thus, by Chebyshev's inequality, with large probability,

Z is within a onstant times pn of its expeted value. In other words, itis strongly onentrated around the mean, whih means that results aboutEZ really tell us about the behavior of the longest ommon subsequeneof two random strings.Example. uniform deviations. One of the entral quantities of sta-tistial learning theory and empirial proess theory is the following: let
X1, . . . , Xn be i.i.d. random variables taking their values in some set X , andlet A be a olletion of subsets of X . Let µ denote the distribution of X1,that is, µ(A) = P{X1 2 A}, and let µn denote the empirial distribution:

µn(A) =
1

n

n∑

i=1

1{Xi2A} .The quantity of interest is
Z = sup

A2A |µn(A) − µ(A)|.If limn→∞ EZ = 0 for every distribution of the Xi's, then A is alled auniform Glivenko-Cantelli lass, and Vapnik and Chervonenkis [82℄ gave abeautiful ombinatorial haraterization of suh lasses. But regardless ofwhat A is, by hanging one Xi, Z an hange by at most 1/n, so regardlessof the behavior of EZ, we always haveVar(Z) � 1

2n
.19



For more information on the behavior of Z and its role in learning theorysee, for example, Devroye, Györ�, and Lugosi [28℄, Vapnik [81℄, van derVaart and Wellner [79℄, Dudley [31℄.Next we show how a loser look at the Efron-Stein inequality implies asigni�antly better bound for the variane of Z. We do this in a slightlymore general framework of empirial proesses. Let F be a lass of real-valued funtions (no boundedness is assumed!) and de�ne Z = g(X1, . . . , Xn) =supf2F ∑n

j=1 f(Xj). Observe that, by symmetry, the Efron-Stein inequalitymay be rewritten asVar(Z) � 1

2

n∑

i=1

E h(Z− Z 0i)2
i

=

n∑

i=1

E h(Z− Z 0i)21Z0
i
<Z

i
.Let f� 2 F denote the (random) funtion whih ahieves the supremum inthe de�nition of Z, that is, Z =

∑n

j=1 f
�(Xj). Then learly,

(Z− Z 0i)21Z0
i
<Z � (f�(Xi) − f�(X 0i))2and therefore Var(Z) � E 24sup

f2F n∑

i=1

(f(Xi) − f(X 0i))2

35� E 24sup
f2F n∑

i=1

�
2f(Xi)

2 + 2f(X 0i)2
�35� 4E 24sup

f2F n∑

i=1

f(Xi)
2

35 .For funtions f 2 F are taking values in the interval [−1, 1], then from justthe bounded di�erenes property we derived Var(Z) � 2n. The new boundmay be a signi�ant improvement whenever the maximum of the varianes
∑n

i=1 f(Xi)
2 of the funtions in F is small. More importantly, in derivingthe new bound we have not assumed any boundedness of the funtions f.The exponential tail inequality due to Talagrand [77℄ extends this varianeinequality, and is one of the most important reent results of the theoryof empirial proesses, see also Ledoux [46℄, Massart [57℄, Rio [69℄, andBousquet [16℄. 20



Example. first passage time in oriented perolation. Consider adireted graph suh that a weight Xi is assigned to eah edge ei suh thatthe Xi are nonnegative independent random variables with seond momentEX2
i = σ2. Let v1 and v2 be �xed verties of the graph. We are interestedin the total weight of the path from v1 to v2 with minimum weight. Thus,

Z = min
P

∑

ei2P

Xiwhere the minimum is taken over all paths P from v1 to v2. Denote theoptimal path by P�. By replaing Xi with X 0i, the total minimum weightan only inrease if the edge ei is on P�, and therefore
(Zi − Z 0i)21Z0

i
>Z � (X 0i − Xi)

21ei2P� � X 0i21ei2P� .Thus, Var(Z) � E∑

i

X 0i21ei2P� = σ2E∑

i

1ei2P� � σ2Lwhere L is the length of the longest path between v1 and v2.Example. minimum of the empirial loss. Conentration inequalitieshave been used as a key tool in reent developments of model seletionmethods in statistial learning theory. For the bakground we refer tothe the reent work of Kolthinskii Panhenko [43℄, Massart [58℄, Bartlett,Bouheron, and Lugosi [5℄, Lugosi and Wegkamp [52℄, Bousquet [17℄.Let F denote a lass of {0, 1}-valued funtions on some spae X . Forsimpliity of the exposition we assume that F is �nite. The results remaintrue for general lasses as long as the measurability issues are taken areof. Given an i.i.d. sample Dn = (hXi, Yii)i�n of n pairs of random variableshXi, Yii taking values in X � {0, 1}, for eah f 2 F we de�ne the empirialloss
Ln(f) =

1

n

n∑

i=1

ℓ(f(Xi), Yi)where the loss funtion ℓ is de�ned on {0, 1}2 by
ℓ(y, y 0) = 1y6=y0 .21



In nonparametri lassi�ation and learning theory it is ommon to seletan element of F by minimizing the empirial loss. The quantity of interestin this setion is the minimal empirial lossbL = inf
f2F Ln(f).Corollary 1 immediately implies that Var(bL) � 1/(2n). However, a moreareful appliation of the Efron-Stein inequality reveals that bLmay be muhmore onentrated than predited by this simple inequality. Getting tightresults for the �utuations of bL provides better insight into the alibrationof penalties in ertain model seletion methods.Let Z = nbL and let Z 0i be de�ned as in Theorem 8, that is,

Z 0i = min
f2F 24∑

j6=i

ℓ(f(Xj), Yj) + ℓ(f(Xi
0), Yi

0)35where hXi
0, Yi

0i is independent of Dn and has the same distribution ashXi, Yii. Now the onvenient form of the Efron-Stein inequality is the fol-lowing: Var(Z) � 1

2

n∑

i=1

E h(Z− Z 0i)2
i

=

n∑

i=1

E h(Z− Z 0i)21Z0
i
>Z

iLet f� denote a (possibly non-unique) minimizer of the empirial risk sothat Z =
∑n

j=1 ℓ(f
�(Xj), Yj). The key observation is that

(Z− Z 0i)21Z0
i
>Z � (ℓ(f�(Xi

0), Yi
0) − ℓ(f�(Xi), Yi))

21Z0
i
>Z

= ℓ(f�(X 0i), Y 0i)1ℓ(f�(Xi),Yi)=0 .Thus,
n∑

i=1

E h(Z− Z 0i)21Z0
i
>Z

i � E ∑

i:ℓ(f�(Xi),Yi)=0

EX0
i
,Y 0

i
[ℓ(f�(X 0i), Y 0i)] � nEL(f�)where EX0

i
,Y 0

i
denotes expetation with respet to the variables X 0i, Y 0i and foreah f 2 F , L(f) = Eℓ(f(X), Y) is the true (expeted) loss of f. Therefore,the Efron-Stein inequality implies thatVar(bL) � EL(f�)

n
.22



This is a signi�ant improvement over the bound 1/(2n) whenever EL(f�)is muh smaller than 1/2. This is very often the ase. For example, wehave
L(f�) = bL− (Ln(f�) − L(f�)) � Z

n
+ sup

f2F (L(f) − Ln(f))so that we obtainVar(bL) � EbL
n

+
E supf2F(L(f) − Ln(f))

n
.In most ases of interest, E supf2F(L(f) − Ln(f)) may be bounded by aonstant (depending on F) times n−1/2 (see, e.g., Lugosi [51℄) and then theseond term on the right-hand side is of the order of n−3/2. For exponentialonentration inequalities for bL we refer to Bouheron, Lugosi, and Massart[15℄.Example. kernel density estimation. Let X1, . . . , Xn be i.i.d. samplesdrawn aording to some (unknown) density f on the real line. The densityis estimated by the kernel estimate

fn(x) =
1

nh

n∑

i=1

K

 
x− Xi

h

!
,where h > 0 is a smoothing parameter, and K is a nonnegative funtionwith ∫

K = 1. The performane of the estimate is measured by the L1 error
Z = g(X1, . . . , Xn) =

∫

|f(x) − fn(x)|dx.It is easy to see that
|g(x1, . . . , xn) − g(x1, . . . , x

0
i, . . . , xn)| � 1

nh

∫ �����K�x− xi

h

�
− K

 
x− x 0i
h

!�����dx� 2

n
,so without further work we getVar(Z) � 2

n
.23



It is known that for every f, pnEg → ∞ (see Devroye and Györ� [27℄)whih implies, by Chebyshev's inequality, that for every ǫ > 0P{����� ZEZ − 1

����� � ǫ} = P {|Z−EZ| � ǫEZ} � Var(Z)

ǫ2(EZ)2
→ 0as n → ∞. That is, Z/EZ → 0 in probability, or in other words, Z isrelatively stable. This means that the random L1-error behaves like itsexpeted value. This result is due to Devroye [25℄, [26℄. For more on thebehavior of the L1 error of the kernel density estimate we refer to Devroyeand Györ� [27℄, Devroye and Lugosi [29℄.4.2 Self-bounding funtionsAnother simple property whih is satis�ed for many important examples isthe so-alled self-bounding property. We say that a nonnegative funtion

g : Xn → R has the self-bounding property if there exist funtions gi :Xn−1 → R suh that for all x1, . . . , xn 2 X and all i = 1, . . . , n,
0 � g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn) � 1and also

n∑

i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn)) � g(x1, . . . , xn) .Conentration properties for suh funtions have been studied by Bouheron,Lugosi, and Massart [14℄, Rio [69℄, and Bousquet [16℄. For self-boundingfuntions we learly have
n∑

i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn))
2 � g(x1, . . . , xn) .and therefore Theorem 9 impliesCorollary 2 If g has the self-bounding property, thenVar(Z) � EZ .24



Next we mention some appliations of this simple orollary. It turnsout that in many ases the obtained bound is a signi�ant improvementover what we would obtain by using simply Corollary 1.Remark. relative stability. Bounding the variane of Z by its ex-peted value implies, in many ases, the relative stability of Z. A se-quene of nonnegative random variables (Zn) is said to be relatively stableif Zn/EZn → 1 in probability. This property guarantees that the random�utuations of Zn around its expetation are of negligible size when om-pared to the expetation, and therefore most information about the sizeof Zn is given by EZn. If Zn has the self-bounding property, then, byChebyshev's inequality, for all ǫ > 0,P{����� ZnEZn

− 1

����� > ǫ} � Var(Zn)

ǫ2(EZn)2
� 1

ǫ2EZn

.Thus, for relative stability, it su�es to have EZn → ∞.Example. empirial proesses. A typial example of self-boundingfuntions is the supremum of nonnegative empirial proesses. Let Fbe a lass of funtions taking values in the interval [0, 1] and onsider
Z = g(X1, . . . , Xn) = supf2F ∑n

j=1 f(Xj). (A speial ase of this is men-tioned above in the example of uniform deviations.) De�ning gi = g 0for i = 1, . . . , n with g 0(x1, . . . , xn−1) = supf2F ∑n−1

j=1 f(Xj) (so that Zi =supf2F ∑n
j=1

j6=i
f(Xj)) and letting f� 2 F be a funtion for whih Z =

∑n

j=1 f
�(Xj),one obviously has

0 � Z− Zi � f�(Xi) � 1and therefore
n∑

i=1

(Z− Zi) � n∑

i=1

f�(Xi) = Z.(Here we have assumed that the supremum is always ahieved. The mod-i�ation of the argument for the general ase is straightforward.) Thus,by Corollary 2 we obtain Var(Z) � EZ. Note that Corollary 1 impliesVar(Z) � n/2. In some important appliations EZ may be signi�antlysmaller than n/2 and the improvement is essential.25



Example. rademaher averages. A less trivial example for self-bounding funtions is the one of Rademaher averages. Let F be a lass offuntions with values in [−1, 1]. If σ1, . . . , σn denote independent symmet-ri {−1, 1}-valued random variables, independent of the Xi's (the so-alledRademaher random variables), then we de�ne the onditional Rademaheraverage as
Z = E 24sup

f2F n∑

j=1

σjf(Xj)|X
n
1

35 .(Thus, the expeted value is taken with respet to the Rademaher variablesand Z is a funtion of the Xi's.) Quantities like Z have been known tomeasure e�etively the omplexity of model lasses in statistial learningtheory, see, for example, Kolthinskii [42℄, Bartlett, Bouheron, and Lugosi[5℄, Bartlett and Mendelson [7℄, Bartlett, Bousquet, and Mendelson [6℄. Itis immediate that Z has the bounded di�erenes property and Corollary 1implies Var(Z) � n/2. However, this bound may be improved by observingthat Z also has the self-bounding property, and therefore Var(Z) � EZ.Indeed, de�ning
Zi = E 26664supf2F n∑

j=1

j6=i

σjf(Xj)|X
n
1

37775it is easy to see that 0 � Z−Zi � 1 and ∑n

i=1(Z−Zi) � Z (the details areleft as an exerise). The improvement provided by Lemma 2 is essentialsine it is well-known in empirial proess theory and statistial learningtheory that in many ases when F is a relatively small lass of funtions, EZmay be bounded by something like Cn1/2 where the onstant C depends onthe lass F , see, e.g., Vapnik [81℄, van der Vaart and Wellner [79℄, Dudley[31℄.Con�guration funtionsAn important lass of funtions satisfying the self-bounding property on-sists of the so-alled on�guration funtions de�ned by Talagrand [76, se-tion 7℄. Our de�nition, taken from [14℄ is a slight modi�ation of Tala-grand's. 26



Assume that we have a property P de�ned over the union of �niteproduts of a set X , that is, a sequene of sets P1 � X , P2 � X�X , . . . , Pn �Xn. We say that (x1, . . . xm) 2 Xm satis�es the property P if (x1, . . . xm) 2
Pm. We assume that P is hereditary in the sense that if (x1, . . . xm) satis�es
P then so does any subsequene (xi1 , . . . xik) of (x1, . . . xm). The funtion
gn that maps any tuple (x1, . . . xn) to the size of a largest subsequenesatisfying P is the on�guration funtion assoiated with property P.Corollary 2 implies the following result:Corollary 3 Let gn be a on�guration funtion, and let Z = gn(X1, . . . , Xn),where X1, . . . , Xn are independent random variables. ThenVar(Z) � EZ .Proof. By Corollary 2 it su�es to show that any on�guration funtionis self bounding. Let Zi = gn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). The ondition
0 � Z−Zi � 1 is trivially satis�ed. On the other hand, assume that Z = kand let {Xi1 , . . . , Xik } � {X1, . . . , Xn} be a subsequene of ardinality k suhthat fk(Xi1 , . . . , Xik) = k. (Note that by the de�nition of a on�gurationfuntion suh a subsequene exists.) Clearly, if the index i is suh that
i /2 {i1, . . . , ik} then Z = Zi, and therefore

n∑

i=1

(Z− Zi) � Zis also satis�ed, whih onludes the proof. 2To illustrate the fat that on�guration funtions appear rather natu-rally in various appliations, we desribe some examples originating fromdi�erent �elds.Example. number of distint values in a disrete sample. Let
X1, . . . , Xn be independent, identially distributed random variables takingtheir values on the set of positive integers suh that P{X1 = k} = pk, and let
Z denote the number of distint values taken by these n random variables.Then we may write

Z =

n∑

i=1

1{Xi 6=X1,...,Xi 6=Xi−1},27



so the expeted value of Z may be omputed easily:EZ =

n∑

i=1

∞∑

j=1

(1− pj)
i−1pj.It is easy to see that E[Z]/n → 0 as n → ∞ (see Exerise 13). But howonentrated is the distribution of Z? Clearly, Z satis�es the boundeddi�erenes property with ci = 1, so Corollary 1 implies Var(Z) � n/2 so

Z/n → 0 in probability by Chebyshev's inequality. On the other hand, itis obvious that Z is a on�guration funtion assoiated to the property of�distintness�, and by Corollary 3 we haveVar(Z) � EZwhih is a signi�ant improvement sine EZ = o(n).Example. v dimension. One of the entral quantities in statistiallearning theory is the Vapnik-Chervonenkis dimension, see Vapnik andChervonenkis [82, 83℄, Blumer, Ehrenfeuht, Haussler, and Warmuth [11℄,Devroye, Györ�, and Lugosi [28℄, Anthony and Bartlett [3℄, Vapnik [81℄,et.LetA be an arbitrary olletion of subsets of X , and let xn
1 = (x1, . . . , xn)be a vetor of n points of X . De�ne the trae of A on xn

1 bytr(xn
1) = {A \ {x1, . . . , xn} : A 2 A} .The shatter oe�ient, (or Vapnik-Chervonenkis growth funtion) of A in

xn
1 is T(xn

1) = |tr(xn
1)|, the size of the trae. T(xn

1) is the number of di�erentsubsets of the n-point set {x1, . . . , xn} generated by interseting it withelements of A. A subset {xi1 , . . . , xik } of {x1, . . . , xn} is said to be shatteredif 2k = T(xi1 , . . . , xik). The v dimensionD(xn
1) of A (with respet to xn

1) isthe ardinality k of the largest shattered subset of xn
1 . From the de�nitionit is obvious that gn(xn

1) = D(xn
1) is a on�guration funtion (assoiated tothe property of �shatteredness�, and therefore if X1, . . . , Xn are independentrandom variables, then Var(D(Xn

1)) � ED(Xn
1) .28



Example. inreasing subsequenes. Consider a vetor xn
1 = (x1, . . . , xn)of n di�erent numbers in [0, 1]. The positive integers i1 < i2 < � � � < imform an inreasing subsequene if xi1 < xi2 < � � � < xim (where i1 � 1and im � n). Let L(xn

1) denote the length of a longest inreasing subse-quene. gn(xn
1) = L(xn

1) is a learly a on�guration funtion (assoiatedwith the �inreasing sequene� property), and therefore if X1, . . . , Xn areindependent random variables suh that they are di�erent with probabilityone (it su�es if every Xi has an absolutely ontinuous distribution) thenVar(L(Xn
1)) � EL(Xn

1). If the Xi's are uniformly distributed in [0, 1] then itis known that EL(Xn
1) ∼ 2

p
n, see Logan and Shepp [49℄, Groeneboom [35℄.The obtained bound for the variane is apparently loose. A di�ult resultof Baik, Deift, and Johansson [4℄ implies that Var(L(Xn

1)) = O(n1/3).For early work on the onentration on L(X) we refer to Frieze [34℄,Bollobás and Brightwell [13℄, and Talagrand [76℄.ExerisesExerise 11 Assume that the random variables X1, . . . , Xn are indepen-dent and binary {0,1}-valued with P{Xi = 1} = pi and that g has thebounded di�erenes property with onstants c1, . . . , cn. Show thatVar(Z) � n∑

i=1

c2
ipi(1− pi).Exerise 12 Complete the proof of the fat that the onditional Rademaheraverage has the self-bounding property.Exerise 13 Consider the example of the number of distint values in adisrete sample desribed in the text. Show that E[Z]/n → 0 as n → ∞.Calulate expliitely Var(Z) and ompare it with the upper bound obtainedby Theorem 9.Exerise 14 Let Z be the number of triangles in a random graph G(n, p).Calulate the variane of Z and ompare it with what you get by using theEfron-Stein inequality to estimate it. (In the G(n, p) model for randomgraphs, the random graph G = (V, E) with vertex set V (|V | = n) and edge29



set E is generated by starting from the omplete graph with n verties anddeleting eah edge independently from the others with probability 1 − p.A triangle is a omplete three-vertex subgraph.)

30



5 The entropy methodIn the previous setion we saw that the Efron-Stein inequality serves as apowerful tool for bounding the variane of general funtions of indepen-dent random variables. Then, via Chebyshev's inequality, one may easilybound the tail probabilities of suh funtions. However, just as in the aseof sums of independent random variables, tail bounds based on inequalitiesfor the variane are often not satisfatory, and essential improvements arepossible. The purpose of this setion is to present a methodology whihallows one to obtain exponential tail inequalities in many ases. The pur-suit of suh inequalities has been an important topis in probability theoryin the last few deades. Originally, martingale methods dominated the re-searh (see, e.g., MDiarmid [59℄, [60℄, Rhee and Talagrand [68℄, Shamirand Spener [71℄) but independently information-theoreti methods werealso used with suess (see Alhswede, Gás, and Körner [1℄, Marton [53℄,[54℄,[55℄, Dembo [24℄, Massart [56℄, Rio [69℄, and Samson [70℄). Talagrand'sindution method [78℄,[76℄,[77℄ aused an important breakthrough both inthe theory and appliations of exponential onentration inequalities. Inthis setion we fous on so-alled �entropy method�, based on logarithmiSobolev inequalities developed by Ledoux [46℄,[45℄, see also Bobkov andLedoux [12℄, Massart [57℄, Rio [69℄, Bouheron, Lugosi, and Massart [14℄,[15℄, and Bousquet [16℄. This method makes it possible to derive exponen-tial analogues of the Efron-Stein inequality perhaps the simplest way.The method is based on an appropriate modi�ation of the �tensoriza-tion� inequality Theorem 7. In order to prove this modi�ation, we need toreall some of the basi notions of information theory. To keep the materialat an elementary level, we prove the modi�ed tensorization inequality fordisrete random variables only. The extension to arbitrary distributions isstraightforward.5.1 Basi information theoryIn this setion we summarize some basi properties of the entropy of adisrete-valued random variable. For a good introdutory book on infor-mation theory we refer to Cover and Thomas [21℄.31



Let X be a random variable taking values in the ountable set X withdistribution P{X = x} = p(x), x 2 X . The entropy of X is de�ned by
H(X) = E[− logp(X)] = −

∑

x2X p(x) logp(x)(where log denotes natural logarithm and 0 log 0 = 0). If X, Y is a pair ofdisrete random variables taking values in X � Y then the joint entropy
H(X, Y) of X and Y is de�ned as the entropy of the pair (X, Y). The ondi-tional entropy H(X|Y) is de�ned as

H(X|Y) = H(X, Y) −H(Y) .Observe that if we write p(x, y) = P{X = x, Y = y} and p(x|y) = P{X =

x|Y = y} then
H(X|Y) = −

∑

x2X ,y2Y p(x, y) logp(x|y)from whih we see that H(X|Y) � 0. It is also easy to see that the de�ningidentity of the onditional entropy remains true onditionally, that is, forany three (disrete) random variables X, Y, Z,
H(X, Y|Z) = H(Y|Z) +H(X|Y, Z) .(Just add H(Z) to both sides and use the de�nition of the onditionalentropy.) A repeated appliation of this yields the hain rule for entropy:for arbitrary disrete random variables X1, . . . , Xn,

H(X1, . . . , Xn) = H(X1)+H(X2|X1)+H(X3|X1, X2)+� � �+H(Xn|X1, . . . , Xn−1) .Let P and Q be two probability distributions over a ountable set X withprobability mass funtions p and q. Then the Kullbak-Leibler divergeneor relative entropy of P and Q is
D(PkQ) =

∑

x2X p(x) log p(x)q(x)
.Sine log x � x − 1,

D(PkQ) = −
∑

x2X p(x) log q(x)p(x)
� −

∑

x2X p(x) q(x)p(x)
− 1

!
= 0 ,32



so that the relative entropy is always nonnegative, and equals zero if andonly if P = Q. This simple fat has some interesting onsequenes. Forexample, if X is a �nite set with N elements and X is a random variablewith distribution P and we take Q to be the uniform distribution over Xthen D(PkQ) = logN−H(X) and therefore the entropy of X never exeedsthe logarithm of the ardinality of its range.Consider a pair of random variables X, Y with joint distribution PX,Y andmarginal distributions PX and PY. Noting that D(PX,YkPX� PY) = H(X) −

H(X|Y), the nonnegativity of the relative entropy implies that H(X) �
H(X|Y), that is, onditioning redues entropy. It is similarly easy to seethat this fat remains true for onditional entropies as well, that is,

H(X|Y) � H(X|Y, Z) .Now we may prove the following inequality of Han [38℄Theorem 10 han's inequality. Let X1, . . . , Xn be disrete randomvariables. Then
H(X1, . . . , Xn) � 1

n− 1

n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn)Proof. For any i = 1, . . . , n, by the de�nition of the onditional entropyand the fat that onditioning redues entropy,
H(X1, . . . , Xn)

= H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)� H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1) i = 1, . . . , n .Summing these n inequalities and using the hain rule for entropy, we get
nH(X1, . . . , Xn) � n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(X1, . . . , Xn)whih is what we wanted to prove. 2We �nish this setion by an inequality whih may be regarded as aversion of Han's inequality for relative entropies. As it was pointed out by33



Massart [58℄, this inequality may be used to prove the key tensorizationinequality of the next setion.To this end, let X be a ountable set, and let P and Q be probabil-ity distributions on Xn suh that P = P1 � � � � � Pn is a produt mea-sure. We denote the elements of Xn by xn
1 = (x1, . . . , xn) and write

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn) for the (n − 1)-vetor obtained by leav-ing out the i-th omponent of xn
1 . Denote by Q(i) and P(i) the marginaldistributions of x(i) aording to Q and P, that is,

Q(i)(x(i)) =
∑

x2X Q(x1, . . . , xi−1, x, xi+1, . . . , xn)and
P(i)(x(i)) =

∑

x2X P(x1, . . . , xi−1, x, xi+1, . . . , xn)

=
∑

x2X P1(x1) � � �Pi−1(xi−1)Pi(x)Pi+1(xi+1) � � �Pn(xn) .Then we have the following.Theorem 11 han's inequality for relative entropies.
D(QkP) � 1

n − 1

n∑

i=1

D(Q(i)kP(i))or equivalently,
D(QkP) � n∑

i=1

�
D(QkP) −D(Q(i)kP(i))

�
.Proof. The statement is a straightforward onsequene of Han's inequality.Indeed, Han's inequality states that

∑

xn
1
2Xn

Q(xn
1) logQ(xn

1) � 1

n− 1

n∑

i=1

∑

x(i)2Xn−1

Q(i)(x(i)) logQ(i)(x(i)) .Sine
D(QkP) =

∑

xn
1
2Xn

Q(xn
1) logQ(xn

1) −
∑

xn
1
2Xn

Q(xn
1) logP(xn

1)34



and
D(Q(i)kP(i)) =

∑

x(i)2Xn−1

�
Q(i)(x(i)) logQ(i)(x(i)) −Q(i)(x(i)) logP(i)(x(i))

�
,it su�es to show that

∑

xn
1
2Xn

Q(xn
1) logP(xn

1) =
1

n− 1

n∑

i=1

∑

x(i)2Xn−1

Q(i)(x(i)) logP(i)(x(i)) .This may be seen easily by noting that by the produt property of P, wehave P(xn
1) = P(i)(x(i))Pi(xi) for all i, and also P(xn

1) =
∏n

i=1Pi(xi), andtherefore
∑

xn
1
2Xn

Q(xn
1) logP(xn

1) =
1

n

n∑

i=1

∑

xn
1
2Xn

Q(xn
1)
�logP(i)(x(i)) + logPi(xi)

�
=

1

n

n∑

i=1

∑

xn
1
2Xn

Q(xn
1) logP(i)(x(i)) +

1

n

∑

xn
1
2Xn

Q(xn
1) logP(xn

1) .Rearranging, we obtain
∑

xn
1
2Xn

Q(xn
1) logP(xn

1) =
1

n − 1

n∑

i=1

∑

xn
1
2Xn

Q(xn
1) logP(i)(x(i))

=
1

n − 1

n∑

i=1

∑

x(i)2Xn−1

Q(i)(x(i)) logP(i)(x(i))where we used the de�ning property of Q(i). 25.2 Tensorization of the entropyWe are now prepared to prove the main exponential onentration in-equalities of these notes. Just as in Setion 4, we let X1, . . . , Xn be in-dependent random variables, and investigate onentration properties of
Z = g(X1, . . . , Xn). The basis of Ledoux's entropy method is a powerfulextension of Theorem 7. Note that Theorem 7 may be rewritten asVar(Z) � n∑

i=1

E hEi(Z
2) − (Ei(Z))2

i35



or, putting φ(x) = x2,Eφ(Z) − φ(EZ) � n∑

i=1

E [Eiφ(Z) − φ(Ei(Z))] .As it turns out, this inequality remains true for a large lass of onvexfuntions φ, see Bekner [8℄, Lataªa and Oleszkiewiz [44℄, Ledoux [46℄,and Chafaï [18℄. The ase of interest in our ase is when φ(x) = x log x. Inthis ase, as seen in the proof below, the left-hand side of the inequalitymay be written as the relative entropy between the distribution induedby Z on Xn and the distribution of Xn
1 . Hene the name �tensorizationinequality of the entropy�, (see, e.g., Ledoux [46℄).Theorem 12 Let φ(x) = x log x for x > 0. Let X1 . . . , Xn be independentrandom variables taking values in X and let f be a positive-valuedfuntion on Xn. Letting Y = f(X1, . . . , Xn), we haveEφ(Y) − φ(EY) � n∑

i=1

E [Eiφ(Y) − φ(Ei(Y))] .Proof. We only prove the statement for disrete random variables X1 . . . , Xn.The extension to the general ase is tehnial but straightforward. The the-orem is a diret onsequene of Han's inequality for relative entropies. Firstnote that if the inequality is true for a random variable Y then it is also truefor cY where c is a positive onstant. Hene we may assume that EY = 1.Now de�ne the probability measure Q on Xn by
Q(xn

1) = f(xn
1)P(xn

1)where P denotes the distribution of Xn
1 = (X1, . . . , Xn). Then learly,Eφ(Y) −φ(EY) = E[Y log Y] = D(QkP)whih, by Theorem 11, does not exeed ∑n

i=1

�
D(QkP) −D(Q(i)kP(i))

�.However, straightforward alulation shows that
n∑

i=1

�
D(QkP) −D(Q(i)kP(i))

�
=

n∑

i=1

E [Eiφ(Y) −φ(Ei(Y))]36



and the statement follows. 2The main idea in Ledoux's entropy method for proving onentrationinequalities is to apply Theorem 12 to the positive random variable Y = esZ.Then, denoting the moment generating funtion of Z by F(s) = E[esZ], theleft-hand side of the inequality in Theorem 12 beomes
sE hZesZ

i
−E hesZ

i logE hesZ
i

= sF 0(s) − F(s) log F(s) .Our strategy, then is to derive upper bounds for the derivative of F(s) andderive tail bounds via Cherno�'s bounding. To do this in a onvenient way,we need some further bounds for the right-hand side of the inequality inTheorem 12. This is the purpose of the next setion.5.3 Logarithmi Sobolev inequalitiesReall from Setion 4 that we denote Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)where gi is some funtion over Xn−1. Below we further develop the right-hand side of Theorem 12 to obtain important inequalities whih serve asthe basis in deriving exponential onentration inequalities. These inequal-ities are losely related to the so-alled logarithmi Sobolev inequalities ofanalysis, see Ledoux [46, 47, 48℄, Massart [57℄.First we need the following tehnial lemma:Lemma 2 Let Y denote a positive random variable. Then for any
u > 0, E[Y log Y] − (EY) log(EY) � E[Y log Y − Y logu− (Y − u)] .Proof. As for any x > 0, log x � x− 1, we havelog uEY � uEY − 1 ,hene EY log uEY � u−EYwhih is equivalent to the statement. 237



Theorem 13 a logarithmi sobolev inequality. Denote ψ(x) =

ex − x − 1. Then
sE hZesZ

i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZψ (−s(Z− Zi))
i
.Proof. We bound eah term on the right-hand side of Theorem 12. Notethat Lemma 2 implies that if Yi is a positive funtion of X1, . . . , Xi−1, Xi+1, . . . , Xn,then Ei(Y log Y) −Ei(Y) logEi(Y) � Ei [Y(logY − log Yi) − (Y − Yi)]Applying the above inequality to the variables Y = esZ and Yi = esZi , onegets Ei(Y log Y) −Ei(Y) logEi(Y) � Ei

h
esZψ(−s(Z− Zi))

iand the proof is ompleted by Theorem 12. 2The following symmetrized version, due to Massart [57℄, will also beuseful. Reall that Z 0i = g(X1, . . . , X
0
i, . . . , Xn) where the X 0i are independentopies of the Xi.Theorem 14 symmetrized logarithmi sobolev inequality. If ψis de�ned as in Theorem 13 then

sE hZesZ
i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZψ (−s(Z− Z 0i))i .Moreover, denote τ(x) = x(ex − 1). Then for all s 2 R,
sE hZesZ

i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZτ(−s(Z− Z 0i))1Z>Z0
i

i
,

sE hZesZ
i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZτ(s(Z 0i − Z))1Z<Z0
i

i
.
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Proof. The �rst inequality is proved exatly as Theorem 13, just by notingthat, just like Zi, Z 0i is also independent of Xi. To prove the seond andthird inequalities, write
esZψ (−s(Z− Z 0i)) = esZψ (−s(Z− Z 0i))1Z>Z0

i
+ esZψ (s(Z 0i − Z))1Z<Z0

i
.By symmetry, the onditional expetation of the seond term may be writ-ten asEi

h
esZψ (s(Z 0i − Z))1Z<Z0

i

i
= Ei

h
esZ0

iψ (s(Z− Z 0i))1Z>Z0
i

i
= Ei

h
esZe−s(Z−Z0

i
)ψ (s(Z− Z 0i))1Z>Z0

i

i
.Summarizing, we haveEi

h
esZψ (−s(Z− Z 0i))i

= Ei

h�
ψ (−s(Z− Z 0i)) + e−s(Z−Z0

i
)ψ (s(Z− Z 0i))� esZ1Z>Z0

i

i
.The seond inequality of the theorem follows simply by noting that ψ(x)+

exψ(−x) = x(ex − 1) = τ(x). The last inequality follows similarly. 25.4 First example: bounded di�erenes and moreThe purpose of this setion is to illustrate how the logarithmi Sobolevinequalities shown in the previous setion may be used to obtain powerfulexponential onentration inequalities. The �rst result is rather easy toobtain, yet it turns out to be very useful. Also, its proof is prototypial inthe sense that it shows, in a transparent way, the main ideas.Theorem 15 Assume that there exists a positive onstant C suh that,almost surely,
n∑

i=1

(Z− Z 0i)21Z>Z0
i
� C .Then for all t > 0, P [Z−EZ > t] � e−t2/4C .39



Proof. Observe that for x > 0, τ(−x) � x2, and therefore, for any s > 0,Theorem 14 implies
sE hZesZ

i
−E hesZ

i logE hesZ
i � E 24esZ

n∑

i=1

s2(Z− Z 0i)21Z>Z0
i

35� s2CE hesZ
i
,where we used the assumption of the theorem. Now denoting the momentgenerating funtion of Z by F(s) = E hesZ

i, the above inequality may bere-written as
sF 0(s) − F(s) log F(s) � Cs2F(s) .After dividing both sides by s2F(s), we observe that the left-hand side isjust the derivative of H(s) = s−1 log F(s), that is, we obtain the inequality

H 0(s) � C .By l'Hospital's rule we note that lims→0H(s) = F 0(0)/F(0) = EZ, so byintegrating the above inequality, we get H(s) � EZ+sC, or in other words,
F(s) � esEZ+s2C .Now by Markov's inequality,P [Z > EZ+ t] � F(s)e−sEZ−st � es2C−st .Choosing s = t/2C, the upper bound beomes e−t2/4C. Replae Z by −Zto obtain the same upper bound for P [Z < EZ− t]. 2It is lear from the proof that under the ondition
n∑

i=1

(Z− Z 0i)2 � Cone has the two-sided inequalityP [|Z−EZ| > t] � 2e−t2/4C .An immediate orollary of this is a subgaussian tail inequality for funtionsof bounded di�erenes. 40



Corollary 4 bounded differenes inequality. Assume the funtion
g satis�es the bounded di�erenes assumption with onstants c1, . . . , cn,then P [|Z−EZ| > t] � 2e−t2/4Cwhere C =

∑n

i=1 c
2
i.We remark here that the onstant appearing in this orollary may beimproved. Indeed, using the martingale method, MDiarmid [59℄ showedthat under the onditions of Corollary 4,P [|Z−EZ| > t] � 2e−2t2/C(see the exerises). Thus, we have been able to extend Corollary 1 to anexponential onentration inequality. Note that by ombining the varianebound of Corollary 1 with Chebyshev's inequality, we only obtainedP [|Z−EZ| > t] � C

2t2and therefore the improvement is essential. Thus the appliations of Corol-lary 1 in all the examples shown in Setion 4.1 are now improved in anessential way without further work.Example. hoeffding's inequality in hilbert spae. As a simpleillustration of the power of the bounded di�erenes inequality, we derivea Hoe�ding-type inequality for sums of random variables taking values ina Hilbert spae. In partiular, we show that if X1, . . . , Xn are independentzero-mean random variables taking values in a separable Hilbert spae suhthat kXik � ci/2 with probability one, then for all t � 2pC,P 24 n∑

i=1

Xi

 > t35 � e−t2/2Cwhere C =
∑n

i=1 c
2
i. This follows simply by observing that, by the triangleinequality, Z = k∑n

i=1Xik satis�es the bounded di�erenes property with
41



onstants ci, and thereforeP 24 n∑

i=1

Xi

 > t35 = P 24 n∑

i=1

Xi

−E  n∑

i=1

Xi

 > t−E  n∑

i=1

Xi

35� exp0�−
2 (t−E k∑n

i=1Xik)2

C

1A .The proof is ompleted by observing that, by independene,E  n∑

i=1

Xi

 � vuuutE  n∑

i=1

Xi

2

=

vuuut n∑

i=1

E kXik2 � C .However, Theorem 15 is muh stronger than Corollary 4. To understandwhy, just observe that the onditions of Theorem 15 do not require that ghas bounded di�erenes. All that's required is thatsup
x1,...,xn,

x0
1
,...,x0

n2X n∑

i=1

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
0
i, xi+1, . . . , xn)|2 � n∑

i=1

c2
i ,an obviously muh milder requirement. The next appliation is a goodexample in whih the bounded di�erenes inequality does not work, yetTheorem 15 gives a sharp bound.Example. the largest eigenvalue of a random symmetri matrix.Here we derive, using Theorem 15, a result of Alon, Krivelevih, and Vu[2℄. Let A be a symmetri real matrix whose entries Xi,j, 1 � i � j � n areindependent random variables with absolute value bounded by 1. If Z = λ1is the largest eigenvalue of A, thenP [Z > EZ+ t] � e−t2/16 .The property of the largest eigenvalue we need is that if v = (v1, . . . , vn) 2Rn is an eigenvetor orresponding to the largest eigenvalue λ1 with kvk =

1, then
λ1 = vTAv = sup

u:kuk=1

uTAu .42



To use Theorem 15, onsider the symmetri matrix A 0
i,j obtained by repla-ing Xi,j in A by the independent opy X 0i,j, while keeping all other variables�xed. Let Z 0i,j denote the largest eigenvalue of the obtained matrix. Thenby the above-mentioned property of the largest eigenvalue,

(Z− Z 0i,j)1Z>Z0
i,j

� �
vTAv− vTA 0

i,jv
�1Z>Z0

i,j

=
�
vT(A−A 0

i,jv
�1Z>Z0

i,j
=
�
vivj(Xi,j − X 0i,j)�+� 2|vivj| .Therefore,

∑

1�i�j�n

(Z− Z 0i,j)21Z>Z0
i,j
� ∑

1�i�j�n

4|vivj|
2 � 40� n∑

i=1

v2
i

1A2

= 4 .The result now follows from Theorem 15. Note that by the Efron-Stein in-equality we also have Var(Z) � 4. A similar exponential inequality, thoughwith a somewhat worst onstant in the exponent, an also be derived forthe lower tail. In partiular, Theorem 20 below implies, for t > 0,P [Z < EZ− t] � e−t2/16(e−1) .Also notie that the same proof works for the smallest eigenvalue as well.Alon, Krivelevih, and Vu [2℄ show, with a simple extension of the argu-ment, that if Z is the k-th largest (or k-th smallest) eigenvalue then theupper bounds beomes e−t2/(16k2), though it is not lear whether the fator
k−2 in the exponent is neessary.5.5 Exponential inequalities for self-bounding funtionsIn this setion we prove exponential onentration inequalities for self-bounding funtions disussed in Setion 4.2. Reall that a variant of theEfron-Stein inequality (Theorem 2) implies that for self-bounding funtionsVar(Z) � E(Z) . Based on the logarithmi Sobolev inequality of Theorem13 we may now obtain exponential onentration bounds. The theoremappears in Bouheron, Lugosi, and Massart [14℄ and builds on tehniquesdeveloped by Massart [57℄. 43



Reall the de�nition of following two funtions that we have alreadyseen in Bennett's inequality and in the logarithmi Sobolev inequalitiesabove:
h (u) = (1+ u) log (1+ u) − u (u � −1),and ψ(v) = sup

u�−1

[uv− h(u)] = ev − v− 1 .Theorem 16 Assume that g satis�es the self-bounding property. Thenfor every s 2 R, logE hes(Z−EZ)
i � EZψ(s) .Moreover, for every t > 0,P [Z � EZ+ t] � exp �−EZh� tEZ��and for every 0 < t � EZ,P [Z � EZ− t] � exp �−EZh�−

tEZ��By realling that h(u) � u2/(2+2u/3) for u � 0 (we have already usedthis in the proof of Bernstein's inequality) and observing that h(u) � u2/2for u � 0, we obtain the following immediate orollaries: for every t > 0,P [Z � EZ+ t] � exp "− t2

2EZ+ 2t/3

#and for every 0 < t � EZ,P [Z � EZ− t] � exp "− t2

2EZ# .Proof. We apply Lemma 13. Sine the funtion ψ is onvex with ψ (0) =

0, for any s and any u 2 [0, 1] , ψ(−su) � uψ(−s). Thus, sine Z −

Zi 2 [0, 1], we have that for every s, ψ(−s (Z− Zi)) � (Z− Zi)ψ(−s) andtherefore, Lemma 13 and the ondition ∑n

i=1(Z− Zi) � Z implies that
sE hZesZ

i
−E hesZ

i logE hesZ
i � E 24ψ(−s)esZ

n∑

i=1

(Z− Zi)

35� ψ(−s)E hZesZ
i
.44



Introdue eZ = Z − E [Z] and de�ne, for any s, �F(s) = E heseZi. Then theinequality above beomes
[s− ψ(−s)]

�F0(s)�F(s) − log �F(s) � EZψ(−s) ,whih, writing G(s) = log F(s), implies
(1− e−s)G0 (s) −G (s) � EZψ (−s) .Now observe that the funtion G0 = EZψ is a solution of the ordinarydi�erential equation (1− e−s)G0 (s)−G (s) = EZψ (−s). We want to showthat G � G0. In fat, if G1 = G −G0, then

(1− e−s)G01 (s) −G1 (s) � 0. (3)Hene, de�ning �G(s) = G1 (s) /(es − 1), we have
(1− e−s) (es − 1) �G0(s) � 0.Hene �G0 is non-positive and therefore �G is non-inreasing. Now, sine eZ isentered G01 (0) = 0. Using the fat that s(es−1)−1 tends to 1 as s goes to 0,we onlude that �G(s) tends to 0 as s goes to 0. This shows that �G is non-positive on (0,∞) and non-negative over (−∞, 0), hene G1 is everywherenon-positive, therefore G � G0 and we have proved the �rst inequality ofthe theorem. The proof of inequalities for the tail probabilities may beompleted by Cherno�'s bounding:P [Z−E [Z] � t] � exp "− sup

s>0

(ts−EZψ (s))

#and P [Z−E [Z] � −t] � exp "− sup
s<0

(−ts−EZψ (s))

#
.The proof is now ompleted by using the easy-to-hek (and well-known)relations sup

s>0

[ts−EZψ (s)] = EZh (t/EZ) for t > 0sup
s<0

[−ts−EZψ(s)] = EZh(−t/EZ) for 0 < t � EZ.
245



5.6 Combinatorial entropiesTheorems 2 and 16 provide onentration inequalities for funtions havingthe self-bounding property. In Setion 4.2 several examples of suh fun-tions are disussed. The purpose of this setion is to show a whole newlass of self-bounding funtions that we all ombinatorial entropies.Example. v entropy. In this �rst example we onsider the so-alledVapnik-Chervonenkis (or v) entropy, a quantity losely related to the vdimension disussed in Setion 4.2. Let A be an arbitrary olletion ofsubsets of X , and let xn
1 = (x1, . . . , xn) be a vetor of n points of X . Reallthat the shatter oe�ient is de�ned as the size of the trae of A on xn

1 ,that is,
T(xn

1) = |tr(xn
1)| = |{A \ {x1, . . . , xn} : A 2 A}| .The v entropy is de�ned as the logarithm of the shatter oe�ient, thatis,
h(xn

1) = log2T(x
n
1) .Lemma 3 The v entropy has the self-bounding property.Proof. We need to show that there exists a funtion h 0 of n− 1 variablessuh that for all i = 1, . . . , n, writing x(i) = (x1, . . . , xi−1, xi+1, . . . , xn),

0 � h(xn
1) − h 0(x(i)) � 1 and

n∑

i=1

�
h(xn

1) − h 0(x(i))
� � h(xn

1).We de�ne h 0 the natural way, that is, as the entropy based on the n − 1points in its arguments. Then learly, for any i, h 0(x(i)) � h(xn
1), and thedi�erene annot be more than one. The nontrivial part of the proof isto show the seond property. We do this using Han's inequality (Theorem10).Consider the uniform distribution over the set tr(xn

1). This de�nes arandom vetor Y = (Y1, . . . , Yn) 2 Yn. Then learly,
h(xn

1) = log2 |tr(xn
1)(x)| =

1ln 2H(Y1, . . . , Yn)46



where H(Y1, . . . , Yn) is the (joint) entropy of Y1, . . . , Yn. Sine the uniformdistribution maximizes the entropy, we also have, for all i � n, that
h 0(x(i)) � 1ln 2H(Y1, . . . , Yi−1, Yi+1, . . . , Yn).Sine by Han's inequality

H(Y1, . . . , Yn) � 1

n − 1

n∑

i=1

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn)|,we have
n∑

i=1

�
h(xn

1) − h 0(x(i))
� � h(xn

1)as desired. 2The above lemma, together with Theorems 2 and 15 immediately implythe following:Corollary 5 Let X1, . . . , Xn be independent random variables taking theirvalues in X and let Z = h(Xn
1) denote the random v entropy. ThenVar(Z) � E[Z], for t > 0P [Z � EZ+ t] � exp "− t2

2EZ+ 2t/3

#
,and for every 0 < t � EZ,P [Z � EZ− t] � exp "− t2

2EZ# .Moreover, for the random shatter oe�ient T(Xn
1), we haveE log2 T(X

n
1) � log2ET(Xn

1) � log2eE log2T(X
n
1) .Note that the left-hand side of the last statement follows from Jensen'sinequality, while the right-hand side by taking s = ln 2 in the �rst inequalityof Theorem 16. This last statement shows that the expeted v entropyE log2 T(X

n
1) and the annealed v entropy are tightly onneted, regardless47



of the lass of sets A and the distribution of the Xi's. We note here thatthis fat answers, in a positive way, an open question raised by Vapnik [80,pages 53�54℄: the empirial risk minimization proedure is non-triviallyonsistent and rapidly onvergent if and only if the annealed entropy rate
(1/n) log2E[T(X)] onverges to zero. For the de�nitions and disussion werefer to [80℄.The proof of onentration of the v entropy may be generalized, in astraightforward way, to a lass of funtions we all ombinatorial entropiesde�ned as follows.Let xn

1 = (x1, . . . , xn) be an n-vetor of elements with xi 2 Xi to whihwe assoiate a set tr(xn
1) � Yn of n-vetors whose omponents are elementsof a possibly di�erent set Y. We assume that for eah x 2 Xn and i � n, theset tr(x(i)) = tr(x1, . . . , xi−1, xi+1, . . . , xn) is the projetion of tr(xn

1) alongthe ith oordinate, that is,tr(x(i)) =
{
y(i) = (y1, . . . , yi−1, yi+1, . . . , yn) 2 Yn−1 :9yi 2 Y suh that (y1, . . . , yn) 2 tr(xn

1)
}
.The assoiated ombinatorial entropy is h(xn

1) = logb |tr(xn
1)| where b is anarbitrary positive number.Just like in the ase of v entropy, ombinatorial entropies may beshown to have the self-bounding property. (The details are left as an exer-ise.) Then we immediately obtain the following generalization:Theorem 17 Assume that h(xn

1) = logb |tr(xn
1)| is a ombinatorial en-tropy suh that for all x 2 Xn and i � n,

h(xn
1) − h(x(i)) � 1 .If Xn

1 = (X1, . . . , Xn) is a vetor of n independent random variablestaking values in X , then the random ombinatorial entropy Z = h(Xn
1)satis�es P [Z � E [Z] + t] � exp "− t2

2E[Z] + 2t/3

#
,and P [Z � E [Z] − t] � exp "− t2

2E[Z]

#
.48



Moreover,E [logb |tr(Xn
1)|] � logbE[|tr(Xn

1)|] � b− 1logbE [logb |tr(Xn
1)|] .Example. inreasing subsequenes. Reall the setup of the example ofinreasing subsequenes of Setion 4.2, and let N(xn

1) denote the numberof di�erent inreasing subsequenes of xn
1 . Observe that log2N(xn

1) is aombinatorial entropy. This is easy to see by onsidering Y = {0, 1}, andby assigning, to eah inreasing subsequene i1 < i2 < � � � < im of xn
1 , abinary n-vetor yn

1 = (y1, . . . , yn) suh that yj = 1 if and only if j = ik forsome k = 1, . . . ,m (i.e., the indies appearing in the inreasing sequeneare marked by 1). Now the onditions of Theorem 17 are obviously met,and therefore Z = log2N(Xn
1) satis�es all three inequalities of Theorem 17.This result signi�antly improves a onentration inequality obtained byFrieze [34℄ for log2N(Xn

1).5.7 Variations on the themeIn this setion we show how the tehniques of the entropy method forproving onentration inequalities may be used in various situations notonsidered so far. The versions di�er in the assumptions on how ∑n

i=1(Z−

Z 0i)2 is ontrolled by di�erent funtions of Z. For various other versionswith appliations we refer to Bouheron, Lugosi, and Massart [15℄. Inall ases the upper bound is roughly of the form e−t2/σ2 where σ2 is theorresponding Efron-Stein upper bound on Var(Z). The �rst inequality maybe regarded as a generalization of the upper tail inequality in Theorem 16.Theorem 18 Assume that there exist positive onstants a and b suhthat
n∑

i=1

(Z− Z 0i)21Z>Z0
i
� aZ+ b .Then for s 2 (0, 1/a),logE[exp(s(Z−E[Z]))] � s2

1− as
(aEZ+ b)49



and for all t > 0,P {Z > EZ+ t} � exp −t2

4aEZ+ 4b+ 2at

!
.Proof. Let s > 0. Just like in the �rst steps of the proof of Theorem 15,we use the fat that for x > 0, τ(−x) � x2, and therefore, by Theorem 14we have

sE hZesZ
i
−E hesZ

i logE hesZ
i � E 24esZ

n∑

i=1

(Z− Z 0i)21Z>Z0
i

35� s2
�
aE hZesZ

i
+ bE hesZ

i�
,where at the last step we used the assumption of theorem.Denoting, one again, F(s) = E hesZ

i, the above inequality beomes
sF 0(s) − F(s) log F(s) � as2F 0(s) + bs2F(s) .After dividing both sides by s2F(s), one again we see that the left-handside is just the derivative of H(s) = s−1 log F(s), so we obtain

H 0(s) � a(log F(s)) 0 + b .Using the fat that lims→0H(s) = F 0(0)/F(0) = EZ and log F(0) = 0, andintegrating the inequality, we obtain
H(s) � EZ+ a log F(s) + bs ,or, if s < 1/a, logE[exp(s(Z−E[Z]))] � s2

1− as
(aEZ+ b) ,proving the �rst inequality. The inequality for the upper tail now followsby Markov's inequality and Exerise 17. 2There is a subtle di�erene between upper and lower tail bounds. Boundsfor the lower tail P {Z < EZ− t} may be easily derived, due to the as-soiation inequality of Theorem 3, under muh more general onditionson ∑n

i=1(Z − Z 0i)21Z<Z0
i
(note the di�erene between this quantity and

∑n

i=1(Z− Z 0i)21Z>Z0
i
appearing in the theorem above!).50



Theorem 19 Assume that for some nondereasing funtion g,
n∑

i=1

(Z− Z 0i)21Z<Z0
i
� g(Z) .Then for all t > 0,P [Z < EZ− t] � exp −t2

4E[g(Z)]

!
.Proof. To prove lower-tail inequalities we obtain upper bounds for F(s) =E[exp(sZ)] with s < 0. By the third inequality of Theorem 14,

sE hZesZ
i
−E hesZ

i logE hesZ
i� n∑

i=1

E hesZτ(s(Z 0i − Z))1Z<Z0
i

i� n∑

i=1

E hesZs2(Z 0i − Z)21Z<Z0
i

i(using s < 0 and that τ(−x) � x2 for x > 0)
= s2E 24esZ

n∑

i=1

(Z− Z 0i)21Z<Z0
i

35� s2E hesZg(Z)
i
.Sine g(Z) is a nondereasing and esZ is a dereasing funtion of Z, Cheby-shev's assoiation inequality (Theorem 3) implies thatE hesZg(Z)
i � E hesZ

iE[g(Z)] .Thus, dividing both sides of the obtained inequality by s2F(s) and writing
H(s) = (1/s) log F(s), we obtain

H 0(s) � E[g(Z)] .integrating the inequality in the interval [s, 0) we obtain
F(s) � exp(s2E[g(Z)] + sE[Z]) .51



Markov's inequality and optimizing in s now implies the theorem. 2The next result is useful when one in interested in lower-tail bounds but
∑n

i=1(Z−Z 0i)21Z<Z0
i
is di�ult to handle. In some ases ∑n

i=1(Z−Z 0i)21Z>Z0
iis easier to bound. In suh a situation we need the additional guaranteethat |Z−Z 0i| remains bounded. Without loss of generality, we assume thatthe bound is 1.Theorem 20 Assume that there exists a nondereasing funtion g suhthat ∑n

i=1(Z−Z 0i)21Z>Z0
i
� g(Z) and for any value of Xn

1 and Xi
0, |Z−Z 0i| �

1. Then for all K > 0, s 2 [0, 1/K)logEhexp(−s(Z−E[Z]))
i � s2τ(K)

K2
E[g(Z)] ,and for all t > 0, with t � (e− 1)E[g(Z)] we haveP [Z < EZ− t] � exp −

t2

4(e− 1)E[g(Z)]

!
.Proof. The key observation is that the funtion τ(x)/x2 = (ex − 1)/x isinreasing if x > 0. Choose K > 0. Thus, for s 2 (−1/K, 0), the seondinequality of Theorem 14 implies that

sE hZesZ
i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZτ(−s(Z− Z(i)))1Z>Z0
i

i� s2
τ(K)

K2
E 24esZ

n∑

i=1

(Z− Z(i))21Z>Z0
i

35� s2
τ(K)

K2
E hg(Z)esZ

i
,where at the last step we used the assumption of the theorem.Just like in the proof of Theorem 19, we boundE hg(Z)esZ

i byE[g(Z)]E hesZ
i.The rest of the proof is idential to that of Theorem 19. Here we took K = 1.
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ExerisesExerise 15 Relax the ondition of Theorem 15 in the following way. Showthat if E 24 n∑

i=1

(Z− Z 0i)21Z>Z0
i

����Xn
1

35 � cthen for all t > 0, P [Z > EZ+ t] � e−t2/4cand if E 24 n∑

i=1

(Z− Z 0i)21Z0
i
>Z

����Xn
1

35 � c ,then P [Z < EZ− t] � e−t2/4c .Exerise 16 mdiarmid's bounded differenes inequality. Provethat under the onditions of Corollary 4, the following improvement holds:P [|Z−EZ| > t] � 2e−2t2/C(MDiarmid [59℄). Hint: Write Z as a sum of martingale di�erenes as inthe proof of Theorem 7. Use Cherno�'s bounding and proeed as in theproof of Hoe�ding's inequality, noting that the argument works for sumsof martingale di�erenes.Exerise 17 Let C and a denote two positive real numbers and denote
h1(x) = 1+ x−

p
1+ 2x. Show thatsup

λ2[0,1/a)

 
λt−

Cλ2

1− aλ

!
=
2C

a2
h1

�
at

2C

� � t2

2
�
2C + at

�and that the supremum is attained at
λ =

1

a

 
1−

�
1+

at

C

�−1/2
!
.Also, sup

λ2[0,∞)

 
λt−

Cλ2

1+ aλ

!
=
2C

a2
h1

�
−at

2C

� � t2

4C53



if t < C/a and the supremum is attained at
λ =

1

a

 �
1−

at

C

�−1/2

− 1

!
.Exerise 18 Assume that h(xn

1) = logb|tr(x)| is a ombinatorial entropysuh that for all x 2 Xn and i � n,
h(xn

1) − h(x(i)) � 1Show that h has the self-bounding property.Exerise 19 Assume that Z = g(Xn
1) = g(X1, . . . , Xn) where X1, . . . , Xn areindependent real-valued random variables and g is a nondereasing funtionof eah variable. Suppose that there exists another nondereasing funtion

f : Rn → R suh that
n∑

i=1

(Z− Z 0i)21Z<Z0
i
� f(Xn

1) .Show that for all t > 0,P[Z < EZ− t] � e−t2/(4Ef(Xn
1

))
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6 Conentration of measureIn this setion we address the �isoperimetri� approah to onentration in-equalities, promoted and developed, in large part, by Talagrand [76, 77, 78℄.First we give an equivalent formulation of the bounded di�erenes inequal-ity (Corollary 4) whih shows that any not too small set in a produt prob-ability spae has the property that the probability of those points whoseHamming distane from the set is muh larger than pn is exponentiallysmall. Then, using the full power of Theorem 15, we provide a signi�antimprovement of this onentration-of-measure result, known as Talagrand'sonvex distane inequality.6.1 Bounded di�erenes inequality revisitedConsider independent random variables X1, . . . , Xn taking their values ina (measurable) set X and denote the vetor of these variables by Xn
1 =

(X1, . . . , Xn) taking its value in Xn.Let A � Xn be an arbitrary (measurable) set and write P[A] = P[Xn
1 2

A]. The Hamming distane d(xn
1 , y

n
1) between the vetors xn

1 , y
n
1 2 Xn isde�ned as the number of oordinates in whih xn

1 and yn
1 di�er. Introdue

d(xn
1 , A) = min

yn
1
2A
d(xn

1 , y
n
1),the Hamming distane between the set A and the point xn

1 . The basiresult is the following:Theorem 21 For any t > 0,P "d(Xn
1 , A) � t+

s
n

2
log 1P[A]

# � e−2t2/n .Observe that on the right-hand side we have the measure of the om-plement of the t-blowup of the set A, that is, the measure of the set ofpoints whose Hamming distane from A is at least t. If we onsider a set,say, with P[A] = 1/106, we see something very surprising: the measureof the set of points whose Hamming distane to A is more than 10pn is55



smaller than e−108! In other words, produt measures are onentrated onextremely small sets�hene the name �onentration of measure�.Proof. Observe that the funtion g(xn
1) = d(xn

1 , A) annot hange by morethan 1 by altering one omponent of xn
1 , that is, it has the bounded di�er-enes property with onstants c1 = � � � = cn = 1. Thus, by the boundeddi�erenes inequality (Theorem 4 with the optimal onstants given in Ex-erise 16), P[Ed(Xn

1 , A) − d(Xn
1 , A) � t] � e−2t2/n.But by taking t = Ed(Xn

1 , A), the left-hand side beomes P[d(Xn
1 , A) �

0] = P[A], so the above inequality impliesE[d(Xn
1 , A)] � s

n

2
log 1P[A]

.Then, by using the bounded di�erenes inequality again, we obtainP "d(Xn
1 , A) � t+

s
n

2
log 1P{A}

# � e−2t2/nas desired. 2Observe that the bounded di�erenes inequality may also be derivedfrom the above theorem. Indeed, if we onsider a funtion g on Xn havingthe bounded di�erenes property with onstants ci = 1 (for simpliity),then we may let A = {xn
1 2 Xn : g(xn

1) � M[Z]}, where M[Z] denotes amedian of the random variable Z = g(X1, . . . , Xn). Then learly P[A] �
1/2, so the above theorem impliesP[Z−MZ � t+

s
n

2
log 2] � e−2t2/n .This has the same form as the bounded di�erenes inequality exept thatthe expeted value of Z is replaed by its median. This di�erene is usuallynegligible, sine

|EZ−MZ| � E|Z−MZ| =

∫∞

0

P[|Z−MZ| � t]dt,so whenever the deviation of Z from its mean is small, its expeted valuemust be lose to its median (see Exerise 19).56



6.2 Convex distane inequalityIn a remarkable series of papers (see [78℄,[76℄,[77℄), Talagrand developed anindution method to prove powerful onentration results in many aseswhen the bounded di�erenes inequality fails. Perhaps the most widelyused of these is the so-alled �onvex-distane inequality�, see also Steele[75℄, MDiarmid [60℄ for surveys with several interesting appliations. Herewe use Theorem 15 to derive a version of the onvex distane inequality.For several extensions and variations we refer to Talagrand [78℄,[76℄,[77℄.To understand Talagrand's inequality, we borrow a simple argumentfrom [60℄. First observe that Theorem 21 may be easily generalized byallowing the distane of the point Xn
1 from the set A to be measured by aweighted Hamming distane

dα(xn
1 , A) = inf

yn
1
2A
dα(xn

1 , y
n
1) = inf

yn
1
2A

∑

i:xi 6=yi

|αi|where α = (α1, . . . , αn) is a vetor of nonnegative numbers. Repeating theargument of the proof of Theorem 21, we obtain, for all α,P 24dα(Xn
1 , A) � t+

vuutkαk2

2
log 1P[A]

35 � e−2t2/kαk2

,where kαk =
q∑n

i=1α
2
i denotes the eulidean norm of α. Thus, for exam-ple, for all vetors α with unit norm kαk = 1,P "dα(Xn

1 , A) � t+

s
1

2
log 1P[A]

# � e−2t2

.Thus, denoting u =
q

1
2
log 1P[A]

, for any t � u,P [dα(Xn
1 , A) � t] � e−2(t−u)2

.On the one hand, if t � q
−2 logP[A], then P[A] � e−t2/2. On the otherhand, sine (t−u)2 � t2/4 for t � 2u, for any t � q

2 log 1P[A]
the inequalityabove implies P [dα(Xn

1 , A) � t] � e−t2/2 . Thus, for all t > 0, we havesup
α:kαk=1

P[A]�P [dα(Xn
1 , A) � t] � sup

α:kαk=1

min (P[A],P [dα(Xn
1 , A) � t]) � e−t2/2 .57



The main message of Talagrand's inequality is that the above inequalityremains true even if the supremum is taken within the probability. Tomake this statement preise, introdue, for any xn
1 = (x1, . . . , xn) 2 Xn, theonvex distane of xn

1 from the set A by
dT(xn

1 , A) = sup
α2[0,∞)n :kαk=1

dα(xn
1 , A) .The next result is a prototypial result from Talagrand's important paper[76℄. For an even stronger onentration-of-measure result we refer to [77℄.Theorem 22 onvex distane inequality. For any subset A � Xnwith P[Xn

1 2 A] � 1/2 and t > 0,min (P[A],P [dT(X
n
1 , A) � t]) � e−t2/4 .Even though at the �rst sight it is not obvious how Talagrand's resultan be used to prove onentration for general funtions g of Xn

1 , appar-ently with relatively little work, the theorem may be onverted into veryuseful inequalities. Talagrand [76℄, Steele [75℄, and MDiarmid [60℄ surveya large variety of appliations. Instead of reproduing Talagrand's originalproof here we show how Theorem 15 and 20 imply the onvex distane in-equality. (This proof gives a slightly worse exponent than the one obtainedby Talagrand's method stated above.)Proof. De�ne the random variable Z = dT(X
n
1 , A). First we observe that

dT(xn
1 , A) an be represented as a saddle point. Let M(A) denote the setof probability measure on A. Then

dT(xn
1 , A) = sup

α:kαk�1

inf
ν2M(A)

∑

j

αjEν[1xj 6=Yj
](where Yn

1 is distributed aording to ν)
= inf

ν2M(A)
sup

α:kαk�1

∑

j

αjEν[1xj 6=Yj
]where the saddle point is ahieved. This follows from Sion's minmax The-orem [72℄ whih states that if f(x, y) denotes a funtion from X � Y to Rthat is onvex and lower-semi-ontinuous with respet to x, onave and58



upper-semi-ontinuous with respet to y, where X is onvex and ompat,then inf
x
sup

y
f(x, y) = sup

y
inf
x
f(x, y) .(We omit the details of heking the onditions of Sion's theorem, see [15℄.)Let now (bν, bα) be a saddle point for xn

1 . We have
Z 0i = inf

ν2M(A)
sup

α

∑

j

αjEν[1
x

(i)

j
6=Yj

] � inf
ν2M(A)

∑

j

bαjEν[1x
(i)

j
6=Yj

]where x(i)
j = xj if j 6= i and x(i)

i = x 0i. Let �ν denote the distribution on Athat ahieves the in�mum in the latter expression. Now we have
Z = inf

ν

∑

j

bαjEν[1xj 6=Yj
] � ∑

j

bαjE�ν[1xj 6=Yj
] .Hene we get

Z− Z 0i � ∑

j

bαjE�ν[1xj 6=Yj
− 1

x
(i)

j
6=Yj

] = bαiE�ν[1xi 6=Yi
− 1

x
(i)

i
6=Yi

] � bαi .Therefore ∑n

i=1(Z − Z 0i)21Z>Z0
i
� ∑

i
bα2

i = 1. Thus by Theorem 15 (morepreisely, by its generalization in Exerise 15), for any t > 0,P [dT(X
n
1 , A) −EdT(X

n
1 , A) � t] � e−t2/4.Similarly, by Theorem 20 we getP [dT(Xn

1 , A) −EdT(Xn
1 , A) � −t] � e−t2/(4(e−1))whih, by taking t = EdT(Xn

1 , A), impliesEdT(X
n
1 , A) � s

4(e− 1) log 1P[A]
.P "dT(Xn

1 , A) −

s
4(e− 1) log 1P[A]

� t# � e−t2/4 .
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Now if 0 < u � q
−4 logP[A] then P[A] � e−u2/4. On the other hand, if

u � q
−4 logP[A] thenP [dT(Xn

1 , A) > u] � P 24dT(Xn
1 , A) −

s
4(e− 1) log 1P[A]

> u− u

s
e− 1

e

35� exp



−
u2
�
1−

q
(e− 1)/e

�2

4




where the seond inequality follows from the upper-tail inequality above.In onlusion, for all u > 0, we havemin (P[A],P [dT(Xn
1 , A) � u]) � exp




−
u2
�
1−

q
(e− 1)/e

�2

4




whih onludes the proof of the onvex distane inequality (with a worseonstant in the exponent). 26.3 ExamplesIn what follows we desribe an appliation of the onvex distane inequalityfor the bin paking disussed in Setion 4.1, appearing in Talagrand [76℄.Let g(xn
1) denote the minimum number of bins of size 1 into whih thenumbers x1, . . . , xn 2 [0, 1] an be paked. We onsider the random variable

Z = g(Xn
1) where X1, . . . , Xn are independent, taking values in [0, 1].Corollary 6 Denote Σ =

qE∑n

i=1X
2
i . Then for eah t > 0,P[|Z−MZ| � t+ 1] � 8e−t2/(16(2Σ2+t)) .Proof. First observe (and this is the only spei� property of g we use inthe proof!) that for any xn

1 , y
n
1 2 [0, 1]n,

g(xn
1) � g(yn

1) + 2
∑

i:xi 6=yi

xi + 1 .60



To see this it su�es to show that the xi for whih xi 6= yi an be pakedinto at most j2∑
i:xi 6=yi

xi

k
+ 1 bins. For this it enough to �nd a pakingsuh that at most one bin is less than half full. But suh a paking mustexist beause we an always pak the ontents of two half-empty bins intoone.Denoting by α = α(xn

1) 2 [0,∞)n the unit vetor xn
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