Simplex slicing: an asymptotically-sharp lower bound

Colin Tang
cstang@andrew.cmu.edu

June 21, 2024

Our goal

Let Δ_{n} denote the regular n-simplex.

Our goal

Let Δ_{n} denote the regular n-simplex.

Main question
How may we choose a 1-codimensional hyperplane H passing through the center of Δ_{n}, so that the volume of the intersection $\operatorname{vol}_{n-1}\left(\Delta_{n} \cap H\right)$ is minimized?

Motivation

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K.

Motivation

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K. If H passes through the barycenter of K, we call it a central section.

Motivation

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K. If H passes through the barycenter of K, we call it a central section.

Bourgain's slicing problem
Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n ?

Motivation

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K. If H passes through the barycenter of K, we call it a central section.

Bourgain's slicing problem
Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n ?

- Open problem

Motivation

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K. If H passes through the barycenter of K, we call it a central section.

Bourgain's slicing problem
Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n ?

- Open problem
- Key to understanding the uniform distribution on a high-dimensional convex body

Motivation

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K. If H passes through the barycenter of K, we call it a central section.

Bourgain's slicing problem
Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n ?

- Open problem
- Key to understanding the uniform distribution on a high-dimensional convex body
- Connections to isoperimetry in high dimensions (cf. KLS conjecture)

Previous work

A general type of question
 Given a specific convex body K, can we identify its minimum central section?

[^0]
Previous work

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

[^1]
Previous work

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

- $K=Q_{n}$ (n-dimensional hypercube), minimal central section identified in [Hadwiger 1972 ${ }^{1}$, Hensley 1979²]

[^2]
Previous work

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

- $K=Q_{n}$ (n-dimensional hypercube), minimal central section identified in [Hadwiger 1972 ${ }^{1}$, Hensley 1979 ${ }^{2}$]
- $K=Q_{n}$, maximal central section identified in [Ball 1986^{3}]

[^3]
Previous work

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

- $K=Q_{n}$ (n-dimensional hypercube), minimal central section identified in [Hadwiger 1972 ${ }^{1}$, Hensley 1979²]
- $K=Q_{n}$, maximal central section identified in [Ball 1986^{3}]
- $K=\Delta_{n}$ (n-dimensional regular simplex), maximal central section identified in [Webb 19964]

[^4]
Simplex minimum

This leaves open the question from the beginning:
Simplex minimum
What is the minimum central section of the regular simplex?

[^5]
Simplex minimum

This leaves open the question from the beginning:

Simplex minimum

What is the minimum central section of the regular simplex?
Conjecture
The minimum central section is the central section $\Delta_{n} \cap H_{\text {facet }}$ that's parallel to a facet.

[^6]
Simplex minimum

This leaves open the question from the beginning:
Simplex minimum
What is the minimum central section of the regular simplex?
Conjecture
The minimum central section is the central section $\Delta_{n} \cap H_{\text {facet }}$ that's parallel to a facet.

Previous best bound [Brzezinski 2013]
The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $\frac{2 \sqrt{3}}{e} \approx 1.27$ of the minimum.

[^7]
Main result

Conjecture is true up to a $1-o(1)$ factor [T. 2024 ${ }^{6}$]
The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $1-o(1)$ of the minimum. (Little o is with respect to the dimension n.)

[^8]
Main result

Conjecture is true up to a $1-o(1)$ factor [T. 2024 ${ }^{6}$] The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $1-o(1)$ of the minimum. (Little o is with respect to the dimension n.)
Tools used:

Main result

Conjecture is true up to a $1-o(1)$ factor [T. 2024 ${ }^{6}$] The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $1-o(1)$ of the minimum. (Little o is with respect to the dimension n.)
Tools used:

- probability distributions

[^9]
Main result

Conjecture is true up to a $1-o(1)$ factor [T. 2024 ${ }^{6}$] The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $1-o(1)$ of the minimum. (Little o is with respect to the dimension n.)
Tools used:

- probability distributions
- Fourier analysis

[^10]
Main result

Conjecture is true up to a $1-o(1)$ factor [T. 2024 ${ }^{6}$] The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $1-o(1)$ of the minimum. (Little o is with respect to the dimension n.)
Tools used:

- probability distributions
- Fourier analysis
- New: moving the contour of integration of a meromorphic function

[^11]
Main result

Conjecture is true up to a $1-o(1)$ factor [T. 2024 ${ }^{6}$] The central section $\Delta_{n} \cap H_{\text {facet }}$ is within a factor of $1-o(1)$ of the minimum. (Little o is with respect to the dimension n.)
Tools used:

- probability distributions
- Fourier analysis
- New: moving the contour of integration of a meromorphic function
We'll prove this result in the remainder of the presentation.

[^12]
Tool: probability distributions

Embed Δ_{n} into \mathbb{R}^{n+1} via

$$
\Delta_{n}=\left\{\begin{array}{l|l}
\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} & \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n+1}=1 \\
x_{i} \geq 0 \text { for each } i
\end{array}
\end{array}\right\}
$$

Tool: probability distributions

Embed Δ_{n} into \mathbb{R}^{n+1} via

$$
\Delta_{n}=\left\{\begin{array}{l|l}
\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} & \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n+1}=1 \\
x_{i} \geq 0 \text { for each } i
\end{array}
\end{array}\right\}
$$

Central sections $\Delta_{n} \cap H$ correspond to a choice of vector a with

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+\cdots+a_{n+1}=0 \\
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n+1}^{2}=1
\end{array}\right.
$$

where a is the normal vector to H.

Tool: probability distributions

Embed Δ_{n} into \mathbb{R}^{n+1} via

$$
\Delta_{n}=\left\{\begin{array}{l|l}
\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} & \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n+1}=1 \\
x_{i} \geq 0 \text { for each } i
\end{array}
\end{array}\right\}
$$

Central sections $\Delta_{n} \cap H$ correspond to a choice of vector a with

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+\cdots+a_{n+1}=0 \\
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n+1}^{2}=1
\end{array}\right.
$$

where a is the normal vector to H. Idea: Instead of Δ_{n}, consider the density

$$
\Phi\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)= \begin{cases}e^{-x_{1}-x_{2}-\cdots-x_{n+1}} & \text { if each } x_{i} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Tool: probability distributions

Embed Δ_{n} into \mathbb{R}^{n+1} via

$$
\Delta_{n}=\left\{\begin{array}{l|l}
\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} & \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n+1}=1 \\
x_{i} \geq 0 \text { for each } i
\end{array}
\end{array}\right\}
$$

Central sections $\Delta_{n} \cap H$ correspond to a choice of vector a with

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+\cdots+a_{n+1}=0 \\
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n+1}^{2}=1
\end{array}\right.
$$

where a is the normal vector to H. Idea: Instead of Δ_{n}, consider the density

$$
\Phi\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)= \begin{cases}e^{-x_{1}-x_{2}-\cdots-x_{n+1}} & \text { if each } x_{i} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Then $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}$ is proportional to the volume of the section.

Tool: probability distributions

Embed Δ_{n} into \mathbb{R}^{n+1} via

$$
\Delta_{n}=\left\{\begin{array}{l|l}
\left(x_{1}, x_{2}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} & \begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n+1}=1 \\
x_{i} \geq 0 \text { for each } i
\end{array}
\end{array}\right\}
$$

Central sections $\Delta_{n} \cap H$ correspond to a choice of vector a with

$$
\left\{\begin{array}{l}
a_{1}+a_{2}+\cdots+a_{n+1}=0 \\
a_{1}^{2}+a_{2}^{2}+\cdots+a_{n+1}^{2}=1
\end{array}\right.
$$

where a is the normal vector to H. Idea: Instead of Δ_{n}, consider the density

$$
\Phi\left(x_{1}, x_{2}, \ldots, x_{n+1}\right)= \begin{cases}e^{-x_{1}-x_{2}-\cdots-x_{n+1}} & \text { if each } x_{i} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Then $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}$ is proportional to the volume of the section. Minimum central sections correspond to minimizing $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}$.

Tool: probability distributions

But Φ is a product measure, so $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}$ is the density at 0 of the random variable

$$
Z_{a}:=a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n+1} Y_{n+1}
$$

(where the Y_{i} are i.i.d. standard exponentials (mean 1)).

Tool: probability distributions

But Φ is a product measure, so $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}$ is the density at 0 of the random variable

$$
Z_{a}:=a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n+1} Y_{n+1}
$$

(where the Y_{i} are i.i.d. standard exponentials (mean 1)).

Tool: probability distributions

But Φ is a product measure, so $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}$ is the density at 0 of the random variable

$$
Z_{a}:=a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n+1} Y_{n+1}
$$

(where the Y_{i} are i.i.d. standard exponentials (mean 1)).

Let $G_{a}(x)$ denote the density of Z_{a}, so what we said above is $\int_{a^{\perp}} \Phi d \mathcal{H}^{n}=G_{a}(0)$.

Tool: probability distributions

Reduction
The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$.

Tool: probability distributions

Reduction

The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$. Conjectured minimizer $a_{\text {facet }}$ satisfies

$$
G_{\mathrm{afacet}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e} .
$$

Tool: probability distributions

Reduction

The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$. Conjectured minimizer $a_{\text {facet }}$ satisfies
$G_{\mathrm{afacet}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}$.
It's hard to optimize over the set $\mathcal{S}^{n} \cap \mathbf{1}^{\perp}$ (the feasible region of a).

Tool: probability distributions

Reduction

The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$. Conjectured minimizer $a_{\text {facet }}$ satisfies
$G_{\mathrm{afacet}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}$.
It's hard to optimize over the set $\mathcal{S}^{n} \cap \mathbf{1}^{\perp}$ (the feasible region of a). Expand the feasible region:

Tool: probability distributions

Reduction

The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$. Conjectured minimizer $a_{\text {facet }}$ satisfies
$G_{a_{\text {facet }}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}$.
It's hard to optimize over the set $\mathcal{S}^{n} \cap \mathbf{1}^{\perp}$ (the feasible region of
a). Expand the feasible region:

- Let $u \in \mathcal{S}^{n}$ be arbitrary (the feasible region of u has one fewer constraint than that of a !).

Tool: probability distributions

Reduction

The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$. Conjectured minimizer $a_{\text {facet }}$ satisfies
$G_{\mathrm{afacet}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}$.
It's hard to optimize over the set $\mathcal{S}^{n} \cap \mathbf{1}^{\perp}$ (the feasible region of
a). Expand the feasible region:

- Let $u \in \mathcal{S}^{n}$ be arbitrary (the feasible region of u has one fewer constraint than that of a !).
- Define $Z_{u}:=u_{1}\left(Y_{1}-1\right)+u_{2}\left(Y_{2}-1\right)+\cdots+u_{n+1}\left(Y_{n+1}-1\right)$.

Tool: probability distributions

Reduction

The minimum central section corresponds to a choice of vector a minimizing $G_{a}(0)$. Conjectured minimizer $a_{\text {facet }}$ satisfies
$G_{\mathrm{afacet}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}$.
It's hard to optimize over the set $\mathcal{S}^{n} \cap \mathbf{1}^{\perp}$ (the feasible region of
a). Expand the feasible region:

- Let $u \in \mathcal{S}^{n}$ be arbitrary (the feasible region of u has one fewer constraint than that of a !).
- Define $Z_{u}:=u_{1}\left(Y_{1}-1\right)+u_{2}\left(Y_{2}-1\right)+\cdots+u_{n+1}\left(Y_{n+1}-1\right)$.
- This extends the earlier definition of Z_{a} since

$$
\begin{aligned}
& a_{1}\left(Y_{1}-1\right)+a_{2}\left(Y_{2}-1\right)+\cdots+a_{n+1}\left(Y_{n+1}-1\right) \\
& =a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n+1} Y_{n+1}-\left(a_{1}+a_{2}+\cdots+a_{n+1}\right) \\
& =a_{1} Y_{1}+a_{2} Y_{2}+\cdots+a_{n+1} Y_{n+1}
\end{aligned}
$$

Tool: probability distributions

Question
What's the minimum possible value that $G_{u}(0)$ can attain, as u varies in \mathcal{S}^{n} ?

Tool: probability distributions

Question
What's the minimum possible value that $G_{u}(0)$ can attain, as u varies in \mathcal{S}^{n} ?

Our result
$G_{u}(0) \geq \frac{1}{e}$ for each $u \in \mathcal{S}^{n}$. Equality achieved if $u=(1) \in \mathcal{S}^{0}$.

Tool: probability distributions

Question
What's the minimum possible value that $G_{u}(0)$ can attain, as u varies in \mathcal{S}^{n} ?

Our result
$G_{u}(0) \geq \frac{1}{e}$ for each $u \in \mathcal{S}^{n}$. Equality achieved if $u=(1) \in \mathcal{S}^{0}$.
We lost a bit by expanding the feasible region from $\mathcal{S}^{n} \cap \mathbf{1}^{\perp} \ni$ a to $\mathcal{S}^{n} \ni u$.

Tool: probability distributions

Question
What's the minimum possible value that $G_{u}(0)$ can attain, as u varies in \mathcal{S}^{n} ?

Our result
$G_{u}(0) \geq \frac{1}{e}$ for each $u \in \mathcal{S}^{n}$. Equality achieved if $u=(1) \in \mathcal{S}^{0}$.
We lost a bit by expanding the feasible region from $\mathcal{S}^{n} \cap \mathbf{1}^{\perp} \ni$ a to $\mathcal{S}^{n} \ni u$. Indeed, the minimum over u of $G_{u}(0)$ is exactly $\frac{1}{e}$, but we think the minimum over a of $G_{a}(0)$ is given by
$G_{a_{\text {facet }}}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1}$.

Tool: probability distributions

Question
What's the minimum possible value that $G_{u}(0)$ can attain, as u varies in \mathcal{S}^{n} ?

Our result
$G_{u}(0) \geq \frac{1}{e}$ for each $u \in \mathcal{S}^{n}$. Equality achieved if $u=(1) \in \mathcal{S}^{0}$.
We lost a bit by expanding the feasible region from $\mathcal{S}^{n} \cap \mathbf{1}^{\perp} \ni$ a to $\mathcal{S}^{n} \ni u$. Indeed, the minimum over u of $G_{u}(0)$ is exactly $\frac{1}{e}$, but we think the minimum over a of $G_{a}(0)$ is given by
$G_{\text {afacet }}(0)=\sqrt{\frac{n}{n+1}}\left(\frac{n}{n+1}\right)^{n-1}$.
But certainly

$$
\frac{1}{e}=\min _{u} G_{u}(0) \leq \min _{a} G_{a}(0) \leq G_{a \mathrm{facet}}(0)
$$

and since $G_{\text {afacet }}(0)=\frac{1}{e}(1+o(1))$, we lost at most a $1+o(1)$ factor by expanding the feasible region.

Tool: Fourier analysis

$G_{u}(x)$ is the density of a sum of independent centered exponentials $u_{j}\left(Y_{j}-1\right)$, so G_{u} is a convolution $f_{1} * f_{2} * \cdots * f_{n+1}$.

Tool: Fourier analysis

$G_{u}(x)$ is the density of a sum of independent centered exponentials $u_{j}\left(Y_{j}-1\right)$, so G_{u} is a convolution $f_{1} * f_{2} * \cdots * f_{n+1}$. Here, $f_{j}(x)$ is the density of $u_{j}\left(Y_{j}-1\right)$. It's given by $f_{j}(x)=\frac{1}{\left|u_{j}\right|} f\left(\frac{x}{u_{j}}+1\right)$ where f is the density of the standard (uncentered) exponential with mean 1 :

$$
f(x)= \begin{cases}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Tool: Fourier analysis

Take the Fourier transform. Convolution becomes pointwise multiplication.

Tool: Fourier analysis

Take the Fourier transform. Convolution becomes pointwise multiplication.

$$
\hat{f}(t)=\frac{1}{1+i t}
$$

Tool: Fourier analysis

Take the Fourier transform. Convolution becomes pointwise multiplication.

$$
\begin{aligned}
\hat{f}(t) & =\frac{1}{1+i t} \\
\widehat{f}_{j}(t) & =\frac{e^{i u_{j} t}}{1+i u_{j} t}
\end{aligned}
$$

Tool: Fourier analysis

Take the Fourier transform. Convolution becomes pointwise multiplication.

$$
\begin{gathered}
\hat{f}(t)=\frac{1}{1+i t} \\
\widehat{f}_{j}(t)=\frac{e^{i u_{j} t}}{1+i u_{j} t} \\
\widehat{G}_{u}(t)=\prod_{j=1}^{n+1} \widehat{f}_{j}(t)=\prod_{j=1}^{n+1} \frac{e^{i u_{j} t}}{1+i u_{j} t}
\end{gathered}
$$

Tool: Fourier analysis

Take the Fourier transform. Convolution becomes pointwise multiplication.

$$
\begin{gathered}
\hat{f}(t)=\frac{1}{1+i t} \\
\widehat{f}_{j}(t)=\frac{e^{i u_{j} t}}{1+i u_{j} t} \\
\widehat{G}_{u}(t)=\prod_{j=1}^{n+1} \widehat{f}_{j}(t)=\prod_{j=1}^{n+1} \frac{e^{i u_{j} t}}{1+i u_{j} t}
\end{gathered}
$$

Fourier inversion formula, valid if u has at least two nonzero entries:

$$
G_{u}(0)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \widehat{G_{u}}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \prod_{j=1}^{n+1} \frac{e^{i u_{j} t}}{1+i u_{j} t} d t
$$

Tool: Fourier analysis

We wanted to show $G_{u}(0) \geq \frac{1}{e}$, and this is equivalent to

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \prod_{j=1}^{n+1} \frac{e^{i u_{j} t}}{1+i u_{j} t} d t \geq \frac{1}{e}
$$

Tool: Fourier analysis

We wanted to show $G_{u}(0) \geq \frac{1}{e}$, and this is equivalent to

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \prod_{j=1}^{n+1} \frac{e^{i u_{j} t}}{1+i u_{j} t} d t \geq \frac{1}{e}
$$

Letting $F_{u}(t):=\prod_{j=1}^{n+1} \frac{e^{i \mu_{j} t}}{1+i i_{j} t}$, we just want to show

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} F_{u}(t) d t \geq \frac{1}{e} .
$$

Some complex analysis

Thus far, all the techniques have been known.

Some complex analysis

Thus far, all the techniques have been known.
The main difficulty now is estimating the highly oscillatory integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$.

Some complex analysis

Thus far, all the techniques have been known. The main difficulty now is estimating the highly oscillatory integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$.
I'll spare you the pictures from my first attempt. It really wasn't great.

Tool: moving the contour of integration

New idea: moving the contour of integration.

Tool: moving the contour of integration

New idea: moving the contour of integration.

- Recall from complex analysis that the integral of a meromorphic function doesn't depend on the path taken (with some caveats).

Tool: moving the contour of integration

New idea: moving the contour of integration.

- Recall from complex analysis that the integral of a meromorphic function doesn't depend on the path taken (with some caveats).
- If we want to estimate the integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$, we can change the contour of integration, from the real line, to a special curve γ_{u}.

Tool: moving the contour of integration

New idea: moving the contour of integration.

- Recall from complex analysis that the integral of a meromorphic function doesn't depend on the path taken (with some caveats).
- If we want to estimate the integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$, we can change the contour of integration, from the real line, to a special curve γ_{u}.
- We will choose γ_{u} to have the property that F_{u} is always a positive real number along γ_{u}.

Tool: moving the contour of integration

Here's a plot of $F_{u}(t)$ with $u=(\sqrt{0.42}, \sqrt{0.38}, \sqrt{0.20})$:

Tool: moving the contour of integration

Here's a plot of $F_{u}(t)$ with $u=(\sqrt{0.42}, \sqrt{0.38}, \sqrt{0.20})$:

The color denotes the argument of $F_{u}(t)$. Red means real. Follow the red color, trace out a curve γ_{u}.

Tool: moving the contour of integration

Black box (basically just the Implicit Function Theorem)
We can always find such a curve γ_{u}, along which F_{u} takes positive real values, such that γ_{u} is \mathcal{C}^{∞} and passes through the origin. Moreover, γ_{u} can be viewed as the graph of an even function $y_{u}(x)$ in the $x y$-plane (identified with the complex plane in the usual manner).

Tool: moving the contour of integration

Black box (basically just the Implicit Function Theorem)
We can always find such a curve γ_{u}, along which F_{u} takes positive real values, such that γ_{u} is \mathcal{C}^{∞} and passes through the origin. Moreover, γ_{u} can be viewed as the graph of an even function $y_{u}(x)$ in the $x y$-plane (identified with the complex plane in the usual manner).
Here's a plot of γ_{u} with the same $u(u=(\sqrt{0.42}, \sqrt{0.38}, \sqrt{0.20}))$:

Tool: moving the contour of integration

Black box (some crude tail bounds)
As long as u has at least two nonzero entries, we have that the integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$ exists and equals $\int_{\gamma_{u}} F_{u}(t) d t$. Moreover, the integrand $F_{u}(t)$ is always a positive real number if t is on γ_{u}.

Tool: moving the contour of integration

Black box (some crude tail bounds)
As long as u has at least two nonzero entries, we have that the integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$ exists and equals $\int_{\gamma_{u}} F_{u}(t) d t$. Moreover, the integrand $F_{u}(t)$ is always a positive real number if t is on γ_{u}.
This is the part when we actually move the contour of integration.

Tool: moving the contour of integration

Black box (some crude tail bounds)
As long as u has at least two nonzero entries, we have that the integral $\int_{-\infty}^{+\infty} F_{u}(t) d t$ exists and equals $\int_{\gamma_{u}} F_{u}(t) d t$. Moreover, the integrand $F_{u}(t)$ is always a positive real number if t is on γ_{u}.
This is the part when we actually move the contour of integration.
So we just need to estimate $\int_{\gamma_{u}} F_{u}(t) d t$.

Differential equations

Recall that $y_{u}(x)$ is the function whose graph is γ_{u}.

Differential equations

Recall that $y_{u}(x)$ is the function whose graph is γ_{u}. Defining $\tilde{F}_{u}(x):=F_{u}\left(x+i y_{u}(x)\right)$, we can compute that $\int_{\gamma_{u}} F_{u}(t) d t=\int_{\mathbb{R}} \tilde{F}_{u}(x) d x$ since \tilde{F}_{u} is an even function of x.

Differential equations

Recall that $y_{u}(x)$ is the function whose graph is γ_{u}. Defining $\tilde{F}_{u}(x):=F_{u}\left(x+i y_{u}(x)\right)$, we can compute that $\int_{\gamma_{u}} F_{u}(t) d t=\int_{\mathbb{R}} \tilde{F}_{u}(x) d x$ since \tilde{F}_{u} is an even function of x. (We changed $d t$ to $d x$.)

Differential equations

Recall that $y_{u}(x)$ is the function whose graph is γ_{u}. Defining $\tilde{F}_{u}(x):=F_{u}\left(x+i y_{u}(x)\right)$, we can compute that $\int_{\gamma_{u}} F_{u}(t) d t=\int_{\mathbb{R}} \tilde{F}_{u}(x) d x$ since \tilde{F}_{u} is an even function of x. (We changed $d t$ to $d x$.)
So we just need to show $\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{u}(x) d x \geq \frac{1}{e}$.

Differential equations

Compute that equality holds if $u=(1) \in \mathcal{S}^{0}$; i.e.

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

Differential equations

Compute that equality holds if $u=(1) \in \mathcal{S}^{0}$; i.e.

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

If we could show $\tilde{F}_{u}(x) \geq \tilde{F}_{(1)}(x)$ for each x, then we would automatically get

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{u}(x) d x \geq \frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

as desired.

Differential equations

Compute that equality holds if $u=(1) \in \mathcal{S}^{0}$; i.e.

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

If we could show $\tilde{F}_{u}(x) \geq \tilde{F}_{(1)}(x)$ for each x, then we would automatically get

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{u}(x) d x \geq \frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

as desired.
Let's show the boxed statement.

Differential equations

Compute that equality holds if $u=(1) \in \mathcal{S}^{0}$; i.e.

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

If we could show $\tilde{F}_{u}(x) \geq \tilde{F}_{(1)}(x)$ for each x, then we would automatically get

$$
\frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{u}(x) d x \geq \frac{1}{2 \pi} \int_{\mathbb{R}} \tilde{F}_{(1)}(x) d x=\frac{1}{e}
$$

as desired.
Let's show the boxed statement. From now on, assume $x>0$.

Differential equations

Defining property of y_{u}

$$
y_{u}^{\prime}=\sum_{j=1}^{n+1} \frac{-y_{u}+u_{j}\left(x^{2}+y_{u}^{2}\right)}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}} / \sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}
$$

Differential equations

Defining property of y_{u}

$$
y_{u}^{\prime}=\sum_{j=1}^{n+1} \frac{-y_{u}+u_{j}\left(x^{2}+y_{u}^{2}\right)}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}} / \sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}
$$

Corollary

$$
y_{u}^{\prime} \leq \frac{-y_{u}+x^{2}+y_{u}^{2}}{x}
$$

Differential equations

Defining property of y_{u}

$$
y_{u}^{\prime}=\sum_{j=1}^{n+1} \frac{-y_{u}+u_{j}\left(x^{2}+y_{u}^{2}\right)}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}} / \sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}
$$

Corollary

$$
y_{u}^{\prime} \leq \frac{-y_{u}+x^{2}+y_{u}^{2}}{x}
$$

Using this, we can prove
Black box

$$
\begin{equation*}
-y_{(1)} \leq y_{u} \leq y_{(1)} \text { for all } x>0 \tag{*}
\end{equation*}
$$

Differential equations

Compute

$$
\frac{d}{d x} \log \tilde{F}_{u}(x)=-\frac{\left(\sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2}+\left(\sum_{j=1}^{n+1} \frac{-y_{u}+u_{j}\left(x^{2}+y_{u}^{2}\right)}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2}}{\sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}}
$$

Differential equations

Compute

$$
\frac{d}{d x} \log \tilde{F}_{u}(x)=-\frac{\left(\sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2}+\left(\sum_{j=1}^{n+1} \frac{-y_{u}+u_{j}\left(x^{2}+y_{u}^{2}\right)}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2}}{\sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}}
$$

Substituting $u=(1)$ yields

$$
\frac{d}{d x} \log \tilde{F}_{(1)}(x)=-\frac{x^{2}+y_{(1)}^{2}}{x}
$$

Differential equations: Two curious inequalities

Use Cauchy-Schwarz:

$$
\begin{aligned}
\left(\sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2} & =\left(\sum_{j=1}^{n+1} \frac{\left(x / u_{j}\right) \cdot u_{j}}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2} \\
& \leq\left(\sum_{j=1}^{n+1} \frac{\left(x / u_{j}\right)^{2}}{\left(x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}\right)^{2}}\right)\left(\sum_{j=1}^{n+1} u_{j}^{2}\right) \\
& =\sum_{j=1}^{n+1} \frac{\left(x / u_{j}\right)^{2}}{\left(x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}\right)^{2}}
\end{aligned}
$$

Differential equations: Two curious inequalities

Use Cauchy-Schwarz again:

$$
\begin{aligned}
\left(\sum_{j=1}^{n+1} \frac{-y_{u}+u_{j}\left(x^{2}+y_{u}^{2}\right)}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2} & =\left(\sum_{j=1}^{n+1} \frac{\left(-y_{u} / u_{j}+x^{2}+y_{u}^{2}\right) \cdot u_{j}}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}\right)^{2} \\
& \leq\left(\sum_{j=1}^{n+1} \frac{\left(-y_{u} / u_{j}+x^{2}+y_{u}^{2}\right)^{2}}{\left(x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}\right)^{2}}\right)\left(\sum_{j=1}^{n+1} u_{j}^{2}\right) \\
& =\sum_{j=1}^{n+1} \frac{\left(-y_{u} / u_{j}+x^{2}+y_{u}^{2}\right)^{2}}{\left(x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}\right)^{2}}
\end{aligned}
$$

Differential equations

Putting it together:

$$
\begin{aligned}
\frac{d}{d x} \log \tilde{F}_{u}(x) & \geq-\frac{\sum_{j=1}^{n+1} \frac{x^{2}+y_{u}^{2}}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}}{\sum_{j=1}^{n+1} \frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}} \\
& =-\frac{x^{2}+y_{u}^{2}}{x} \\
& \stackrel{(*)}{\geq}-\frac{x^{2}+y_{(1)}^{2}}{x} \\
& =\frac{d}{d x} \log \tilde{F}_{(1)}(x)
\end{aligned}
$$

which is sufficient to imply $\tilde{F}_{u}(x) \geq \tilde{F}_{(1)}(x)$, as desired.

Thanks

[^0]: ${ }^{1}$ Hugo Hadwiger. "Gitterperiodische Punktmengen und Isoperimetrie". In: Monatshefte für Mathematik 76.5 (1972), pp. 410-418.
 ${ }^{2}$ Douglas Hensley. "Slicing the Cube in \mathbb{R}^{n} and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^{n} by Probability Methods)". In: Proceedings of the American Mathematical Society 73.1 (1979), pp. 95-100.
 ${ }^{3}$ Keith Ball. "Cube slicing in $\mathbb{R}^{n " .}$ In: Proceedings of the American Mathematical Society 97.3 (1986), pp. 465-473.
 ${ }^{4}$ Simon Webb. "Central slices of the regular simplex". In: Geometriae Dedicata 61.1 (1996), pp. 19-28.

[^1]: ${ }^{1}$ Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".
 ${ }^{2}$ Hensley, "Slicing the Cube in \mathbb{R}^{n} and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^{n} by Probability Methods)".
 ${ }^{3}$ Ball, "Cube slicing in $\mathbb{R}^{n " .}$
 ${ }^{4}$ Webb, "Central slices of the regular simplex".

[^2]: ${ }^{1}$ Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".
 ${ }^{2}$ Hensley, "Slicing the Cube in \mathbb{R}^{n} and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^{n} by Probability Methods)".
 ${ }^{3}$ Ball, "Cube slicing in $\mathbb{R}^{n "}$.
 ${ }^{4}$ Webb, "Central slices of the regular simplex".

[^3]: ${ }^{1}$ Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".
 ${ }^{2}$ Hensley, "Slicing the Cube in \mathbb{R}^{n} and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^{n} by Probability Methods)".
 ${ }^{3}$ Ball, "Cube slicing in $\mathbb{R}^{n " .}$
 ${ }^{4}$ Webb, "Central slices of the regular simplex".

[^4]: ${ }^{1}$ Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".
 ${ }^{2}$ Hensley, "Slicing the Cube in \mathbb{R}^{n} and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^{n} by Probability Methods)".
 ${ }^{3}$ Ball, "Cube slicing in $\mathbb{R}^{n "}$.
 ${ }^{4}$ Webb, "Central slices of the regular simplex".

[^5]: ${ }^{5}$ Patryk Brzezinski. "Volume estimates for sections of certain convex bodies". In: Mathematische Nachrichten 286.17-18 (2013), pp. 1726-1743.

[^6]: ${ }^{5}$ Brzezinski, "Volume estimates for sections of certain convex bodies".

[^7]: ${ }^{5}$ Brzezinski, "Volume estimates for sections of certain convex bodies".

[^8]: ${ }^{6}$ Colin Tang. "Simplex slicing: an asymptotically-sharp lower bound". In: Advances in Mathematics 451 (2024),
 p. 109784. DOI: https://doi.org/10.1016/j.aim.2024.109784.

[^9]: ${ }^{6}$ Tang, "Simplex slicing: an asymptotically-sharp lower bound".

[^10]: ${ }^{6}$ Tang, "Simplex slicing: an asymptotically-sharp lower bound".

[^11]: ${ }^{6}$ Tang, "Simplex slicing: an asymptotically-sharp lower bound".

[^12]: ${ }^{6}$ Tang, "Simplex slicing: an asymptotically-sharp lower bound".

