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Our goal

Let ∆n denote the regular n-simplex.
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Our goal

Let ∆n denote the regular n-simplex.

Main question
How may we choose a 1-codimensional hyperplane H passing
through the center of ∆n, so that the volume of the intersection
voln−1(∆n ∩ H) is minimized?
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Motivation

If K is a convex body, we call a set of the form K ∩ H (where H is
a 1-codimensional hyperplane) a section of K .

If H passes through
the barycenter of K , we call it a central section.

Bourgain’s slicing problem
Does every convex body K of volume 1 admit a section whose
volume is at least some universal constant, independent of the
dimension n?
▶ Open problem
▶ Key to understanding the uniform distribution on a

high-dimensional convex body
▶ Connections to isoperimetry in high dimensions (cf. KLS

conjecture)
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Previous work

A general type of question
Given a specific convex body K , can we identify its minimum
central section?

Maximum central section?
▶ K = Qn (n-dimensional hypercube), minimal central section

identified in [Hadwiger 19721, Hensley 19792]
▶ K = Qn, maximal central section identified in [Ball 19863]
▶ K = ∆n (n-dimensional regular simplex), maximal central

section identified in [Webb 19964]

1Hugo Hadwiger. “Gitterperiodische Punktmengen und Isoperimetrie”. In: Monatshefte für Mathematik 76.5
(1972), pp. 410–418.

2Douglas Hensley. “Slicing the Cube in Rn and Probability (Bounds for the Measure of a Central Cube Slice in
Rn by Probability Methods)”. In: Proceedings of the American Mathematical Society 73.1 (1979), pp. 95–100.

3Keith Ball. “Cube slicing in Rn”. In: Proceedings of the American Mathematical Society 97.3 (1986),
pp. 465–473.

4Simon Webb. “Central slices of the regular simplex”. In: Geometriae Dedicata 61.1 (1996), pp. 19–28.
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Simplex minimum

This leaves open the question from the beginning:

Simplex minimum
What is the minimum central section of the regular simplex?

Conjecture
The minimum central section is the central section ∆n ∩ Hfacet
that’s parallel to a facet.

Previous best bound [Brzezinski 20135]
The central section ∆n ∩ Hfacet is within a factor of 2

√
3

e ≈ 1.27 of
the minimum.

5Patryk Brzezinski. “Volume estimates for sections of certain convex bodies”. In: Mathematische Nachrichten
286.17-18 (2013), pp. 1726–1743.
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Main result

Conjecture is true up to a 1 − o(1) factor [T. 20246]
The central section ∆n ∩ Hfacet is within a factor of 1 − o(1) of the
minimum. (Little o is with respect to the dimension n.)

Tools used:
▶ probability distributions
▶ Fourier analysis
▶ New: moving the contour of integration of a

meromorphic function
We’ll prove this result in the remainder of the presentation.

6Colin Tang. “Simplex slicing: an asymptotically-sharp lower bound”. In: Advances in Mathematics 451 (2024),
p. 109784. doi: https://doi.org/10.1016/j.aim.2024.109784.
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Tool: probability distributions
Embed ∆n into Rn+1 via

∆n =
{

(x1, x2, . . . , xn+1) ∈ Rn+1
∣∣∣∣ x1 + x2 + · · · + xn+1 = 1

xi ≥ 0 for each i

}
.

Central sections ∆n ∩ H correspond to a choice of vector a with{
a1 + a2 + · · · + an+1 = 0
a2

1 + a2
2 + · · · + a2

n+1 = 1

where a is the normal vector to H.
Idea: Instead of ∆n, consider the density

Φ(x1, x2, . . . , xn+1) =
{

e−x1−x2−···−xn+1 if each xi ≥ 0
0 otherwise

Then
∫

a⊥ Φ dHn is proportional to the volume of the section.
Minimum central sections correspond to minimizing

∫
a⊥ Φ dHn.
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Tool: probability distributions
But Φ is a product measure, so

∫
a⊥ Φ dHn is the density at 0 of

the random variable

Za := a1Y1 + a2Y2 + · · · + an+1Yn+1

(where the Yi are i.i.d. standard exponentials (mean 1)).

1

Let Ga(x) denote the density of Za, so what we said above is∫
a⊥ Φ dHn = Ga(0).

9 / 27



Tool: probability distributions
But Φ is a product measure, so

∫
a⊥ Φ dHn is the density at 0 of

the random variable

Za := a1Y1 + a2Y2 + · · · + an+1Yn+1

(where the Yi are i.i.d. standard exponentials (mean 1)).

1

Let Ga(x) denote the density of Za, so what we said above is∫
a⊥ Φ dHn = Ga(0).

9 / 27



Tool: probability distributions
But Φ is a product measure, so

∫
a⊥ Φ dHn is the density at 0 of

the random variable

Za := a1Y1 + a2Y2 + · · · + an+1Yn+1

(where the Yi are i.i.d. standard exponentials (mean 1)).

1

Let Ga(x) denote the density of Za, so what we said above is∫
a⊥ Φ dHn = Ga(0).

9 / 27



Tool: probability distributions
Reduction
The minimum central section corresponds to a choice of vector a
minimizing Ga(0).

Conjectured minimizer afacet satisfies
Gafacet(0) =

√
n

n+1

(
n

n+1

)n−1
≈ 1

e .

It’s hard to optimize over the set Sn ∩ 1⊥ (the feasible region of
a). Expand the feasible region:
▶ Let u ∈ Sn be arbitrary (the feasible region of u has one fewer

constraint than that of a!).
▶ Define Zu := u1(Y1 − 1) + u2(Y2 − 1) + · · · + un+1(Yn+1 − 1).
▶ This extends the earlier definition of Za since

a1(Y1 − 1) + a2(Y2 − 1) + · · · + an+1(Yn+1 − 1)
= a1Y1 + a2Y2 + · · · + an+1Yn+1 − (a1 + a2 + · · · + an+1)
= a1Y1 + a2Y2 + · · · + an+1Yn+1.
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Tool: probability distributions
Question
What’s the minimum possible value that Gu(0) can attain, as u
varies in Sn?

Our result
Gu(0) ≥ 1

e for each u ∈ Sn. Equality achieved if u = (1) ∈ S0.
We lost a bit by expanding the feasible region from Sn ∩ 1⊥ ∋ a to
Sn ∋ u. Indeed, the minimum over u of Gu(0) is exactly 1

e , but we
think the minimum over a of Ga(0) is given by
Gafacet(0) =

√
n

n+1

(
n

n+1

)n−1
.

But certainly

1
e = min

u
Gu(0) ≤ min

a
Ga(0) ≤ Gafacet(0),

and since Gafacet(0) = 1
e (1 + o(1)), we lost at most a 1 + o(1)

factor by expanding the feasible region.
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Tool: Fourier analysis

Gu(x) is the density of a sum of independent centered exponentials
uj(Yj − 1), so Gu is a convolution f1 ∗ f2 ∗ · · · ∗ fn+1.

Here, fj(x) is the density of uj(Yj − 1). It’s given by
fj(x) = 1

|uj | f ( x
uj

+ 1) where f is the density of the standard
(uncentered) exponential with mean 1:

f (x) =
{

e−x if x ≥ 0
0 otherwise
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Tool: Fourier analysis
Take the Fourier transform. Convolution becomes pointwise
multiplication.

f̂ (t) = 1
1 + it

f̂j(t) = eiuj t

1 + iujt

Ĝu(t) =
n+1∏
j=1

f̂j(t) =
n+1∏
j=1

eiuj t

1 + iujt

Fourier inversion formula, valid if u has at least two nonzero
entries:

Gu(0) = 1
2π

∫ +∞

−∞
Ĝu(t) dt = 1

2π

∫ +∞

−∞

n+1∏
j=1

eiuj t

1 + iujt
dt
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Tool: Fourier analysis

We wanted to show Gu(0) ≥ 1
e , and this is equivalent to

1
2π

∫ +∞

−∞

n+1∏
j=1

eiuj t

1 + iujt
dt ≥ 1

e .

Letting Fu(t) :=
∏n+1

j=1
eiuj t

1+iuj t , we just want to show

1
2π

∫ +∞

−∞
Fu(t) dt ≥ 1

e .
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Some complex analysis

Thus far, all the techniques have been known.

The main difficulty now is estimating the highly oscillatory integral∫ +∞
−∞ Fu(t) dt.

I’ll spare you the pictures from my first attempt. It really wasn’t
great.
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Tool: moving the contour of integration

New idea: moving the contour of integration.

▶ Recall from complex analysis that the integral of a
meromorphic function doesn’t depend on the path taken (with
some caveats).

▶ If we want to estimate the integral
∫ +∞

−∞ Fu(t) dt, we can
change the contour of integration, from the real line, to a
special curve γu.

▶ We will choose γu to have the property that Fu is always a
positive real number along γu.
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Tool: moving the contour of integration

Here’s a plot of Fu(t) with u = (
√

0.42,
√

0.38,
√

0.20):

The color denotes the argument of Fu(t). Red means real. Follow
the red color, trace out a curve γu.
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Tool: moving the contour of integration
Black box (basically just the Implicit Function Theorem)
We can always find such a curve γu, along which Fu takes positive
real values, such that γu is C∞ and passes through the origin.
Moreover, γu can be viewed as the graph of an even function yu(x)
in the xy -plane (identified with the complex plane in the usual
manner).

Here’s a plot of γu with the same u (u = (
√

0.42,
√

0.38,
√

0.20)):
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Tool: moving the contour of integration

Black box (some crude tail bounds)
As long as u has at least two nonzero entries, we have that the
integral

∫ +∞
−∞ Fu(t) dt exists and equals

∫
γu

Fu(t) dt. Moreover, the
integrand Fu(t) is always a positive real number if t is on γu.

This is the part when we actually move the contour of
integration.
So we just need to estimate

∫
γu

Fu(t) dt.
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Differential equations

Recall that yu(x) is the function whose graph is γu.

Defining
F̃u(x) := Fu(x + iyu(x)), we can compute that∫

γu
Fu(t) dt =

∫
R F̃u(x) dx since F̃u is an even function of x . (We

changed dt to dx .)

So we just need to show 1
2π

∫
R

F̃u(x) dx ≥ 1
e .
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Differential equations

Compute that equality holds if u = (1) ∈ S0; i.e.

1
2π

∫
R

F̃(1)(x) dx = 1
e .

If we could show F̃u(x) ≥ F̃(1)(x) for each x , then we would
automatically get

1
2π

∫
R

F̃u(x) dx ≥ 1
2π

∫
R

F̃(1)(x) dx = 1
e

as desired.
Let’s show the boxed statement. From now on, assume x > 0.
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Differential equations

Defining property of yu

y ′
u =

n+1∑
j=1

−yu + uj(x2 + y2
u )

x2 + ( 1
uj

− yu)2

/ n+1∑
j=1

x
x2 + ( 1

uj
− yu)2

Corollary

y ′
u ≤ −yu + x2 + y2

u
x

Using this, we can prove

Black box

−y(1) ≤ yu ≤ y(1) for all x > 0. (*)
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Differential equations

Compute

d
dx log F̃u(x) = −

∑n+1
j=1

x

x2+
(

1
uj

−yu

)2


2

+

∑n+1
j=1

−yu+uj (x2+y2
u )

x2+
(

1
uj

−yu

)2


2

∑n+1
j=1

x

x2+
(

1
uj

−yu

)2

Substituting u = (1) yields

d
dx log F̃(1)(x) = −

x2 + y2
(1)

x .
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Differential equations: Two curious inequalities

Use Cauchy-Schwarz:n+1∑
j=1

x

x2 +
(

1
uj

− yu
)2


2

=

n+1∑
j=1

(x/uj) · uj

x2 +
(

1
uj

− yu
)2


2

≤


n+1∑
j=1

(x/uj)2(
x2 +

(
1
uj

− yu
)2

)2


n+1∑

j=1
u2

j



=
n+1∑
j=1

(x/uj)2(
x2 +

(
1
uj

− yu
)2

)2
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Differential equations: Two curious inequalities

Use Cauchy-Schwarz again:n+1∑
j=1

−yu + uj(x2 + y2
u )

x2 +
(

1
uj

− yu
)2


2

=

n+1∑
j=1

(−yu/uj + x2 + y2
u ) · uj

x2 +
(

1
uj

− yu
)2


2

≤


n+1∑
j=1

(−yu/uj + x2 + y2
u )2(

x2 +
(

1
uj

− yu
)2

)2


n+1∑

j=1
u2

j



=
n+1∑
j=1

(−yu/uj + x2 + y2
u )2(

x2 +
(

1
uj

− yu
)2

)2
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Differential equations

Putting it together:

d
dx log F̃u(x) ≥ −

∑n+1
j=1

x2+y2
u

x2+
(

1
uj

−yu

)2

∑n+1
j=1

x

x2+
(

1
uj

−yu

)2

= −x2 + y2
u

x
(∗)
≥ −

x2 + y2
(1)

x

= d
dx log F̃(1)(x)

which is sufficient to imply F̃u(x) ≥ F̃(1)(x), as desired.
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Thanks
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