Simplex slicing: an asymptotically-sharp lower bound

Colin Tang

cstang@andrew.cmu.edu

June 21, 2024

Our goal

Let Δ_n denote the regular *n*-simplex.

Our goal

Let Δ_n denote the regular *n*-simplex.

Main question

How may we choose a 1-codimensional hyperplane H passing through the center of Δ_n , so that the volume of the intersection $\operatorname{vol}_{n-1}(\Delta_n \cap H)$ is *minimized*?

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a section of K.

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a *section* of K. If H passes through the barycenter of K, we call it a *central section*.

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a *section* of K. If H passes through the barycenter of K, we call it a *central section*.

Bourgain's slicing problem

Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n?

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a *section* of K. If H passes through the barycenter of K, we call it a *central section*.

Bourgain's slicing problem

Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n?

Open problem

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a *section* of K. If H passes through the barycenter of K, we call it a *central section*.

Bourgain's slicing problem

Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n?

- Open problem
- Key to understanding the uniform distribution on a high-dimensional convex body

If K is a convex body, we call a set of the form $K \cap H$ (where H is a 1-codimensional hyperplane) a *section* of K. If H passes through the barycenter of K, we call it a *central section*.

Bourgain's slicing problem

Does every convex body K of volume 1 admit a section whose volume is at least some universal constant, independent of the dimension n?

- Open problem
- Key to understanding the uniform distribution on a high-dimensional convex body
- Connections to isoperimetry in high dimensions (cf. KLS conjecture)

A general type of question

Given a specific convex body K, can we identify its minimum central section?

¹Hugo Hadwiger. "Gitterperiodische Punktmengen und Isoperimetrie". In: *Monatshefte für Mathematik* 76.5 (1972), pp. 410–418.

²Douglas Hensley. "Slicing the Cube in \mathbb{R}^n and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^n by Probability Methods)". In: *Proceedings of the American Mathematical Society* 73.1 (1979), pp. 95–100.

³Keith Ball. "Cube slicing in \mathbb{R}^{n} ". In: Proceedings of the American Mathematical Society 97.3 (1986), pp. 465–473.

⁴Simon Webb. "Central slices of the regular simplex". In: Geometriae Dedicata 61.1 (1996), pp. 19–28.

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

¹Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".

²Hensley, "Slicing the Cube in \mathbb{R}^n and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^n by Probability Methods)".

³Ball, "Cube slicing in \mathbb{R}^{n} ".

⁴Webb, "Central slices of the regular simplex".

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

• $K = Q_n$ (*n*-dimensional hypercube), minimal central section identified in [Hadwiger 1972¹, Hensley 1979²]

¹Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".

²Hensley, "Slicing the Cube in \mathbb{R}^n and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^n by Probability Methods)".

³Ball, "Cube slicing in \mathbb{R}^{n} ".

⁴Webb, "Central slices of the regular simplex".

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

- $K = Q_n$ (*n*-dimensional hypercube), minimal central section identified in [Hadwiger 1972¹, Hensley 1979²]
- $K = Q_n$, maximal central section identified in [Ball 1986³]

¹Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".

²Hensley, "Slicing the Cube in \mathbb{R}^n and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^n by Probability Methods)".

³Ball, "Cube slicing in \mathbb{R}^{n} ".

⁴Webb, "Central slices of the regular simplex".

A general type of question

Given a specific convex body K, can we identify its minimum central section? Maximum central section?

- $K = Q_n$ (*n*-dimensional hypercube), minimal central section identified in [Hadwiger 1972¹, Hensley 1979²]
- $K = Q_n$, maximal central section identified in [Ball 1986³]
- $K = \Delta_n$ (*n*-dimensional regular simplex), maximal central section identified in [Webb 1996⁴]

¹Hadwiger, "Gitterperiodische Punktmengen und Isoperimetrie".

²Hensley, "Slicing the Cube in \mathbb{R}^n and Probability (Bounds for the Measure of a Central Cube Slice in \mathbb{R}^n by Probability Methods)".

³Ball, "Cube slicing in \mathbb{R}^{n} ".

⁴Webb, "Central slices of the regular simplex".

Simplex minimum

This leaves open the question from the beginning:

Simplex minimum

What is the minimum central section of the regular simplex?

⁵Patryk Brzezinski. "Volume estimates for sections of certain convex bodies". In: *Mathematische Nachrichten* 286.17-18 (2013), pp. 1726–1743.

Simplex minimum

This leaves open the question from the beginning:

Simplex minimum

What is the minimum central section of the regular simplex?

Conjecture

The minimum central section is the central section $\Delta_n \cap H_{\text{facet}}$ that's parallel to a facet.

⁵Brzezinski, "Volume estimates for sections of certain convex bodies".

Simplex minimum

This leaves open the question from the beginning:

Simplex minimum

What is the minimum central section of the regular simplex?

Conjecture

The minimum central section is the central section $\Delta_n \cap H_{\mathrm{facet}}$ that's parallel to a facet.

Previous best bound [Brzezinski 2013⁵]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of $\frac{2\sqrt{3}}{e} \approx 1.27$ of the minimum.

⁵Brzezinski, "Volume estimates for sections of certain convex bodies".

Conjecture is true up to a 1 - o(1) factor [T. 2024⁶]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of 1 - o(1) of the minimum. (Little *o* is with respect to the dimension *n*.)

⁶Colin Tang. "Simplex slicing: an asymptotically-sharp lower bound". In: Advances in Mathematics 451 (2024), p. 109784. DOI: https://doi.org/10.1016/j.aim.2024.109784.

Conjecture is true up to a 1 - o(1) factor [T. 2024⁶]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of 1 - o(1) of the minimum. (Little *o* is with respect to the dimension *n*.) Tools used:

⁶Tang, "Simplex slicing: an asymptotically-sharp lower bound".

Conjecture is true up to a 1 - o(1) factor [T. 2024⁶]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of 1 - o(1) of the minimum. (Little *o* is with respect to the dimension *n*.)

Tools used:

probability distributions

⁶Tang, "Simplex slicing: an asymptotically-sharp lower bound".

Conjecture is true up to a 1 - o(1) factor [T. 2024⁶]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of 1 - o(1) of the minimum. (Little *o* is with respect to the dimension *n*.)

Tools used:

- probability distributions
- Fourier analysis

⁶Tang, "Simplex slicing: an asymptotically-sharp lower bound".

Conjecture is true up to a 1 - o(1) factor [T. 2024⁶]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of 1 - o(1) of the minimum. (Little *o* is with respect to the dimension *n*.)

Tools used:

- probability distributions
- Fourier analysis
- New: moving the contour of integration of a meromorphic function

⁶Tang, "Simplex slicing: an asymptotically-sharp lower bound".

Conjecture is true up to a 1 - o(1) factor [T. 2024⁶]

The central section $\Delta_n \cap H_{\text{facet}}$ is within a factor of 1 - o(1) of the minimum. (Little *o* is with respect to the dimension *n*.)

Tools used:

- probability distributions
- **Fourier analysis**
- New: moving the contour of integration of a meromorphic function

We'll prove this result in the remainder of the presentation.

⁶Tang, "Simplex slicing: an asymptotically-sharp lower bound".

Embed Δ_n into \mathbb{R}^{n+1} via

$$\Delta_n = \left\{ (x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \begin{array}{l} x_1 + x_2 + \dots + x_{n+1} = 1 \\ x_i \geq 0 \text{ for each } i \end{array} \right\}.$$

Embed Δ_n into \mathbb{R}^{n+1} via

$$\Delta_n = \left\{ (x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \begin{array}{c} x_1 + x_2 + \dots + x_{n+1} = 1 \\ x_i \geq 0 \text{ for each } i \end{array} \right\}.$$

Central sections $\Delta_n \cap H$ correspond to a choice of vector *a* with

$$\begin{cases} a_1 + a_2 + \dots + a_{n+1} = 0\\ a_1^2 + a_2^2 + \dots + a_{n+1}^2 = 1 \end{cases}$$

where a is the normal vector to H.

Embed Δ_n into \mathbb{R}^{n+1} via

$$\Delta_n = \left\{ (x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \begin{array}{c} x_1 + x_2 + \dots + x_{n+1} = 1 \\ x_i \geq 0 \text{ for each } i \end{array} \right\}.$$

Central sections $\Delta_n \cap H$ correspond to a choice of vector *a* with

$$\begin{cases} a_1 + a_2 + \dots + a_{n+1} = 0\\ a_1^2 + a_2^2 + \dots + a_{n+1}^2 = 1 \end{cases}$$

where *a* is the normal vector to *H*. Idea: Instead of Δ_n , consider the density

$$\Phi(x_1, x_2, \dots, x_{n+1}) = \begin{cases} e^{-x_1 - x_2 - \dots - x_{n+1}} & \text{ if each } x_i \ge 0\\ 0 & \text{ otherwise} \end{cases}$$

Embed Δ_n into \mathbb{R}^{n+1} via

$$\Delta_n = \left\{ (x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \begin{array}{c} x_1 + x_2 + \dots + x_{n+1} = 1 \\ x_i \geq 0 \text{ for each } i \end{array} \right\}.$$

Central sections $\Delta_n \cap H$ correspond to a choice of vector *a* with

$$\begin{cases} a_1 + a_2 + \dots + a_{n+1} = 0\\ a_1^2 + a_2^2 + \dots + a_{n+1}^2 = 1 \end{cases}$$

where *a* is the normal vector to *H*. Idea: Instead of Δ_n , consider the density

$$\Phi(x_1, x_2, \dots, x_{n+1}) = \begin{cases} e^{-x_1 - x_2 - \dots - x_{n+1}} & \text{ if each } x_i \ge 0\\ 0 & \text{ otherwise} \end{cases}$$

Then $\int_{a^{\perp}} \Phi \, d\mathcal{H}^n$ is proportional to the volume of the section.

Embed Δ_n into \mathbb{R}^{n+1} via

$$\Delta_n = \left\{ (x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid \begin{array}{c} x_1 + x_2 + \dots + x_{n+1} = 1 \\ x_i \geq 0 \text{ for each } i \end{array} \right\}.$$

Central sections $\Delta_n \cap H$ correspond to a choice of vector *a* with

$$\begin{cases} a_1 + a_2 + \dots + a_{n+1} = 0\\ a_1^2 + a_2^2 + \dots + a_{n+1}^2 = 1 \end{cases}$$

where *a* is the normal vector to *H*. Idea: Instead of Δ_n , consider the density

$$\Phi(x_1, x_2, \dots, x_{n+1}) = \begin{cases} e^{-x_1 - x_2 - \dots - x_{n+1}} & \text{if each } x_i \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Then $\int_{a^{\perp}} \Phi d\mathcal{H}^n$ is proportional to the volume of the section. Minimum central sections correspond to minimizing $\int_{a^{\perp}} \Phi d\mathcal{H}^n$.

But Φ is a product measure, so $\int_{a^{\perp}} \Phi \, d\mathcal{H}^n$ is the density at 0 of the random variable

$$Z_{\mathsf{a}} \coloneqq \mathsf{a}_1 Y_1 + \mathsf{a}_2 Y_2 + \dots + \mathsf{a}_{n+1} Y_{n+1}$$

(where the Y_i are i.i.d. standard exponentials (mean 1)).

But Φ is a product measure, so $\int_{a^{\perp}} \Phi \, d\mathcal{H}^n$ is the density at 0 of the random variable

$$Z_{\mathsf{a}} \coloneqq \mathsf{a}_1 Y_1 + \mathsf{a}_2 Y_2 + \dots + \mathsf{a}_{n+1} Y_{n+1}$$

(where the Y_i are i.i.d. standard exponentials (mean 1)).

But Φ is a product measure, so $\int_{a^{\perp}} \Phi \, d\mathcal{H}^n$ is the density at 0 of the random variable

$$Z_{\mathsf{a}}\coloneqq \mathsf{a}_1Y_1+\mathsf{a}_2Y_2+\cdots+\mathsf{a}_{n+1}Y_{n+1}$$

(where the Y_i are i.i.d. standard exponentials (mean 1)).

Let $G_a(x)$ denote the density of Z_a , so what we said above is $\int_{a^{\perp}} \Phi \, d\mathcal{H}^n = G_a(0).$

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$.

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$. Conjectured minimizer a_{facet} satisfies

$$G_{a_{\text{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}.$$

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$. Conjectured minimizer a_{facet} satisfies

$$G_{a_{ ext{facet}}}(0) = \sqrt{rac{n}{n+1}} \left(rac{n}{n+1}
ight)^{n-1} pprox rac{1}{e}.$$

It's hard to optimize over the set $\mathcal{S}^n \cap \mathbf{1}^{\perp}$ (the feasible region of *a*).

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$. Conjectured minimizer a_{facet} satisfies

$$G_{a_{\mathrm{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}$$

It's hard to optimize over the set $S^n \cap \mathbf{1}^{\perp}$ (the feasible region of *a*). Expand the feasible region:

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$. Conjectured minimizer a_{facet} satisfies $G_{a_{\text{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}.$

It's hard to optimize over the set $S^n \cap \mathbf{1}^{\perp}$ (the feasible region of *a*). Expand the feasible region:

Let u ∈ Sⁿ be arbitrary (the feasible region of u has one fewer constraint than that of a!).

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$. Conjectured minimizer a_{facet} satisfies $G_{a_{\text{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}.$

It's hard to optimize over the set $S^n \cap \mathbf{1}^{\perp}$ (the feasible region of *a*). Expand the feasible region:

Let u ∈ Sⁿ be arbitrary (the feasible region of u has one fewer constraint than that of a!).

• Define
$$Z_u := u_1(Y_1 - 1) + u_2(Y_2 - 1) + \dots + u_{n+1}(Y_{n+1} - 1)$$
.

Reduction

The minimum central section corresponds to a choice of vector *a* minimizing $G_a(0)$. Conjectured minimizer a_{facet} satisfies $G_{a_{\text{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1} \approx \frac{1}{e}.$

It's hard to optimize over the set $S^n \cap \mathbf{1}^{\perp}$ (the feasible region of *a*). Expand the feasible region:

- Let u ∈ Sⁿ be arbitrary (the feasible region of u has one fewer constraint than that of a!).
- Define $Z_u := u_1(Y_1 1) + u_2(Y_2 1) + \dots + u_{n+1}(Y_{n+1} 1).$

• This extends the earlier definition of Z_a since

$$\begin{aligned} a_1(Y_1-1) + a_2(Y_2-1) + \cdots + a_{n+1}(Y_{n+1}-1) \\ &= a_1Y_1 + a_2Y_2 + \cdots + a_{n+1}Y_{n+1} - (a_1 + a_2 + \cdots + a_{n+1}) \\ &= a_1Y_1 + a_2Y_2 + \cdots + a_{n+1}Y_{n+1}. \end{aligned}$$

Question

What's the minimum possible value that $G_u(0)$ can attain, as u varies in S^n ?

Question

What's the minimum possible value that $G_u(0)$ can attain, as u varies in S^n ?

Our result

 $G_u(0) \geq rac{1}{e}$ for each $u \in \mathcal{S}^n$. Equality achieved if $u = (1) \in \mathcal{S}^0$.

Question

What's the minimum possible value that $G_u(0)$ can attain, as u varies in S^n ?

Our result

 $G_u(0) \geq \frac{1}{e}$ for each $u \in S^n$. Equality achieved if $u = (1) \in S^0$. We lost a bit by expanding the feasible region from $S^n \cap \mathbf{1}^{\perp} \ni a$ to $S^n \ni u$.

Question

What's the minimum possible value that $G_u(0)$ can attain, as u varies in S^n ?

Our result

 $G_u(0) \ge \frac{1}{e}$ for each $u \in S^n$. Equality achieved if $u = (1) \in S^0$. We lost a bit by expanding the feasible region from $S^n \cap \mathbf{1}^{\perp} \ni a$ to $S^n \ni u$. Indeed, the minimum over u of $G_u(0)$ is exactly $\frac{1}{e}$, but we think the minimum over a of $G_a(0)$ is given by

$$G_{a_{\text{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1}$$

Question

What's the minimum possible value that $G_u(0)$ can attain, as u varies in S^n ?

Our result

 $G_u(0) \ge \frac{1}{e}$ for each $u \in S^n$. Equality achieved if $u = (1) \in S^0$. We lost a bit by expanding the feasible region from $S^n \cap \mathbf{1}^\perp \ni a$ to $S^n \ni u$. Indeed, the minimum over u of $G_u(0)$ is exactly $\frac{1}{e}$, but we think the minimum over a of $G_a(0)$ is given by $G_{a_{\text{facet}}}(0) = \sqrt{\frac{n}{n+1}} \left(\frac{n}{n+1}\right)^{n-1}$.

But certainly

$$rac{1}{e} = \min_u {\it G}_u(0) \leq \min_a {\it G}_a(0) \leq {\it G}_{a_{
m facet}}(0),$$

and since $G_{a_{\text{facet}}}(0) = \frac{1}{e}(1 + o(1))$, we lost at most a 1 + o(1) factor by expanding the feasible region.

 $G_u(x)$ is the density of a sum of independent centered exponentials $u_j(Y_j - 1)$, so G_u is a convolution $f_1 * f_2 * \cdots * f_{n+1}$.

 $G_u(x)$ is the density of a sum of independent centered exponentials $u_j(Y_j - 1)$, so G_u is a convolution $f_1 * f_2 * \cdots * f_{n+1}$. Here, $f_j(x)$ is the density of $u_j(Y_j - 1)$. It's given by $f_j(x) = \frac{1}{|u_j|} f(\frac{x}{u_j} + 1)$ where f is the density of the standard (uncentered) exponential with mean 1:

$$f(x) = egin{cases} e^{-x} & ext{if } x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

$$\hat{f}(t) = \frac{1}{1+it}$$

$$\widehat{f}(t) = rac{1}{1+it}$$
 $\widehat{f}_j(t) = rac{e^{iu_jt}}{1+iu_jt}$

$$\widehat{f}(t) = \frac{1}{1+it}$$

$$\widehat{f}_j(t) = \frac{e^{iu_j t}}{1+iu_j t}$$

$$\widehat{G}_u(t) = \prod_{j=1}^{n+1} \widehat{f}_j(t) = \prod_{j=1}^{n+1} \frac{e^{iu_j t}}{1+iu_j t}$$

Take the Fourier transform. Convolution becomes pointwise multiplication.

$$\widehat{f}(t) = \frac{1}{1+it}$$

$$\widehat{f}_j(t) = \frac{e^{iu_jt}}{1+iu_jt}$$

$$\widehat{G}_u(t) = \prod_{j=1}^{n+1} \widehat{f}_j(t) = \prod_{j=1}^{n+1} \frac{e^{iu_jt}}{1+iu_jt}$$

Fourier inversion formula, valid if u has at least two nonzero entries:

$$G_{u}(0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{G_{u}}(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \prod_{j=1}^{n+1} \frac{e^{iu_{j}t}}{1 + iu_{j}t} dt$$

We wanted to show $G_u(0) \ge \frac{1}{e}$, and this is equivalent to

$$rac{1}{2\pi}\int_{-\infty}^{+\infty}\prod_{j=1}^{n+1}rac{e^{id_jt}}{1+iu_jt}\,dt\geq rac{1}{e}.$$

We wanted to show $G_u(0) \geq rac{1}{e}$, and this is equivalent to

$$\frac{1}{2\pi}\int_{-\infty}^{+\infty}\prod_{j=1}^{n+1}\frac{e^{iu_jt}}{1+iu_jt}\,dt\geq\frac{1}{e}$$

Letting $F_u(t) \coloneqq \prod_{j=1}^{n+1} \frac{e^{iu_j t}}{1+iu_j t}$, we just want to show

$$rac{1}{2\pi}\int_{-\infty}^{+\infty}F_u(t)\,dt\geq rac{1}{e}.$$

Some complex analysis

Thus far, all the techniques have been known.

Thus far, all the techniques have been known. The main difficulty now is estimating the highly oscillatory integral $\int_{-\infty}^{+\infty} F_u(t) dt$. Thus far, all the techniques have been known.

The main difficulty now is estimating the highly oscillatory integral $\int_{-\infty}^{+\infty} F_u(t) dt$.

I'll spare you the pictures from my first attempt. It really wasn't great.

New idea: moving the contour of integration.

New idea: moving the contour of integration.

Recall from complex analysis that the integral of a meromorphic function doesn't depend on the path taken (with some caveats).

New idea: moving the contour of integration.

- Recall from complex analysis that the integral of a meromorphic function doesn't depend on the path taken (with some caveats).
- If we want to estimate the integral ∫^{+∞}_{-∞} F_u(t) dt, we can change the contour of integration, from the real line, to a special curve γ_u.

New idea: moving the contour of integration.

- Recall from complex analysis that the integral of a meromorphic function doesn't depend on the path taken (with some caveats).
- If we want to estimate the integral ∫^{+∞}_{-∞} F_u(t) dt, we can change the contour of integration, from the real line, to a special curve γ_u.
- We will choose γ_u to have the property that F_u is always a positive real number along γ_u.

Here's a plot of $F_u(t)$ with $u = (\sqrt{0.42}, \sqrt{0.38}, \sqrt{0.20})$:

Here's a plot of $F_u(t)$ with $u = (\sqrt{0.42}, \sqrt{0.38}, \sqrt{0.20})$:

The color denotes the argument of $F_u(t)$. Red means real. Follow the red color, trace out a curve γ_u .

Black box (basically just the Implicit Function Theorem)

We can always find such a curve γ_u , along which F_u takes positive real values, such that γ_u is \mathcal{C}^{∞} and passes through the origin. Moreover, γ_u can be viewed as the graph of an even function $y_u(x)$ in the *xy*-plane (identified with the complex plane in the usual manner).

Black box (basically just the Implicit Function Theorem)

We can always find such a curve γ_u , along which F_u takes positive real values, such that γ_u is \mathcal{C}^{∞} and passes through the origin. Moreover, γ_u can be viewed as the graph of an even function $y_u(x)$ in the *xy*-plane (identified with the complex plane in the usual manner).

Here's a plot of γ_u with the same u ($u = (\sqrt{0.42}, \sqrt{0.38}, \sqrt{0.20})$):

Black box (some crude tail bounds)

As long as u has at least two nonzero entries, we have that the integral $\int_{-\infty}^{+\infty} F_u(t) dt$ exists and equals $\int_{\gamma_u} F_u(t) dt$. Moreover, the integrand $F_u(t)$ is always a positive real number if t is on γ_u .

Black box (some crude tail bounds)

As long as u has at least two nonzero entries, we have that the integral $\int_{-\infty}^{+\infty} F_u(t) dt$ exists and equals $\int_{\gamma_u} F_u(t) dt$. Moreover, the integrand $F_u(t)$ is always a positive real number if t is on γ_u . This is the part when we actually **move the contour of integration**.

Black box (some crude tail bounds)

As long as u has at least two nonzero entries, we have that the integral $\int_{-\infty}^{+\infty} F_u(t) dt$ exists and equals $\int_{\gamma_u} F_u(t) dt$. Moreover, the integrand $F_u(t)$ is always a positive real number if t is on γ_u .

This is the part when we actually *move the contour of integration*.

So we just need to estimate $\int_{\gamma_u} F_u(t) dt$.

Recall that $y_u(x)$ is the function whose graph is γ_u .

Recall that $y_u(x)$ is the function whose graph is γ_u . Defining $\tilde{F}_u(x) \coloneqq F_u(x + iy_u(x))$, we can compute that $\int_{\gamma_u} F_u(t) dt = \int_{\mathbb{R}} \tilde{F}_u(x) dx$ since \tilde{F}_u is an even function of x.

Recall that $y_u(x)$ is the function whose graph is γ_u . Defining $\tilde{F}_u(x) \coloneqq F_u(x + iy_u(x))$, we can compute that $\int_{\gamma_u} F_u(t) dt = \int_{\mathbb{R}} \tilde{F}_u(x) dx$ since \tilde{F}_u is an even function of x. (We changed dt to dx.)

Recall that $y_u(x)$ is the function whose graph is γ_u . Defining $\tilde{F}_u(x) \coloneqq F_u(x + iy_u(x))$, we can compute that $\int_{\gamma_u} F_u(t) dt = \int_{\mathbb{R}} \tilde{F}_u(x) dx$ since \tilde{F}_u is an even function of x. (We changed dt to dx.)

So we just need to show

$$\boxed{\frac{1}{2\pi}\int_{\mathbb{R}}\tilde{F}_u(x)\,dx\geq \frac{1}{e}}.$$

Compute that equality holds if $u = (1) \in S^0$; i.e.

$$\frac{1}{2\pi}\int_{\mathbb{R}}\tilde{F}_{(1)}(x)\,dx=\frac{1}{e}.$$

Compute that equality holds if $u = (1) \in S^0$; i.e.

$$\frac{1}{2\pi}\int_{\mathbb{R}}\tilde{F}_{(1)}(x)\,dx=\frac{1}{e}.$$

If we could show $|\tilde{F}_u(x) \ge \tilde{F}_{(1)}(x)$ for each x|, then we would automatically get

$$rac{1}{2\pi}\int_{\mathbb{R}} ilde{\mathsf{F}}_u(x)\,dx\geq rac{1}{2\pi}\int_{\mathbb{R}} ilde{\mathsf{F}}_{(1)}(x)\,dx=rac{1}{e}$$

as desired.

Compute that equality holds if $u = (1) \in \mathcal{S}^0$; i.e.

$$\frac{1}{2\pi}\int_{\mathbb{R}}\tilde{F}_{(1)}(x)\,dx=\frac{1}{e}$$

If we could show $|\tilde{F}_u(x) \ge \tilde{F}_{(1)}(x)$ for each x|, then we would automatically get

$$rac{1}{2\pi}\int_{\mathbb{R}} ilde{\mathsf{F}}_u(x)\,dx\geq rac{1}{2\pi}\int_{\mathbb{R}} ilde{\mathsf{F}}_{(1)}(x)\,dx=rac{1}{e}$$

as desired.

Let's show the boxed statement.

Compute that equality holds if $u = (1) \in S^0$; i.e.

$$\frac{1}{2\pi}\int_{\mathbb{R}}\tilde{F}_{(1)}(x)\,dx=\frac{1}{e}$$

If we could show $\left| \widetilde{F}_{u}(x) \geq \widetilde{F}_{(1)}(x) \right|$ for each x, then we would automatically get

$$rac{1}{2\pi}\int_{\mathbb{R}} ilde{\mathsf{F}}_u(x)\,dx\geq rac{1}{2\pi}\int_{\mathbb{R}} ilde{\mathsf{F}}_{(1)}(x)\,dx=rac{1}{e}$$

as desired.

Let's show the boxed statement. From now on, assume x > 0.

Defining property of y_u

$$y'_{u} = \sum_{j=1}^{n+1} \frac{-y_{u} + u_{j}(x^{2} + y_{u}^{2})}{x^{2} + (\frac{1}{u_{j}} - y_{u})^{2}} \bigg/ \sum_{j=1}^{n+1} \frac{x}{x^{2} + (\frac{1}{u_{j}} - y_{u})^{2}}$$

Defining property of y_u

$$y'_{u} = \sum_{j=1}^{n+1} \frac{-y_{u} + u_{j}(x^{2} + y_{u}^{2})}{x^{2} + (\frac{1}{u_{j}} - y_{u})^{2}} \bigg/ \sum_{j=1}^{n+1} \frac{x}{x^{2} + (\frac{1}{u_{j}} - y_{u})^{2}}$$

Corollary

$$y'_u \le \frac{-y_u + x^2 + y_u^2}{x}$$

Defining property of y_u

$$y'_{u} = \sum_{j=1}^{n+1} \frac{-y_{u} + u_{j}(x^{2} + y_{u}^{2})}{x^{2} + (\frac{1}{u_{j}} - y_{u})^{2}} \bigg/ \sum_{j=1}^{n+1} \frac{x}{x^{2} + (\frac{1}{u_{j}} - y_{u})^{2}}$$

Corollary

$$y'_u \le \frac{-y_u + x^2 + y_u^2}{x}$$

Using this, we can prove Black box

$$-y_{(1)} \le y_u \le y_{(1)}$$
 for all $x > 0$. (*)

Compute

$$\frac{d}{dx}\log\tilde{F}_{u}(x) = -\frac{\left(\sum_{j=1}^{n+1}\frac{x}{x^{2} + \left(\frac{1}{u_{j}} - y_{u}\right)^{2}}\right)^{2} + \left(\sum_{j=1}^{n+1}\frac{-y_{u} + u_{j}(x^{2} + y_{u}^{2})}{x^{2} + \left(\frac{1}{u_{j}} - y_{u}\right)^{2}}\right)^{2}}{\sum_{j=1}^{n+1}\frac{x}{x^{2} + \left(\frac{1}{u_{j}} - y_{u}\right)^{2}}}$$

Compute

$$\frac{d}{dx}\log\tilde{F}_{u}(x) = -\frac{\left(\sum_{j=1}^{n+1}\frac{x}{x^{2} + \left(\frac{1}{u_{j}} - y_{u}\right)^{2}}\right)^{2} + \left(\sum_{j=1}^{n+1}\frac{-y_{u} + u_{j}(x^{2} + y_{u}^{2})}{x^{2} + \left(\frac{1}{u_{j}} - y_{u}\right)^{2}}\right)^{2}}{\sum_{j=1}^{n+1}\frac{x}{x^{2} + \left(\frac{1}{u_{j}} - y_{u}\right)^{2}}}$$

Substituting u = (1) yields

$$\frac{d}{dx}\log \tilde{F}_{(1)}(x) = -\frac{x^2 + y_{(1)}^2}{x}.$$

Differential equations: Two curious inequalities

Use Cauchy-Schwarz:

$$\begin{pmatrix} \sum_{j=1}^{n+1} \frac{x}{x^2 + \left(\frac{1}{u_j} - y_u\right)^2} \end{pmatrix}^2 = \left(\sum_{j=1}^{n+1} \frac{(x/u_j) \cdot u_j}{x^2 + \left(\frac{1}{u_j} - y_u\right)^2} \right)^2 \\ \leq \left(\sum_{j=1}^{n+1} \frac{(x/u_j)^2}{\left(x^2 + \left(\frac{1}{u_j} - y_u\right)^2\right)^2} \right) \left(\sum_{j=1}^{n+1} u_j^2 \right) \\ = \sum_{j=1}^{n+1} \frac{(x/u_j)^2}{\left(x^2 + \left(\frac{1}{u_j} - y_u\right)^2\right)^2}$$

Differential equations: Two curious inequalities

Use Cauchy-Schwarz again:

$$\begin{pmatrix} \sum_{j=1}^{n+1} \frac{-y_u + u_j(x^2 + y_u^2)}{x^2 + \left(\frac{1}{u_j} - y_u\right)^2} \end{pmatrix}^2 = \left(\sum_{j=1}^{n+1} \frac{(-y_u/u_j + x^2 + y_u^2) \cdot u_j}{x^2 + \left(\frac{1}{u_j} - y_u\right)^2} \right)^2 \\ \leq \left(\sum_{j=1}^{n+1} \frac{(-y_u/u_j + x^2 + y_u^2)^2}{\left(x^2 + \left(\frac{1}{u_j} - y_u\right)^2\right)^2} \right) \left(\sum_{j=1}^{n+1} u_j^2 \right) \\ = \sum_{j=1}^{n+1} \frac{(-y_u/u_j + x^2 + y_u^2)^2}{\left(x^2 + \left(\frac{1}{u_j} - y_u\right)^2\right)^2} \right)^2$$

Putting it together:

$$\frac{d}{dx}\log\tilde{F}_{u}(x) \geq -\frac{\sum_{j=1}^{n+1}\frac{x^{2}+y_{u}^{2}}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}}{\sum_{j=1}^{n+1}\frac{x}{x^{2}+\left(\frac{1}{u_{j}}-y_{u}\right)^{2}}}$$
$$= -\frac{x^{2}+y_{u}^{2}}{x}$$
$$\stackrel{(*)}{\geq} -\frac{x^{2}+y_{(1)}^{2}}{x}$$
$$= \frac{d}{dx}\log\tilde{F}_{(1)}(x)$$

which is sufficient to imply $\tilde{F}_{u}(x) \geq \tilde{F}_{(1)}(x)$, as desired.

Thanks