Math 300 Class 18

Wednesday 20th February 2019

Theorem 1 — Some properties of size

- (a) If Y is finite and there is an injection $X \to Y$, then X is finite and $|X| \le |Y|$;
- (b) If X is finite and there is a surjection $X \to Y$, then Y is finite and $|X| \ge |Y|$;
- (c) If X and Y are finite, then $X \times Y$ is finite and $|X \times Y| = |X| \cdot |Y|$;
- (d) If X and Y are finite and $X \cap Y = \emptyset$, then $X \cup Y$ is finite and $|X \cup Y| = |X| + |Y|$.

Definition 2 — Binomial coefficients (combinatorial definition) Let $n, k \in \mathbb{N}$. The set $\binom{[n]}{k}$ is defined by

$$\binom{[n]}{k} = \{U \subseteq [n] \mid |U| = k\}$$

The **binomial coefficient** $\binom{n}{k}$ is defined by $\binom{n}{k} = \left| \binom{[n]}{k} \right|$.

Example 3

Compute $\binom{3}{k}$ for all $k \in \mathbb{N}$.

$$\begin{pmatrix} \begin{bmatrix} 3 \\ 0 \end{pmatrix} = \begin{cases} \emptyset \end{cases} \Rightarrow \begin{pmatrix} 3 \\ 0 \end{pmatrix} = 1$$

$$\begin{pmatrix} \begin{bmatrix} 37 \\ 1 \end{pmatrix} = \begin{cases} \{13, \{23, \{23\}\} \Rightarrow \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 3$$

$$\begin{pmatrix} \begin{bmatrix} 33 \\ 2 \end{pmatrix} = \begin{cases} \{1,23, \{1,33, \{2,33\}\} \Rightarrow \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 3$$

$$\begin{pmatrix} \begin{bmatrix} 37 \\ 3 \end{bmatrix} = \begin{cases} \{1,2,33\} \end{cases} \Rightarrow \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 1$$

$$\begin{pmatrix} \begin{bmatrix} 37 \\ k \end{pmatrix} = \emptyset \text{ for all } k > 3 \Rightarrow \begin{pmatrix} 3 \\ k \end{pmatrix} = 0 \text{ for all } k > 3.$$

1

Useful fact:
$$\binom{n}{k} = \left| \binom{X}{k} \right|$$
 for any set X with $|X| = n$.

Parts (a) and (b) of Theorem 1 combine to give the following useful proof technique.

Strategy (Bijective proof)

In order to prove that finite sets X and Y have the same size, it suffices to find a bijection $X \to Y$.

Example 4

Prove that $\binom{n}{k} = \binom{n}{n-k}$ for all $n, k \in \mathbb{N}$ with $k \leqslant n$.

Define $f: \binom{[n]}{k} \longrightarrow \binom{[n]}{n-k}$ by

f(u) = [n] \ U for all U = [n] with |U| = k

Note f is well-defined: by Ex 10 from yesterday:

[[n] \ u | = |[n] | - |u| = n-k

 \Rightarrow [n] $| U \in ([n])$ as claimed.

& f is a bijection — it has an inverse

 $g: (n-h) \longrightarrow (n)$

defined by $g(V) = [n] V \text{ for all } V \subseteq [n]$ with |V| = n - k

(Note: [n]) ([n] u) = u for all us [n]

In general, YI(YIX) = X NY.)

Since there is a bijection ([n]) - ([n])

we have $\left| \begin{pmatrix} [n] \\ k \end{pmatrix} \right| = \left| \begin{pmatrix} [n] \\ n-k \end{pmatrix} \right|$

$$\Rightarrow \binom{n}{k} = \binom{n}{n-k}.$$

Definition 5

A partition of a finite set X is a family U_1, U_2, \dots, U_n of (inhabited[†]) subsets of X such that:

- (i) $\bigcup_{i=1}^{n} U_i = X$; and
- (ii) $U_i \cap U_j = \emptyset$ if $i \neq j$ (that is to say that U_1, \dots, U_n are pairwise disjoint).

[† In the current context, we will additionally allow the sets U_i to be empty.]

Theorem 6 — Addition principle

Let X be a finite set and U_1, U_2, \dots, U_n be a partition of X. Then $|X| = \sum_{i=1}^n |U_i|$.

Strategy 7

In order to count the elements of a set X, it suffices to partition X into subsets U_1, \ldots, U_n and add up the sizes of the sets in the partition.

Example 8

Prove that, for all $n, k \in \mathbb{N}$, we have $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Let
$$X = \begin{pmatrix} [n+1] \\ k+1 \end{pmatrix}$$
 and define
$$\begin{cases} U_1 = \{ A \in X \mid n+1 \in A \} \\ U_2 = \{ A \in X \mid n+1 \notin A \} \end{cases}$$

Then U1, U2 is a partition of X: for all AC[n+1] we must have n+1 EA or n+1 &A, but not both.

Moneover: • Each
$$A \in U_1$$
 is $A' \cup \{n+1\}$ for a unique $A' \subseteq [n]$ with $|A'| = k$ (i.e. $A' \in \binom{[n]}{k}$)
$$\Rightarrow |U_1| = \binom{n}{k}$$

By the addition principle,

$$\binom{n+1}{k+1} = \left| \binom{\lceil n+1 \rceil}{k+1} \right| = \left| u_1 \right| + \left| u_2 \right| = \binom{n}{k} + \binom{n}{k+1} = D$$

Theorem 9 — Multiplication principle

Fix $m, n \in \mathbb{N}$. Let X be a finite set with |X| = m, and for each $a \in X$, let Y_a be a finite set with $|Y_a| = n$. Then

$$|\{(a,b) \mid a \in X, b \in Y_a\}| = mn$$

The pair (a,b) is called a **dependent pair**, because the set that b belongs to depends on the value of a. This generalises (by induction!) to sets of dependent n-tuples—the precise statement is ugly.

Strategy 10

Given a finite set X, in order to compute |X|, it suffices to devise a step-by-step procedure for uniquely specifying an element of X—each step may depend on the last, but

Example 11

|Al=k

Compute the size of the set $X = \{(A, a) \mid A \subseteq [n], a \in A\}$ in two ways:

(a) Specify $(A, a) \in X$ by first choosing A and then choosing a.

- · Step 1 Choose ACENI with IAI=k. There are (1) choices.
- · Step? Choose a & A: Since |A|=le, there are le chorces.

(b) Specify $(A, a) \in X$ by first choosing a and then choosing A.

- · Step 1 Choose a E [n]. There are n chorices.
- Step 2 Choose the renaining k-1 elements of A from $[n] \setminus \{a\}$ Since $|[n] \setminus \{a\}| = n-1$, there are $\binom{n-1}{k-1}$ choices.

there are $\binom{n-1}{k-1}$ choices. By MP, there are $N \cdot \binom{n-1}{k-1}$ elements in X. Observe that (a) & (b) imply that $\binom{n}{k} \cdot k = n \cdot \binom{n-1}{k-1}$.

Strategy (Double counting)

In order to prove that two expressions involving natural numbers are equal, it suffices to define a set X and devise two counting proofs to show that |X| is equal to both expressions.