Math 300 Class 4

Friday 11th January 2019

Recall from your pre-class reading:

Definition 1

A **predicate** is a symbol p together with a specified list of **free variables** x_1, x_2, \ldots, x_n and, for each free variable x_i , a specification of a **domain of discourse** of x_i . We will typically write $p(x_1, x_2, \ldots, x_n)$ in order to make the variables explicit.

Definition 2

A **logical formula** is an expression that is built from predicates using logical operators and quantifiers; it may have both free and bound variables.

The two most important quantifiers are the universal quantifier \forall and the existential quantifier \exists :

- The expression " $\forall x \in X, \dots$ " denotes 'for all $x \in X, \dots$ ";
- The expression ' $\exists x \in X, \dots$ ' denotes 'there exists $x \in X$ such that ...'

Proving universally quantified logical formulae

When X is finite, we can prove that a property p(x) is true of all the elements $x \in X$ just by checking them one by one. But what if X is infinite?

Example 3

Prove that the square of every odd integer is odd.

Let n be an odd integer.

Then
$$n = 2k+1$$
 for some $k \in \mathbb{Z}$

$$\Rightarrow n^2 = (2k+1)^2 = 4k^2 + 4k + 1$$

$$= 2(2k^2 + 2k) + 1$$
So n^2 leaves a remainder of 1 when divided by 2. So n^2 is odd, as required. \square

The key to Example 3 was introducing a new variable n that refers to an odd integer and, without assuming anything about n other than that it is an odd integer, proving that n^2 is even. We say that n is an arbitrary odd integer.

A proof of $\forall x \in X$, p(x) typically looks a bit like this:

- Introduce a variable x, which refers to an element of X.
- Prove p(x), assuming nothing about x except that it is an element of X.

Useful phrases for introducing an arbitrary variable include 'fix $x \in X$ ' or 'let $x \in X$ ' or 'take $x \in X$ '.

Example 4

Prove that every integer is rational.

Fix
$$n \in \mathbb{Z}$$
.

Then $n = \frac{n}{1} = \frac{n}{nonzero integer} \Rightarrow n \in \mathbb{Q}$
as required. \square

Example 5 Prove that, for all irrational numbers x and y, the numbers x + y and x - y are not both rational.

Let
$$x$$
 and y be arbitrary rational numbers.

Towards a cantradiction, assume $x+y\in \mathbb{Q}$ and $x-y\in \mathbb{Q}$.

Then $x+y=\frac{a}{b}$ and $x-y=\frac{c}{d}$ for some $a,b,c,d\in \mathbb{Q}$ with $b,d\neq 0$.

So $\frac{a}{b}+\frac{c}{d}=(x+y)+(x-y)=2x$
 $\Rightarrow x=\frac{1}{2}(\frac{a}{b}+\frac{c}{d})=\frac{ad+bc}{2bd}$

Since $ad+bc\in \mathbb{Q}$ and $2bd\in \mathbb{Q}$, with $2bd\neq 0$, it follows that $x\in \mathbb{Q}$. Cartradiction! So $x+y$ and $2-y=ae$ not both rational.

Proving existentially quantified logical formulae

In order to prove that an element of a set X satisfying a property p(x) exists, all we need to do is find one! (Well, and prove that p(x) truly does hold of that element.)

Example 6

Prove that there is a natural number that is a perfect square and is one more than a perfect cube.

Define
$$n=9$$
. Then

on is a perfect square $n=3^2$

in is one more than a perfect cube: $n-1=8=2^3$

So n is as required.

The following exercise involves both a universal and an existential quantifier.

Example 7

Example 7
Prove that, for all
$$x,y \in \mathbb{Q}$$
, if $x < y$ then there is some $z \in \mathbb{Q}$ with $x < z < y$. $\}$ $\forall x,y \in \mathbb{Q}$, $[x < y \Rightarrow]$
Let $x,y \in \mathbb{Q}$. (Then $x = \frac{a}{b}$ and $y = \frac{c}{d}$
Assume $x < y$ with $b, d \neq 0$.)

Define
$$z = \frac{x+y}{2}$$
. Then

•
$$Z \in \mathbb{Q}$$
, since $Z = \frac{a}{b} + \frac{c}{a} = \frac{ad + bc}{2bd}$

$$x = \frac{x}{2} + \frac{x}{2} < \frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2} = y$$

Uniqueness

Sometimes we want to know not just that an object with a certain property *exists*, but that there is *exactly one* of them. This property is called *uniqueness*. We write $\exists ! x \in X$, p(x) to mean that there is exactly one $x \in X$ making p(x) true.

Proving that there is one and only one element x of a set X making a property true is typically done in two stages:

• (Existence) Prove that at least one $x \in X$ makes p(x) true:

$$\exists x \in X, p(x)$$

• (Uniqueness) Prove that at most one $x \in X$ makes p(x) true:

$$\forall a, b \in X, [p(a) \land p(b) \Rightarrow a = b]$$
 or $\underbrace{\forall a \in X, [p(a) \Rightarrow a = x]}_{\text{relative to the } x \text{ we proved } exists}$

Example 8

Prove that for all $a \in \mathbb{R}$, there is a unique $x \in \mathbb{R}$ such that $x^2 + 2ax + a^2 = 0$.

(3) Define
$$x = -a$$
. Then $x^2 + 2ax + a^2 = (-a)^2 - 2a^2 + a^2 = a^2 - 2a^2 + a^2 = 0$ as required.

(!) Let
$$y \in \mathbb{R}$$
 and assum $y^2 + 2ay + a^2 = 0$.
Then $(y+a)^2 = 0$, so $y+a=0$, and here $y=-a$

$$\Rightarrow y=x, \text{ as required.}$$

Pre-class assignment for Class 5 (Mon, Jan 14)

Read §1.3 Logical equivalence up to and including Example 1.3.3, and then answer the questions on Canvas (go to Assignments \rightarrow Class 5).

Strategies for proving statements involving quantifiers

Strategy (Proving unique-existentially quantified statements)

 $X, [p(x) \Rightarrow x = a].$

Strategy (Proving universally quantified statements) To prove a proposition of the form $\forall x \in X$, p(x), it suffices to prove p(x) for an **arbitrary** element $x \in X$ —in other words, prove p(x) whilst assuming nothing about the variable x other than that it is an element of X.

Strategy (Proving existentially quantified statements)
To prove a proposition of the form $\exists x \in X$, p(x), it suffices to prove p(a) for some specific element $a \in X$, which should be explicitly defined.

A proof of a statement of the form ∃!x ∈ X, p(x), consists of two parts:
Existence — prove that ∃x ∈ X, p(x) is true;
Uniqueness — let a, b ∈ X, assume that p(a) and p(b) are true, and derive a = b.
Alternatively, prove existence to obtain a fixed a ∈ X such that p(a) is true, and then prove ∀x ∈

Strategies for using statements involving quantifiers as assumptions

Strategy (Assuming universally quantified statements) If an assumption in a proof has the form $\forall x \in X$, p(x), then we may assume that p(a) is true whenever a is an element of X.

Strategy (Assuming existentially quantified statements) If an assumption in the proof has the form $\exists x \in X, p(x)$, then we may introduce a new variable $a \in X$ and assume that p(a) is true.