Math 300 Class 4

Friday 11th Januvary 2019

Recall from your pre-class reading:

Definition 1

A predicate is a symbol p together with a specified list of free variables x;,x;,...,x, and, for
each free variable x;, a specification of a domain of discourse of x;. We will typically write
p(x1,x2,...,%,) in order to make the variables explicit.

Definition 2
A logical formula is an expression that is built from predicates vsing logical operators and quanti-
fiers; it may have both free and bound variables.

The two most important quantifiers are the universal quantifier ¥ and the existential quantifier 3

s The expression ‘Vx € X, ..." denotes ‘forallx e X,...";

o The expression ‘dx € X, ...’ denotes ‘there exists x € X such that ...

Proving universally quantified logical formulae

When X is finite, we can prove that a property p(x) is true of all the elements x € X just by checking
them one by one. But what if X is infinite?

Example 3
Prove that the square of every odd integer is odd.
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The key to Example 3 was introducing a new variable # that refers to an odd integer and, without

assuming anything about » other than that it is an odd integer, proving that n” is even. We say that
n is an arbitrary odd integer.

A proof of Vx € X, p(x) typically looks a bit like this:
e Introduce a variable x, which refers to an element of X.
e Prove p(x), assuming nothing about x except that it is an element of X.

Useful phrases for introducing an arbitrary variable include ‘fixx € X’ or ‘letx € X~ or ‘takex € X’.

Example 4 &
Prove that every integer is rational.
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Example 5
Prove that, for all irrational numbers x and y, the numbers x+ y and x — y are not both rational.
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Proving existentially quantified logical formulae

In order to prove that an element of a set X satisfying a property p(x) exists, all we need to do is
find one! (Well, and prove that p(x) truly does hold of that element.)

Example 6

Prove that there is a natural number that is a perfect square and is one more than a perfect cube.
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The following exercise involves both a universal and an existential quantifier.
Example 7

Prove that, for all x,y € QQ, if x < y then there is some z e Q withx < z < . z ijg@,[x¢g =
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Uniqueness

Sometimes we want to know not just that an object with a certain property exists, but that there is
exactly one of them. This property is called unigueness. We write 3'x € X, p(x) to mean that there
is exactly one x € X making p(x} true.

Proving that there is one and only one element x of a set X making a property true is typically done
in two stages:

o (Existence) Prove that at least one x € X makes p(x) true:

x € X, p(x)

e (Uniqueness) Prove that ar most one x € X makes p(x) true:

Va,be X, [p(a) Ap(b) = a=b] or Va€X, [pla)=>a=x]

relative to the x we proved exists

Example 8
Prove that for all @ € R, there is a unique x € R such that x*> + 2ax +a* = 0.
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Pre-class assignment for Class 5 (Mon, Jan 14)

Read §1.3 Logical equivalence up to and including Example 1.3.3, and then answer the questions
on Canvas (go to Assignments — Class 3).



Strategies for proving statements involving quantifiers

Strategy (Proving universally quantified statements)
To prove a proposition of the form Vx € X, p(x), it suffices to prove p(x) for an arbitrary element
x € X—in other words, prove p(x) whilst assuming nothing about the variable x other than that it is

an element of X. <

Strategy (Proving existentially quantified statements)
To prove a proposition of the form 3x € X, p(x), it suffices to prove p(a) for some specific element
a € X, which should be explicitly defined. <

| Strategy (Proving unique-existentially quantified statements)
A proof of a statement of the form 3!x € X, p(x), consists of two parts:
o Existence — prove that Ix € X, p(x) is true;

o Uniqueness — let a,b € X, assume that p(a) and p(b) are true, and derive a = b.
Alternatively, prove existence to obtain a fixed @ € X such that p(a) is true, and then prove Vx €
X, [p(x) = x=ad]. <

Strategies for using statements involving quantifiers as assumptions

Strategy (Assuming universally quantified statements) ]
If an assumption in a proof has the form Vx € X, p(x), then we may assume that p{a) is true
|whenever g is an element of X. <

Strategy (Assuming existentially quantified statements)
If an assumption in the proof has the form Ix € X, p(x), then we may introduce a new variable
a € X and assume that p(a) is true. <




