Math 290-2 Class 25

Friday 8th March 2019

Constrained extrema: one constraint

There is often a need to maximise or minimise a quantity subject to an equational constraint.

Suppose we want to maximise a quantity f(x,y)
subject to the constraint g{x,y) = ¢, where c is
some constant,

?(xfj )=le.

If k is the largest value attained by f(x,y), then
the level curve f(x,y) = k must be tangent to the
curve g(x,y) =c.

k=~

(See accompanying illustration.) :
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This means that the gradient vector to the curve f(x,y) = k must be parallel to the gradient vector
to the curve g(x,y) = ¢. Thus at the point (x, y), we have feiha)

Vf(xy) =AVg(x,y)

The scalar A is called a Lagrange multiplier.

The system of equations given by g(x,y) = cand Vf(x,y) = AVg(x,y) can be solved, and whichever
solution yields the greatest value of f(x,y) is the maximum value of f(x,y) subject to the constraint
g(x,y) = c. (Likewise, the least value of f(x,y) is the minimum value of f(x,y) subject to the
constraint g(x,y) = c¢.)

The points where f attains these maximum and minimum values are called constrained extrema.

This generalises to higher dimensions: to maximise (or minimise) f(x) subject to the constraint
g(x) = ¢, solve the system given by g(x) = ¢ and Vf(x) = AVg(x) and take whichever solution
makes the value of f(x) greatest (or least).

Constrained extrema: multiple constraints

Introducing more constraints leads to a system g(x) = c; that is
aX)=c, X =c, ..., gn(x)=cm
In this case, we need m Lagrange multipliers A1, 42,..., A, and the system we need to solve is

Vf(x)=ATDg(x) orequivalently Vf{x)=AVgi(x)+- ~+ AnVgm(x)



1. Find the points on the Cllipsmm are closest to the origin.
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2. Find the greatest volume that an item of luggage of the largest permissible size can have when
flying with American Airlines.
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3. Find the point on the line of intersection of the planes x+ 2y —z =1 and 2x —z = 3 that is
closest the point (1,0,—1)
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