Math 290-2 Class 20

Monday 25th February 2019

Directional derivatives

If is is not a unit by vector, then

Diff means

Downson P.

The directional derivative $D_{\mathbf{u}}f(\mathbf{a})$ of a function $f: \mathbb{R}^n \to \mathbb{R}$ at a point \mathbf{a} in a given direction (unit vector) \mathbf{u} is defined by

$$D_{\mathbf{u}}(\mathbf{a}) = \lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{u}) - f(\mathbf{a})}{h}$$

 $D\mathbf{u}(\mathbf{u}) = \lim_{h \to 0} h$

Notice that for a function $f: \mathbb{R}^2 \to \mathbb{R}$ we have

$$f_x(a,b) = D_{\mathbf{i}}f(a,b)$$
 and $f_y(a,b) = D_{\mathbf{j}}f(a,b)$

Fun fact: if f is differentiable at a, then $D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a})$ (so ' $D_{\mathbf{u}} = \mathbf{u} \cdot \nabla$ '). In particular:

$$D_{\mathbf{u}}f(\mathbf{a}) = \|\nabla f(\mathbf{a})\|\cos\theta$$

where θ is the angle between $\nabla f(\mathbf{a})$ and \mathbf{u} (with $0 \le \theta \le \pi$).

Some fun consequences:

- (i) D_uf(a) is maximised when u points in the same direction as ∇f(a)—thus ∇f(a) points in the direction of fastest increase of f;
- (ii) $D_{\mathbf{u}}f(\mathbf{a})$ is minimised when \mathbf{u} points in the opposite direction from $\nabla f(\mathbf{a})$ —thus $-\nabla f(\mathbf{a})$ points in the direction of fastest decrease of f;
- (iii) $D_{\mathbf{u}}f(\mathbf{a}) = 0$ when $\mathbf{u} \perp \nabla f(\mathbf{a})$.

In fact, (iii) implies that:

- For a function $f: \mathbb{R}^2 \to \mathbb{R}$ and a point (a,b), the vector $\nabla f(a,b)$ is perpendicular to (the tangent line to) the level curve of f at (a,b);
- For a function $f: \mathbb{R}^3 \to \mathbb{R}$ and a point (a,b,c), the vector $\nabla f(a,b,c)$ is perpendicular to (the tangent plane to) the level surface of f at (a,b,c).

1. Compute the directional derivative of the function $f(x,y) = x^2y + y^2x^2$ at (1,2) in the direction of the vector (-2, 1).

$$\nabla f(1,2) = (2xy + y^2, x^2 + 2xy)|_{(1,2)} = (8,5)$$

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function, let $\mathbf{u} = (u, v)$ be a unit vector in \mathbb{R}^2 , and let $\mathbf{a} = (a, b)$ in \mathbb{R}^2 . Assuming f is differentiable at \mathbf{a} , use the chain rule to show that $D_{\mathbf{u}}f(\mathbf{a}) = \mathbf{u} \cdot \nabla f(\mathbf{a})$.

$$D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t} = \frac{d}{dt} f(\vec{a} + t\vec{u}) \Big|_{t=0}$$

$$(2f dx) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t} = \frac{d}{dt} f(\vec{a} + t\vec{u}) \Big|_{t=0}$$

$$= \left[\frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \right]_{t=0}^{t}$$

$$= \frac{2f}{2\pi}(a_1b) = u + \frac{2f}{2f}(a_1b) = \sigma$$

3. Find the direction(s) in which the function $f(x,y) = e^{x+y}(x^2+y^2)$ is increasing most rapidly at the point (1,2).

$$\nabla f(1,2) = \left(e^{x+y}(x^2+y^2) + 2xe^{x+y}, e^{x+y}(x^2+y^2) + 2ye^{x+y}\right)|_{(x,2)}$$

$$= e^{x+y}\left(x^2+y^2+2x, x^2+y^2+2y\right)|_{(x,2)}$$

$$= e^{3}(1+u+2, 1+u+4)$$

$$= e^{3}(7,9)$$

$$||\nabla f(1,2)|| = e^{3}\sqrt{49+81} = e^{3}\sqrt{130}$$

$$\Rightarrow \text{ direction of greatest increase} = \frac{1}{\sqrt{180}}(7,9)$$

4. Find an equation for the tangent plane to the surface $2x^2 + y^2 - z^2 = 4$ at the point (2,0,2).

This is the level surface to the function
$$f: \mathbb{R}^3 \to \mathbb{R}$$

given by $f(x,y,z) = 2x^2 + y^2 - z^2$ at $(2,0,2)$

So
$$\begin{cases} (2,0,2) \text{ is a pt on the plane} \\ (2,0,-1) \text{ is } \bot \text{ to the plane} \end{cases}$$