Math 290-2 Class 20

Monday 25th February 2019

Directional derivatives

The directional derivative Dy f(a) of a function
—
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Fun fact: if f is differentiable at a, then | D, f(a) = u-Vf(a)

Duf(a) = |[Vf(a)ljcos 6

where @ is the angle between Vf(a) and u (with 0 < 6 < 7).

Some fun consequences:

(i) Duf(a) is maximised when u points in
the same direction as V f(a)—thus Vf(a)
points in the direction of fastest increase of
fi

(ii) Dyf(a) is minimised when u points in
the opposite direction from Vf(a)—thus
—Vf(a) points in the direction of fastest
decrease of f;

(iii) Dy f(a) =0 whenu L Vf(a).

In fact, (iii} implies that:

e For a function f : R — R and a point (a,b),
the vector Vf{a,b) is perpendicular to (the
tangent line to) the level curve of f at (a,b);

o Forafunction f: R* — R and a point (a, b, c),
the vector Vf(a,b,c) is perpendicular to (the
tangent plane to) the level surface of f at
(a,b,c).

(so ‘Dy = u- V’). In particular:




1. Compute the directional derivative of the function f(x,y) = x*y+ B at (1,2) in the direction
of the vector (—2,1).
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2. Let f : R? — R be a function, let u = (u,v) be a unit vector in R?, and let a = (a,b) in R2,
Assuming f is differentiable at a, use the chain rule to show that Dy f(a) = u- V£ (a).
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3. Find the direction(s) in which the function f(x,y) = *t¥(x2 +y?) is increasing most rapidly
at the point (1,2).
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4. Find an equation for the tangent plane to the surface 2x° +y? — 7% = 4 at the point (2,0,2).
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