Math 290-2 Class 15

Wednesday 13th February 2019

Limits

Consider a function f from (some subset of) R” to R. Given a vector a in R", the limit of f(x) as
X tends to a, if it exists, is the value £ that the function becomes arbitrary close to whenever x is an
arbitrarily smail positive distance from a. In this case, we write

’I(i_rgf(x):E or f(x)—>fasx—a

Limits do not always exist.[!) Some ways that limits can fail to exist include:

o The usual ‘l1-dimensional’ reasons, such as the denominator of a fraction tending to zero
while its numerator does not.

e The function might approach multiple values depending on the ‘path’ along which the variable
x approaches a. If this is the case, a limit does not exist.

For example, if you suspect a limit of f(x,y) does not exist as (x,y} — (0,0) because the limit is not
‘independent of path’, some suggestions include:

e Set x = 0 and compute the limit as y — 0, and set y = 0 and compute the limit as x — 0.
# Set y = mx for some real number m and compute the limit as x — 0.
e Sety = x* for some power k and compute the limit as x — 0.

If any of the above limits do not equal any of the others, the limit does not exist.

As a rule of thumb, if f is built out of nice, continuous functions (such as polynomials, exponentials
and trig functions) using arithmetic operations, and the denominators involved do not tend to zero,
then a limit exists. If not, some more care is needed.

If you’re struggling to compute a limit (or show it doesn’t exist), try converting to a different system
of coordinates, such as polar coordinates (in R?), or cylindrical or spherical coordinates (in R3).

A related concept is continuity:
« The limit lll_l‘fl f(x) might not actually be equal to f(a).
X—a
o If ’1(1_% f(x) = f(a), we say f is continuous at a.

o If £ is continuous at a for all a in its domain, we say f is continuous,
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1. For each of the following, either evaluate the limit or show it does not exist.
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